Theoretically Comparing Design Thinking to Design Methods for Large- Scale Infrastructure Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linking Design Management Skills and Design Function Organization: an Empirical Study of Spanish and Italian Ceramic Tile Producers
CASTELLÓN (SPAIN) LINKING DESIGN MANAGEMENT SKILLS AND DESIGN FUNCTION ORGANIZATION: AN EMPIRICAL STUDY OF SPANISH AND ITALIAN CERAMIC TILE PRODUCERS Ricardo Chiva (1), Joaquín Alegre (2), David Gobert (3), Rafael Lapiedra (1) (1) Universitat Jaume I, (2) Universitat de València, (3) ITC, Universitat Jaume I, ABSTRACT Design management is an increasingly important concept, research into which is very scarce. This paper deals with the fit between design management skills and design function organization, ranging from solely in-house to solely outsourced and including a mixture of the two. We carried out a survey in the Spanish and Italian ceramic tile industry, to which 177 product development managers responded. Our results revealed that companies have different degrees of design management skills depending on the approach to design function organization. Solely in-house design approach companies are the most skilled firms and solely outsourced ones are the least skilled. Despite the fact that the design function has apparently evolved towards outsourcing, this research supports the idea that, under certain conditions, the in-house design department is the best option in order to attain higher degrees of design management skills. Implications of the findings for both academics and practitioners are examined. P.BA - 79 CASTELLÓN (SPAIN) 1. INTRODUCTION In today’s competitive environment, design is becoming increasingly important. Good design, though, does not emerge by accident but as the result of a managed process (Bruce and Bessant, 2002, p. 38). Apart from the development process leading up to the creation of an artifact or product, the concept of design has traditionally involved a series of organizational activities, practices or skills that are required for this development to be achieved (Gorb and Dumas, 1987). -
Budgen, Software Design Methods
David Budgen The Loyal Opposition Software Design Methods: Life Belt or Leg Iron? o software design methods have a correctly means “study of method.”) To address, but future? In introducing the January- not necessarily answer, this question, I’ll first consider D February 1998 issue of IEEE Software,Al what designing involves in a wider context, then com- Davis spoke of the hazards implicit in pare this with what we do, and finally consider what “method abuse,”manifested by a desire this might imply for the future. to “play safe.”(If things go well, you can take the credit, but if they go wrong, the organization’s choice of method can take the blame.) As Davis argues, such a THE DESIGN PROCESS policy will almost certainly lead to our becoming builders of what he terms “cookie-cutter, low-risk, low- Developing solutions to problems is a distinguish- payoff, mediocre systems.” ing human activity that occurs in many spheres of life. The issue I’ll explore in this column is slightly dif- So, although the properties of software-based systems ferent, although it’s also concerned with the problems offer some specific problems to the designer (such as that the use of design methods can present. It can be software’s invisibility and its mix of static and dynamic expressed as a question: Will the adoption of a design properties), as individual design characteristics, these method help the software development process (the properties are by no means unique. Indeed, while “life belt” role), or is there significant risk that its use largely ignored by software engineers, the study of the will lead to suboptimum solutions (the “leg iron”role)? nature of design activities has long been established Robert L. -
Privacy When Form Doesn't Follow Function
Privacy When Form Doesn’t Follow Function Roger Allan Ford University of New Hampshire [email protected] Privacy When Form Doesn’t Follow Function—discussion draft—3.6.19 Privacy When Form Doesn’t Follow Function Scholars and policy makers have long recognized the key role that design plays in protecting privacy, but efforts to explain why design is important and how it affects privacy have been muddled and inconsistent. Tis article argues that this confusion arises because “design” has many different meanings, with different privacy implications, in a way that hasn’t been fully appreciated by scholars. Design exists along at least three dimensions: process versus result, plan versus creation, and form versus function. While the literature on privacy and design has recognized and grappled (sometimes implicitly) with the frst two dimensions, the third has been unappreciated. Yet this is where the most critical privacy problems arise. Design can refer both to how something looks and is experienced by a user—its form—or how it works and what it does under the surface—its function. In the physical world, though, these two conceptions of design are connected, since an object’s form is inherently limited by its function. Tat’s why a padlock is hard and chunky and made of metal: without that form, it could not accomplish its function of keeping things secure. So people have come, over the centuries, to associate form and function and to infer function from form. Software, however, decouples these two conceptions of design, since a computer can show one thing to a user while doing something else entirely. -
Introduction: Design Epistemology
Design Research Society DRS Digital Library DRS Biennial Conference Series DRS2016 - Future Focused Thinking Jun 17th, 12:00 AM Introduction: Design Epistemology Derek Jones The Open University Philip Plowright Lawrence Technological University Leonard Bachman University of Houston Tiiu Poldma Université de Montréal Follow this and additional works at: https://dl.designresearchsociety.org/drs-conference-papers Citation Jones, D., Plowright, P., Bachman, L., and Poldma, T. (2016) Introduction: Design Epistemology, in Lloyd, P. and Bohemia, E. (eds.), Future Focussed Thinking - DRS International Conference 20227, 27 - 30 June, Brighton, United Kingdom. https://doi.org/10.21606/drs.2016.619 This Miscellaneous is brought to you for free and open access by the Conference Proceedings at DRS Digital Library. It has been accepted for inclusion in DRS Biennial Conference Series by an authorized administrator of DRS Digital Library. For more information, please contact [email protected]. Introduction: Design Epistemology Derek Jonesa*, Philip Plowrightb, Leonard Bachmanc and Tiiu Poldmad a The Open University b Lawrence Technological University c University of Houston d Université de Montréal * [email protected] DOI: 10.21606/drs.2016.619 “But the world of design has been badly served by its intellectual leaders, who have failed to develop their subject in its own terms.” (Cross, 1982) This quote from Nigel Cross is an important starting point for this theme: great progress has been made since Archer’s call to provide an intellectual foundation for design as a discipline in itself (Archer, 1979), but there are fundamental theoretical and epistemic issues that have remained largely unchallenged since they were first proposed (Cross, 1999, 2007). -
ID 577 Using the Design Thinking Into Product Development Process
Proceedings of the International Conference on Industrial Engineering and Operations Management Pilsen, Czech Republic, July 23-26, 2019 Using The Design Thinking into Product Development Process: A Case Study in Bio-pharmaceutical Firm Evo Sampetua Hariandja Department of Management Faculty of Economics and Business Universitas Pelita Harapan Tangerang 15811, INDONESIA [email protected] Nurafni Rubiyanti School of Communication and Business Telkom University Bandung 40257, INDONESIA [email protected] Rintan Saragih Department of Management Faculty of Economics Universitas Methodist Indonesia Medan 20152, Indonesia [email protected] Abstract (12 font) This study aims to apply the design thinking concept into the new product development process in Indonesia pharmaceutical company. The design thinking framework consist of two phases: identify and solve. The identify phase consist of discover and define, and solve phase consist of create and evaluate. Through the two phases of this, the new product development process in pharmaceutical company will be modified using the design thinking. This method in this study using the combination between survey and interview from the key persons in the company. The informants are deputy director in business development, R&D, product development and product planning. The managerial implication and discussion will be discussed in this study. Keywords Design thinking, Indonesia, product development process, pharmaceutical company Biographies Evo Sampetua Hariandja is assistant professor at the Department of Management Faculty of Economics and Business Universitas Pelita Harapan. He earned BE in Industrial Engineering from Institute of Technology Bandung, Master of Management in Finance and Marketing from Kwik Kian Gie Business School, Indonesia and Doctor of Science in Management from Institute of Technology Bandung. -
Software Design Document 1
SOFTWARE DESIGN DOCUMENT 1. Introduction The following subsections of the Software Design Document (SDD) should provide an overview of the entire SDD. 1.1 Purpose This subsection should explain the purpose of the SDD and specify the intended audience for it. The SDD described the software structure, software components, interfaces and data necessary for the implementation phase. Each requirement in the SRS should be traceable to one or more design entities in the SDD. 1.2 Scope This subsection should relate the design document to the SRS and to the software to be developed. 1.3 Definitions, Acronyms and Abbreviations This subsection should provide the definitions of all terms, acronyms and abbreviations that are used in the SDD. 2. References This subsection should provide a complete list of all documents referenced in the SDD. It should identify these references by title, report number, date and publishing organization. It should also specify the sources from which these references are available. 3. Attributes of Design Entities There are some attributes common to all entities, regardless of the approach utilized, whether procedural or object-oriented. These are used in subsections 4 and later. 3.1 Identification The name of the entity should be specified. Two entities should not have the same name. 3.2 Type The type attribute should describe the nature of the entity. It may simply name the kind of entity, such as subprogram, module, procedure, process, data item, object etc. Alternatively, design entities can be grouped, in order to assist in locating an entity dealing with a particular type of information. -
Fashion Design
FASHION DESIGN FAS 112 Fashion Basics (3-0) 3 crs. FAS Fashion Studies Presents fashion merchandise through evaluation of fashion products. Develops awareness of construction, as well as FAS 100 Industrial Sewing Methods (1-4) 3 crs. workmanship and design elements, such as fabric, color, Introduces students to basic principles of apparel construction silhouette and taste. techniques. Course projects require the use of industrial sewing equipment. Presents instruction in basic sewing techniques and FAS 113 Advanced Industrial Sewing Methods (1-4) 3 crs. their application to garment construction. (NOTE: Final project Focuses on application and mastery of basic sewing skills in should be completed to participate in the annual department Little pattern and fabric recognition and problem solving related to Black Dress competition.) individual creative design. Emphasis on technology, technical accuracy and appropriate use of selected materials and supplies. FAS 101 Flat Pattern I (1-4) 3 crs. (NOTE: This course is intended for students with basic sewing Introduces the principles of patternmaking through drafting basic skill and machine proficiency.) block and pattern manipulation. Working from the flat pattern, Prerequisite: FAS 100 with a grade of C or better or placement students will apply these techniques to the creation of a garment as demonstrated through Fashion Design Department testing. design. Accuracy and professional standards stressed. Pattern Contact program coordinator for additional information. tested in muslin for fit. Final garment will go through the annual jury to participate in the annual department fashion show. FAS 116 Fashion Industries Career Practicum and Seminar Prerequisite: Prior or concurrent enrollment in FAS 100 with a (1-10) 3 crs. -
Software Design Document (SDD) Template
Software Design Document (SDD) Template Software design is a process by which the software requirements are translated into a representation of software components, interfaces, and data necessary for the implementation phase. The SDD shows how the software system will be structured to satisfy the requirements. It is the primary reference for code development and, therefore, it must contain all the information required by a programmer to write code. The SDD is performed in two stages. The first is a preliminary design in which the overall system architecture and data architecture is defined. In the second stage, i.e. the detailed design stage, more detailed data structures are defined and algorithms are developed for the defined architecture. This template is an annotated outline for a software design document adapted from the IEEE Recommended Practice for Software Design Descriptions. The IEEE Recommended Practice for Software Design Descriptions have been reduced in order to simplify this assignment while still retaining the main components and providing a general idea of a project definition report. For your own information, please refer to IEEE Std 10161998 1 for the full IEEE Recommended Practice for Software Design Descriptions. 1 http://www.cs.concordia.ca/~ormandj/comp354/2003/Project/ieeeSDD.pdf Downloaded from http://www.tidyforms.com (Team Name) (Project Title) Software Design Document Name (s): Lab Section: Workstation: Date: (mm/dd/yyyy) Downloaded from http://www.tidyforms.com Software Design Document TABLE OF CONTENTS 1. INTRODUCTION 2 1.1 Purpose 2 1.2 Scope 2 1.3 Overview 2 1.4 Reference Material 2 1.5 Definitions and Acronyms 2 2. -
Software Reliability and Dependability: a Roadmap Bev Littlewood & Lorenzo Strigini
Software Reliability and Dependability: a Roadmap Bev Littlewood & Lorenzo Strigini Key Research Pointers Shifting the focus from software reliability to user-centred measures of dependability in complete software-based systems. Influencing design practice to facilitate dependability assessment. Propagating awareness of dependability issues and the use of existing, useful methods. Injecting some rigour in the use of process-related evidence for dependability assessment. Better understanding issues of diversity and variation as drivers of dependability. The Authors Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor of Software Engineering at City University, London. Prof Littlewood has worked for many years on problems associated with the modelling and evaluation of the dependability of software-based systems; he has published many papers in international journals and conference proceedings and has edited several books. Much of this work has been carried out in collaborative projects, including the successful EC-funded projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant to industrial companies in France, Germany, Italy, the USA and the UK. He is a member of the UK Nuclear Safety Advisory Committee, of IFIPWorking Group 10.4 on Dependable Computing and Fault Tolerance, and of the BCS Safety-Critical Systems Task Force. He is on the editorial boards of several international scientific journals. 175 Lorenzo Strigini is Professor of Systems Engineering in the Centre for Software Reliability at City University, London, which he joined in 1995. In 1985-1995 he was a researcher with the Institute for Information Processing of the National Research Council of Italy (IEI-CNR), Pisa, Italy, and spent several periods as a research visitor with the Computer Science Department at the University of California, Los Angeles, and the Bell Communication Research laboratories in Morristown, New Jersey. -
Teaching Creative Thinking to Design Students As Future-Proofing 1
Teaching creative thinking to design students as future-proofing 1 TEACHING CREATIVE THINKING TO DESIGN STUDENTS AS FUTURE- PROOFING Donald J A Welch Design Department, Griffith University Queensland College of Art, South Bank campus, Brisbane, Australia. [email protected] ABSTRACT: In place of inevitable social chaos and planetary degradation, meta-design offers a new framework for the future of humanity. Meta-design expands the concept of design, and the designer, and implicates society as a whole in the process of producing a designed future. An essential ingredient in discovering new ways to deal with existing and as yet unknown aspects of our present predicament is creativity. This paper considers how design students may be encouraged to develop their creativity through appropriate training and to widen individual understanding not only of what they are personally capable of achieving but also of their position in society. How the brain creates new patterns of thinking through ideational code switching and contextual focus is considered in relation to appropriate methods of engendering creative conceptualisation. It concludes by briefly sketching how design education might respond in terms of curriculum development to what is an increasingly urgent predicament of unsustainablity Keywords: Design Education, Creativity, Meta-design INTRODUCTION Within the context of an increasingly dysfunctional economic system, this paper considers the position of the design profession as an adjunct to business and how meta-design points the way towards a remodeling of this relationship, and even changing the global framework in which design operates. Education is a key factor since it has the capacity to develop new understandings and fresh ideas by nurturing creativity, yet education is complicit in delineating acceptable limits to creativity, boundaries that are set by dominant political and commercial interests. -
Designing for Human Rights in AI
Delft University of Technology Designing for human rights in AI Aizenberg, E.; van den Hoven, J. DOI 10.1177/2053951720949566 Publication date 2020 Document Version Final published version Published in Big Data & Society Citation (APA) Aizenberg, E., & van den Hoven, J. (2020). Designing for human rights in AI. Big Data & Society, 7(2). https://doi.org/10.1177/2053951720949566 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Original Research Article Big Data & Society July–December 2020: 1–14 Designing for human rights in AI ! The Author(s) 2020 DOI: 10.1177/2053951720949566 journals.sagepub.com/home/bds Evgeni Aizenberg1,2 and Jeroen van den Hoven2,3 Abstract In the age of Big Data, companies and governments are increasingly using algorithms to inform hiring decisions, employ- ee management, policing, credit scoring, insurance pricing, and many more aspects of our lives. Artificial intelligence (AI) systems can help us make evidence-driven, efficient decisions, but can also confront us with unjustified, discriminatory decisions wrongly assumed to be accurate because they are made automatically and quantitatively. -
Fashion Designers' Decision-Making Process
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 Fashion designers' decision-making process: The influence of cultural values and personal experience in the creative design process Ja-Young Hwang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Art and Design Commons Recommended Citation Hwang, Ja-Young, "Fashion designers' decision-making process: The influence of cultural values and personal experience in the creative design process" (2013). Graduate Theses and Dissertations. 13638. https://lib.dr.iastate.edu/etd/13638 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Fashion designers’ decision-making process: The influence of cultural values and personal experience in the creative design process by Ja -Young Hwang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Apparel, Merchandising, and Design Program of Study Committee: Mary Lynn Damhorst, Co-Major Professor Eulanda Sanders, Co-Major Professor Sara B. Marcketti Cindy Gould Barbara Caldwell Iowa State University Ames, Iowa 2013 Copyright © Ja Young Hwang, 2013. All rights