Integrating the Charrette Process Into Engineering Education: a Case Study on a Civil Engineering Capstone Course
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jackson: Choosing a Methodology: Philosophical Underpinning
JACKSON: CHOOSING A METHODOLOGY: PHILOSOPHICAL UNDERPINNING Choosing a Methodology: Philosophical Practitioner Research Underpinning In Higher Education Copyright © 2013 University of Cumbria Vol 7 (1) pages 49-62 Elizabeth Jackson University of Cumbria [email protected] Abstract As a university lecturer, I find that a frequent question raised by Masters students concerns the methodology chosen for research and the rationale required in dissertations. This paper unpicks some of the philosophical coherence that can inform choices to be made regarding methodology and a well-thought out rationale that can add to the rigour of a research project. It considers the conceptual framework for research including the ontological and epistemological perspectives that are pertinent in choosing a methodology and subsequently the methods to be used. The discussion is exemplified using a concrete example of a research project in order to contextualise theory within practice. Key words Ontology; epistemology; positionality; relationality; methodology; method. Introduction This paper arises from work with students writing Masters dissertations who frequently express confusion and doubt about how appropriate methodology is chosen for research. It will be argued here that consideration of philosophical underpinning can be crucial for both shaping research design and for explaining approaches taken in order to support credibility of research outcomes. It is beneficial, within the unique context of the research, for the researcher to carefully -
Critical Making at the Edges
Visible Language 49.3 the journal of visual communication research special issue Jessica Barness Amy Papaelias guest editors December 2015 critical making DESIGN and the DIGITAL HUMANITIES ADVISORY BOARD GUEST EDITORS' INTRODUCTION Naomi Baron — The American University, Washington, D.C. 4–11 Critical Making at the Edges Michael Bierut — Pentagram, New York, NY Jessica Barness, Amy Papaelias Matthew Carter — Carter & Cone Type, Cambridge, MA Keith Crutcher — Cincinnati, OH THEORY AND SPECULATIONS Mary Dyson — University of Reading, UK 12–33 Meta!Meta!Meta! A Speculative Design Brief for the Digital Humanities Jorge Frascara — University of Alberta, Canada / Universidad Anne Burdick de las Americas Puebla Ken Friedman — Swinburne University of Technology, Melbourne, Australia 34–61 Clues. Anomalies. Understanding. Detecting underlying assumptions and Michael Golec — School of the Chicago Art Institute, Chicago, IL Judith Gregory — University of California-Irvine, Irvine, CA expected practices in the Digital Humanities through the AIME project Kevin Larson — Microsoft Advanced Reading Technologies Donato Ricci, Robin de Mourat, Christophe Leclercq, Bruno Latour Aaron Marcus — Aaron Marcus & Associates, Berkeley, CA Per Mollerup — Swinburne University of Technology, Melbourne, Australia 62–77 Writing Images and the Cinematic Humanities Tom Ockerse — Rhode Island School of Design, Providence, RI Holly Willis Sharon Poggenpohl — Estes Park, CO Michael Renner — The Basel School of Design — Visual Communication 78–99 Beyond the Map: Unpacking -
Applications of Systems Engineering to the Research, Design, And
Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems K. Dykes and R. Meadows With contributions from: F. Felker, P. Graf, M. Hand, M. Lunacek, J. Michalakes, P. Moriarty, W. Musial, and P. Veers NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5000-52616 December 2011 Contract No. DE -AC36-08GO28308 Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems Authors: K. Dykes and R. Meadows With contributions from: F. Felker, P. Graf, M. Hand, M. Lunacek, J. Michalakes, P. Moriarty, W. Musial, and P. Veers Prepared under Task No. WE11.0341 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report NREL/TP-5000-52616 1617 Cole Boulevard Golden, Colorado 80401 December 2011 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
Privacy When Form Doesn't Follow Function
Privacy When Form Doesn’t Follow Function Roger Allan Ford University of New Hampshire [email protected] Privacy When Form Doesn’t Follow Function—discussion draft—3.6.19 Privacy When Form Doesn’t Follow Function Scholars and policy makers have long recognized the key role that design plays in protecting privacy, but efforts to explain why design is important and how it affects privacy have been muddled and inconsistent. Tis article argues that this confusion arises because “design” has many different meanings, with different privacy implications, in a way that hasn’t been fully appreciated by scholars. Design exists along at least three dimensions: process versus result, plan versus creation, and form versus function. While the literature on privacy and design has recognized and grappled (sometimes implicitly) with the frst two dimensions, the third has been unappreciated. Yet this is where the most critical privacy problems arise. Design can refer both to how something looks and is experienced by a user—its form—or how it works and what it does under the surface—its function. In the physical world, though, these two conceptions of design are connected, since an object’s form is inherently limited by its function. Tat’s why a padlock is hard and chunky and made of metal: without that form, it could not accomplish its function of keeping things secure. So people have come, over the centuries, to associate form and function and to infer function from form. Software, however, decouples these two conceptions of design, since a computer can show one thing to a user while doing something else entirely. -
Choosing a Mixed Methods Design
04-Creswell (Designing)-45025.qxd 5/16/2006 8:35 PM Page 58 CHAPTER 4 CHOOSING A MIXED METHODS DESIGN esearch designs are procedures for collecting, analyzing, interpreting, and reporting data in research studies. They represent different mod- R els for doing research, and these models have distinct names and procedures associated with them. Rigorous research designs are important because they guide the methods decisions that researchers must make dur- ing their studies and set the logic by which they make interpretations at the end of studies. Once a researcher has selected a mixed methods approach for a study, the next step is to decide on the specific design that best addresses the research problem. What designs are available, and how do researchers decide which one is appropriate for their studies? Mixed methods researchers need to be acquainted with the major types of mixed methods designs and the common variants among these designs. Important considerations when choosing designs are knowing the intent, the procedures, and the strengths and challenges associated with each design. Researchers also need to be familiar with the timing, weighting, and mixing decisions that are made in each of the different mixed methods designs. This chapter will address • The classifications of designs in the literature • The four major types of mixed methods designs, including their intent, key procedures, common variants, and inherent strengths and challenges 58 04-Creswell (Designing)-45025.qxd 5/16/2006 8:35 PM Page 59 Choosing a Mixed Methods Design–●–59 • Factors such as timing, weighting, and mixing, which influence the choice of an appropriate design CLASSIFICATIONS OF MIXED METHODS DESIGNS Researchers benefit from being familiar with the numerous classifications of mixed methods designs found in the literature. -
Introduction: Design Epistemology
Design Research Society DRS Digital Library DRS Biennial Conference Series DRS2016 - Future Focused Thinking Jun 17th, 12:00 AM Introduction: Design Epistemology Derek Jones The Open University Philip Plowright Lawrence Technological University Leonard Bachman University of Houston Tiiu Poldma Université de Montréal Follow this and additional works at: https://dl.designresearchsociety.org/drs-conference-papers Citation Jones, D., Plowright, P., Bachman, L., and Poldma, T. (2016) Introduction: Design Epistemology, in Lloyd, P. and Bohemia, E. (eds.), Future Focussed Thinking - DRS International Conference 20227, 27 - 30 June, Brighton, United Kingdom. https://doi.org/10.21606/drs.2016.619 This Miscellaneous is brought to you for free and open access by the Conference Proceedings at DRS Digital Library. It has been accepted for inclusion in DRS Biennial Conference Series by an authorized administrator of DRS Digital Library. For more information, please contact [email protected]. Introduction: Design Epistemology Derek Jonesa*, Philip Plowrightb, Leonard Bachmanc and Tiiu Poldmad a The Open University b Lawrence Technological University c University of Houston d Université de Montréal * [email protected] DOI: 10.21606/drs.2016.619 “But the world of design has been badly served by its intellectual leaders, who have failed to develop their subject in its own terms.” (Cross, 1982) This quote from Nigel Cross is an important starting point for this theme: great progress has been made since Archer’s call to provide an intellectual foundation for design as a discipline in itself (Archer, 1979), but there are fundamental theoretical and epistemic issues that have remained largely unchallenged since they were first proposed (Cross, 1999, 2007). -
Design Review Procedure
IDM UID 2832CF VERSION CREATED ON / VERSION / STATUS 30 Nov 2012 / 3.1/ Approved EXTERNAL REFERENCE MQP Procedure Design Review Procedure This document describes how to conduct IO Design Reviews on ITER Systems. It is applicable to all the Conceptual, Preliminary and Final Design Reviews performed by IO on the ITER Project. Approval Process Name Action Affiliation Author Guigon A. 30-Nov-2012:signed IO/DG/DIP/CIE/TI/SYSA CoAuthor Reviewers Alejaldre C. 19-Dec-2012:recommended IO/DG/SQS Bora D. 04-Dec-2012:recommended Chiocchio S. 03-Dec-2012:recommended IO/DG/DIP/CIE/TI Haange R. 19-Dec-2012:recommended IO/DG/DIP Hawryluk R. 04-Dec-2012:recommended IO/DG/ADM Kondoh M. 12-Dec-2012:recommended IO/DG/DIP/CIE Sands D. 19-Dec-2012:recommended IO/DG/SQS/QA Shirao T. 19-Dec-2012:recommended IO/DG/ODG Bak J.- S. 18-Dec-2012:recommended IO/DG/DIP Alekseev A. 03-Dec-2012:recommended IO/DG/DIP/TKM Merola M. 03-Dec-2012:recommended IO/DG/DIP/TKM/INC Approver Motojima O. 04-Jan-2013:approved IO/DG Document Security: level 1 (IO unclassified) RO: Croset Jean-Philippe Read Access LG: CODAC team, LG: Blanket add right persons, LG: IO Cryogenic Section All, GG: In-kind Management Administration, GG: TBM Committee, LG: IN DA cryogenic collaborator, LG: PBS32 JA, LG: [DOC] Baseline Managers, LG: PBS48 EXT, LG: Cryogenic IN DA PT, LG: Code & Standards external experts, LG: JADA_RH, LG: CDR reviewers, LG: Kraftanlagen, LG: Design Office, LG: SES DR Team, GG: TBM_IM_Teams, LG: FST/TBM staff, LG: IO PA project team, LG: DA PA project team, LG: IO TRO, LG: heatings, -
Fashion Design
FASHION DESIGN FAS 112 Fashion Basics (3-0) 3 crs. FAS Fashion Studies Presents fashion merchandise through evaluation of fashion products. Develops awareness of construction, as well as FAS 100 Industrial Sewing Methods (1-4) 3 crs. workmanship and design elements, such as fabric, color, Introduces students to basic principles of apparel construction silhouette and taste. techniques. Course projects require the use of industrial sewing equipment. Presents instruction in basic sewing techniques and FAS 113 Advanced Industrial Sewing Methods (1-4) 3 crs. their application to garment construction. (NOTE: Final project Focuses on application and mastery of basic sewing skills in should be completed to participate in the annual department Little pattern and fabric recognition and problem solving related to Black Dress competition.) individual creative design. Emphasis on technology, technical accuracy and appropriate use of selected materials and supplies. FAS 101 Flat Pattern I (1-4) 3 crs. (NOTE: This course is intended for students with basic sewing Introduces the principles of patternmaking through drafting basic skill and machine proficiency.) block and pattern manipulation. Working from the flat pattern, Prerequisite: FAS 100 with a grade of C or better or placement students will apply these techniques to the creation of a garment as demonstrated through Fashion Design Department testing. design. Accuracy and professional standards stressed. Pattern Contact program coordinator for additional information. tested in muslin for fit. Final garment will go through the annual jury to participate in the annual department fashion show. FAS 116 Fashion Industries Career Practicum and Seminar Prerequisite: Prior or concurrent enrollment in FAS 100 with a (1-10) 3 crs. -
Design Review Principles and Practice
Design Review Principles and Practice Landscape Institute Inspiring great places Published in 2013 by the Design Council. Cover photo: Granary Square at King’s Cross, © John Sturrock All photos by Design Council unless otherwise stated. Although every care has been taken in preparing this report, no responsibility or liability will be accepted by Design Council, its employees, agents or advisors for its accuracy or completeness. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, copied or transmitted without the prior written consent of the publisher except that the material may be photocopied for non-commercial purposes without permission from the publisher. Contents Foreword 3 The purpose of this guidance document 4 Part One: Principles of Design Review Chapter 1: The essentials of Design Review 6 What is Design Review? 6 Ten principles of Design Review 7 Chapter 2: The role of Design Review in the planning system 8 Design Review and national planning policy 8 How Design Review adds value 9 Chapter 3: Who benefits from Design Review? 10 Local authorities 10 Developers 10 Project design teams 11 Community groups 11 Chapter 4: Local and National Design Review 12 Local Design Review arrangements 12 National Design Review 12 Who reviews what? 12 Part Two: Design Review in practice Chapter 5: Delivering the principles 14 Chapter 6: A robust Design Review process 23 Preparation 23 Review 25 Observers 26 Advice 27 Other practical matters 28 Useful contacts 29 Contents 1 William Gates Building, University of Cambridge, © RMJM Foreword Our standards of design can be so much higher. -
What We Heard from You
What We Heard From You “The Charette process invited my neighbors and me to share our opinions and suggestions in designing a positive addition to our community . The Charette process has developed a plan that no one group of people could have achieved alone – it has drawn the best from those who participated.” STEVE POTTER Charette participant he design process that created that showcased the proposed look, the Pleasant Hill BART Station function and character of the BART TCommunity Plan was based on station. the principle that “the best plans are The high level of citizen turnout made by many hands.” More than 500 was tremendously valuable to the people participated in the Charrette process. Many dropped in during the and offered up a wealth of ideas, sug- more than 80 hours of “open door gestions and perspectives about what studio time.” The Pleasant Hill BART they wanted for their community. Station owes a great deal to these While these citizen planners have committed citizens who spent their blazed the trail for the new BART time, energy and talents helping to transit village, there still is much work Charrette participants were encouraged create an innovative, thoughtful to be done, with plenty more opportu- to generate their own ideas, helping Community Plan for the new transit nities for public input from neighbors the designers better understand the village. and others during the land use review community’s needs and desires. and approval process (see Next Steps that need to be protected. In addition, below). the team conducted market and trans- A Charrette is an inclusive public planning process undertaken by How the Charrette process portation background research that was used to help test various scenarios a inter-disciplinary design team, worked created during the charrette. -
Rome Laboratory Reliability Engineer's Toolkit
Rome Laboratory Reliability Engineer's Toolkit April 1993 j* ROME LABORATORY RELIABILITY ENGINEER'S TOOLKIT April 1993 An Application Oriented Guide for the Practicing Reliability Engineer Systems Reliability Division Rome Laboratory Air Force Materiel Command (AFMC) 525 Brooks Rd. Griffiss AFB, NY 13441-4505 QUICK REFERENCE Quick Reference Application Index How Do I... ? • Understand the Principles of TQM 2 Understand Basic DoD R&M Policy and Procedures 7 Develop Quantitative Requirements Reliability (R) 11 Maintainability (M) 17 Testability (T) 20 • Tailor R&M Task Requirements 23 R&M Task Application/Priorities 25 Develop a Contract Data Requirements List 26 • Specify Information To Be Included in Proposals 28 Evaluate Contractor Proposals 31 Specify Part Stress Derating 37 Determine the Limitations of Common Cooling Techniques 44 Understand Basic Parts Control 46 Identify Key R&M&T Topics for Evaluation at Design Reviews 55 Evaluate Contactor's Method of Managing Critical Items 62 Understand Design Concerns Associated with Dormant Conditions 63 Understand Basic SMT Design Issues 66 Evaluate Power Supply Reliability 67 Determine Part Failure Modes and Mechanisms 69 Evaluate Fiber Optic Reliability 73 Understand R&M&T Analysis Types and Purposes 77 Understand Reliability Prediction Methods 80 Understand Maintainability Prediction Methods 81 Understand Testability Analysis Methods 84 Evaluate a Reliability Prediction Report 85 Evaluate Existing Reliability Data 86 Evaluate a Maintainability/Testability Analysis Report 87 Evaluate a Failure -
3 Research Philosophy and Research Design
Research Philosophy 3 and Research Design Introduction In the introductory chapter, developing self-awareness was a key pro- cess outlined and it was stated that it is possible you have assumed that the way you view the world is the same as the way that everybody else views the world. The term ‘common sense’ was used in this discussion. We noted then, you could believe it is common sense that the way you look at the world is the same way that others look at it. However, we also saw earlier that one person’s common sense is not necessarily the same as another’s! If we accept that there are likely to be differences between people’s view of the world, it may not come as a surprise that the way some researchers view the world, is very different from other’s views. Research philosophies The idea that there are different views of the world, and the processes that operate within it, is part of what is known as philosophy. Philosophy is concerned with views about how the world works and, as an academic subject, focuses, primarily, on reality, knowledge and existence. Our individual view of the world is closely linked to what we perceive as reality. On a day-to-day basis outside of your academic work, it would be unusual to think often about the way you perceive reality and the world around you. However, in relation to your dissertation, it is very important to realise how you perceive reality. Your individual percep- tion of reality affects how you gain knowledge of the world, and how you act within it.