Applications of Systems Engineering to the Research, Design, And

Total Page:16

File Type:pdf, Size:1020Kb

Applications of Systems Engineering to the Research, Design, And Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems K. Dykes and R. Meadows With contributions from: F. Felker, P. Graf, M. Hand, M. Lunacek, J. Michalakes, P. Moriarty, W. Musial, and P. Veers NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5000-52616 December 2011 Contract No. DE -AC36-08GO28308 Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems Authors: K. Dykes and R. Meadows With contributions from: F. Felker, P. Graf, M. Hand, M. Lunacek, J. Michalakes, P. Moriarty, W. Musial, and P. Veers Prepared under Task No. WE11.0341 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report NREL/TP-5000-52616 1617 Cole Boulevard Golden, Colorado 80401 December 2011 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: [email protected] online ordering: http://www.ntis.gov/help/ordermethods.aspx Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste. Acknowledgments In addition to those individuals explicitly listed as contributors above, there were many individuals that provided important suggestions and insights related to the paper. In particular, we would like to thank the external reviewers of the work who provided valuable feedback that helped improve the overall report. In addition, many of these reviewers also provided sources of information and guidance throughout the development of the report. We would first like to acknowledge our academic reviewers, including Associate Professor Juan Alonso, Department of Aeronautics & Astronautics, Stanford University, as well as Professor Nickolas Vlahopoulos, Naval Architecture & Marine Engineering, University of Michigan. Second, we would like to thank reviewers from our fellow laboratories and the DOE headquarters: Dr. Chris Hart, Offshore Wind Team Lead of the Wind and Water Program at the DOE, and Dr. Matt Barone, Aerodynamics and Acoustics Lead in the Wind Energy Technologies and Water Power Technologies Departments at Sandia National Laboratories. Finally, we appreciate industry feedback from Dr. Patrick Riley, Energy Systems Engineer, GE Global Research. In addition to the review team, communication from a few other individuals helped inform the overall report development. We would like to thank Dr. Jarrod Goentzel, Executive Director of the MIT Supply Chain Management Program, for his guidance in understanding important aspects of supply chain management as they related to wind energy systems. We would also like to acknowledge Dr. Curran Crawford, Assistant Professor of Mechanical Engineering of the University of Victoria; Dr. Deniz Ozkan, Project Coordinator at the Atlantic Wind Connection; and Ms. Bryony Du Pont, PhD Candidate in Mechanical Engineering at Carnegie Mellon University, each for their communication regarding their respective thesis works. Finally, there are several people internal to the National Renewable Energy Lab who provided input and support for the report. They include: Dr. Jason Jonkman; Dr. Amy Robertson; Mr. Marshall Buhl; Mr. Jason Fields; Dr. Andy Clifton; Dr. Alan Wright; Dr. Paul Fleming; Mr. Erik Ela; Dr. Eduard Muljadi; Dr. Vahan Gevorgian; Dr. Scott Schreck; Dr. Matthew Churchfield; Dr. Shawn Sheng; Dr. Heidi Souder; and Dr. Eric Lantz. iii List of Acronyms AAO All-At-Once AEP annual energy production BOS balance of station CAD computer-aided design CFD computational fluid dynamics CPS2 Control Performance Standard 2 CSCD computer supported collaborative design DAKOTA Design Analysis Kit for Optimization and Terascale Applications DOE U.S. Department of Energy DFMA Design for Manufacturing and Assembly DSM design structure matrices FAST Fatigue, Aerodynamics, Structures, and Turbulence FERC Federal Energy Regulatory Commission FESTIV Flexible Energy Scheduling Tool for Integration of Variable Generation FMEA Failure Mode Effects Analysis GIS Geographic Information System HPC high performance computing IDF Individual Discipline Feasible INCOSE International Council on Systems Engineering JEDI Jobs and Economic Development Impact Model LCOE Levelized Cost of Energy LIDAR Light Detection and Ranging MDO multidisciplinary design optimization MINLP mixed integer nonlinear programming MOO multi-objective optimization NAFnoise Airfoil Noise NASA National Aeronautics and Space Administration NOAA National Oceanic and Atmospheric Administration NREL National Renewable Energy Laboratory NSF National Science Foundation OEM original equipment manufacturers OFWIC Offshore Wind Integrated Cost O&M operations and maintenance QFD Quality Functional Deployment ReEDS Regional Energy Deployment System SAGE Semi-Automatic Ground Environment TSP traveling salesman problem TTS time-to-solution WAsP Wind Atlas Analysis and Application Program WESE Wind Energy Systems Engineering WindPACT Wind Partnerships for Advanced Component Technologies WinDS Wind Deployment System WILMAR Wind Power Integration in Liberalized Electricity Markets WRF Weather Research and Forecasting Model iv Executive Summary Over the past 30 years, wind energy has evolved from a small industry active in a few countries to a large international industry involving major players in the manufacturing, development, and utility sectors. Coinciding with the industry growth, significant innovation in the technology has resulted in larger sized turbines with lower associated costs of energy and more complex designs in all subsystems—from the rotor to the drivetrain to the electronics and control systems. However, as the deployment of the technology grows and its role within the electricity sector has become more prominent, so have the expectations of the technology in terms of performance, reliability, and cost. For the industry to continue to succeed and become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind energy into the electric grid without creating significant negative impacts on local communities and environments. At the same time, the nature of the issues associated with wind energy design and development are noticeably more complex than in the past due to a variety of factors such as, for example, large turbines sizes, offshore deployment or complex terrains. Looking toward the future, the industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. In order to address these challenges, National Renewable Energy Laboratory (NREL) has embarked on the Wind Energy Systems Engineering (WESE) initiative to evaluate how methods of systems engineering can be applied to the research, design, and development of wind energy systems. Systems engineering is a field within engineering that has a long history of application to complex technical systems such as aerospace. As such, the field holds much potential for addressing critical issues that face the wind industry today. This paper represents a first step for understanding this potential and lays out a conceptual design for the development of a WESE framework and tool. It reviews systems engineering methods as applied to related technical systems and illustrates how these methods can be combined in a WESE framework to meet the research, design, and development needs for the future of the industry. Subsequent efforts will focus on developing and implementing a framework based on the conceptual design
Recommended publications
  • Jackson: Choosing a Methodology: Philosophical Underpinning
    JACKSON: CHOOSING A METHODOLOGY: PHILOSOPHICAL UNDERPINNING Choosing a Methodology: Philosophical Practitioner Research Underpinning In Higher Education Copyright © 2013 University of Cumbria Vol 7 (1) pages 49-62 Elizabeth Jackson University of Cumbria [email protected] Abstract As a university lecturer, I find that a frequent question raised by Masters students concerns the methodology chosen for research and the rationale required in dissertations. This paper unpicks some of the philosophical coherence that can inform choices to be made regarding methodology and a well-thought out rationale that can add to the rigour of a research project. It considers the conceptual framework for research including the ontological and epistemological perspectives that are pertinent in choosing a methodology and subsequently the methods to be used. The discussion is exemplified using a concrete example of a research project in order to contextualise theory within practice. Key words Ontology; epistemology; positionality; relationality; methodology; method. Introduction This paper arises from work with students writing Masters dissertations who frequently express confusion and doubt about how appropriate methodology is chosen for research. It will be argued here that consideration of philosophical underpinning can be crucial for both shaping research design and for explaining approaches taken in order to support credibility of research outcomes. It is beneficial, within the unique context of the research, for the researcher to carefully
    [Show full text]
  • Choosing a Mixed Methods Design
    04-Creswell (Designing)-45025.qxd 5/16/2006 8:35 PM Page 58 CHAPTER 4 CHOOSING A MIXED METHODS DESIGN esearch designs are procedures for collecting, analyzing, interpreting, and reporting data in research studies. They represent different mod- R els for doing research, and these models have distinct names and procedures associated with them. Rigorous research designs are important because they guide the methods decisions that researchers must make dur- ing their studies and set the logic by which they make interpretations at the end of studies. Once a researcher has selected a mixed methods approach for a study, the next step is to decide on the specific design that best addresses the research problem. What designs are available, and how do researchers decide which one is appropriate for their studies? Mixed methods researchers need to be acquainted with the major types of mixed methods designs and the common variants among these designs. Important considerations when choosing designs are knowing the intent, the procedures, and the strengths and challenges associated with each design. Researchers also need to be familiar with the timing, weighting, and mixing decisions that are made in each of the different mixed methods designs. This chapter will address • The classifications of designs in the literature • The four major types of mixed methods designs, including their intent, key procedures, common variants, and inherent strengths and challenges 58 04-Creswell (Designing)-45025.qxd 5/16/2006 8:35 PM Page 59 Choosing a Mixed Methods Design–●–59 • Factors such as timing, weighting, and mixing, which influence the choice of an appropriate design CLASSIFICATIONS OF MIXED METHODS DESIGNS Researchers benefit from being familiar with the numerous classifications of mixed methods designs found in the literature.
    [Show full text]
  • 3 Research Philosophy and Research Design
    Research Philosophy 3 and Research Design Introduction In the introductory chapter, developing self-awareness was a key pro- cess outlined and it was stated that it is possible you have assumed that the way you view the world is the same as the way that everybody else views the world. The term ‘common sense’ was used in this discussion. We noted then, you could believe it is common sense that the way you look at the world is the same way that others look at it. However, we also saw earlier that one person’s common sense is not necessarily the same as another’s! If we accept that there are likely to be differences between people’s view of the world, it may not come as a surprise that the way some researchers view the world, is very different from other’s views. Research philosophies The idea that there are different views of the world, and the processes that operate within it, is part of what is known as philosophy. Philosophy is concerned with views about how the world works and, as an academic subject, focuses, primarily, on reality, knowledge and existence. Our individual view of the world is closely linked to what we perceive as reality. On a day-to-day basis outside of your academic work, it would be unusual to think often about the way you perceive reality and the world around you. However, in relation to your dissertation, it is very important to realise how you perceive reality. Your individual percep- tion of reality affects how you gain knowledge of the world, and how you act within it.
    [Show full text]
  • Fashion Designers' Decision-Making Process
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 Fashion designers' decision-making process: The influence of cultural values and personal experience in the creative design process Ja-Young Hwang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Art and Design Commons Recommended Citation Hwang, Ja-Young, "Fashion designers' decision-making process: The influence of cultural values and personal experience in the creative design process" (2013). Graduate Theses and Dissertations. 13638. https://lib.dr.iastate.edu/etd/13638 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Fashion designers’ decision-making process: The influence of cultural values and personal experience in the creative design process by Ja -Young Hwang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Apparel, Merchandising, and Design Program of Study Committee: Mary Lynn Damhorst, Co-Major Professor Eulanda Sanders, Co-Major Professor Sara B. Marcketti Cindy Gould Barbara Caldwell Iowa State University Ames, Iowa 2013 Copyright © Ja Young Hwang, 2013. All rights
    [Show full text]
  • CBPR Charrette Fact Sheet
    CBPR Charrette Fact Sheet CBPR Charrettes: An Expert Guided Process for Strengthening Community-Academic Partnerships University of North Carolina at Chapel Hill (UNC) Project Background The NC Translational and Clinical Sciences Institute (TraCS), home of UNC’s Clinical and Translational Science Award (CTSA) and the UNC Center for Health Promotion and Disease Prevention (HPDP), home of UNC’s CDC-funded Prevention Research Center (PRC), received two supplement grants to launch Community Leadership and Reciprocal Development: Advancing Community-Engaged Research at Two CTSA Institutions in collaboration with Vanderbilt’s Institute for Clinical and Translational Research (VICTR). The goal of this project was to expand and accelerate both institutions’ capacity to advance community-engaged research, by 1) drawing on the expertise of community partners working with our respective institutions, and, 2) initiating a cross-institution partnership to share expertise, develop resources, and disseminate new knowledge and approaches. At UNC we provide technical assistance through a “charrette” process to advance the adoption and successful implementation of community- based participatory research (CBPR) among community and academic partnership teams. What is a charrette? A “charrette” is a collaborative planning process most often used in design and architecture that harnesses the talents and energies of all interested parties to create and support a feasible plan to bring about community development and transformation (www.nationalcharretteinstitute.org). This project adapts the charrette concept to build the capacity of community-academic partnerships to use a CBPR approach to address the health needs of communities. Our “CBPR Charrettes” are comprised of focused guidance sessions for community-academic partnership (CAP) teams to address issues or questions identified by the partnership.
    [Show full text]
  • Clean Energy from America's Oceans
    Clean Energy from America’s Oceans Permitting and Financing Challenges to the U.S. Offshore Wind Industry Michael Conathan and Richard Caperton June 2011 Introduction and summary For 87 days in the spring and summer of 2010, an undersea gusher of oil continuously reminded Americans of the toll energy development can take on our oceans. Approximately 3,500 oil rigs and platforms were operating in U.S. waters at the time of the BP disaster. There were also over 1,000 wind turbines generating clean, renewable electricity off the coastlines of northwestern Europe. But not a single windmill yet turns in the strong, abundant winds that abound off our shores. Clearly wind power cannot immediately replace the energy we still must generate from the oil and gas produced on the outer continental shelf. But America’s unwillingness to clear the way for permitting a proven, commercially scalable, clean source of energy is a major black eye for a nation that purports to be a leader in technological development. Denmark constructed the first offshore wind facility in in 1991. In the intervening two decades 10 other countries installed offshore wind farms—eight nations in northern Europe, plus Japan and China (see chart). Nations embracing wind energy Current offshore wind capacity in megawatts, Europe, China, and the United States Europe Offshore wind capacity (United Kingdom, Denmark, The China United States in megawatts (MW) Netherlands, Belgium, Germany, Sweden, Ireland, Finland, Norway)1 Installed 2,946 1022 0 Under construction 3,000 2,3003 0 Permitted 19,000 13,6004 4885 Total 24,946 MW 16,002 MW 488 MW Note: One megawatt roughly equates to the amount of electricity needed to power 300 American homes.
    [Show full text]
  • Response of a Two-Story Residential House Under Realistic Fluctuating Wind Loads
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-14-2010 12:00 AM Response of a Two-Story Residential House Under Realistic Fluctuating Wind Loads Murray J. Morrison The University of Western Ontario Supervisor Gregory A. Kopp The University of Western Ontario Graduate Program in Civil and Environmental Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Murray J. Morrison 2010 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Civil Engineering Commons, and the Structural Engineering Commons Recommended Citation Morrison, Murray J., "Response of a Two-Story Residential House Under Realistic Fluctuating Wind Loads" (2010). Electronic Thesis and Dissertation Repository. 13. https://ir.lib.uwo.ca/etd/13 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Response of a Two-Story Residential House Under Realistic Fluctuating Wind Loads (Spine title: Realistic Wind Loads on the Roof of a Two-Story House) (Thesis Format: Monograph) by Murray J. Morrison Department of Civil and Environmental Engineering Faculty of Engineering A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Murray J. Morrison 2010 THE UNIVERSITY OF WESTERN ONTARIO SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES CERTIFICATE OF EXAMINATION Supervisor Examiners ______________________________ ______________________________ Dr.
    [Show full text]
  • Guidelines for Converting Between Various Wind Averaging Periods in Tropical Cyclone Conditions
    GUIDELINES FOR CONVERTING BETWEEN VARIOUS WIND AVERAGING PERIODS IN TROPICAL CYCLONE CONDITIONS For more information, please contact: World Meteorological Organization Communications and Public Affairs Office Tel.: +41 (0) 22 730 83 14 – Fax: +41 (0) 22 730 80 27 E-mail: [email protected] Tropical Cyclone Programme Weather and Disaster Risk Reduction Services Department Tel.: +41 (0) 22 730 84 53 – Fax: +41 (0) 22 730 81 28 E-mail: [email protected] 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int D-WDS_101692 WMO/TD-No. 1555 GUIDELINES FOR CONVERTING BETWEEN VARIOUS WIND AVERAGING PERIODS IN TROPICAL CYCLONE CONDITIONS by B. A. Harper1, J. D. Kepert2 and J. D. Ginger3 August 2010 1BE (Hons), PhD (James Cook), Systems Engineering Australia Pty Ltd, Brisbane, Australia. 2BSc (Hons) (Western Australia), MSc, PhD (Monash), Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne, Australia. 3BSc Eng (Peradeniya-Sri Lanka), MEngSc (Monash), PhD (Queensland), Cyclone Testing Station, James Cook University, Townsville, Australia. © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • FERC Approval Release 5-19
    FOR IMMEDIATE RELEASE Contact: Frank Maisano, (202) 828-5864, c: (202) 997-5932 [email protected] FERC Action Will Enable Offshore Transmission, Reduce Congestion First–of-Kind Offshore Backbone Project will Deliver Clean Energy, Jobs, Reliability WASHINGTON, DC – The Federal Energy Regulatory Commission (FERC) approved a filing that greatly enhances transmission development to support America's renewable energy needs, which will also reduce expensive transmission congestion in the Mid-Atlantic states. FERC's order provides a boost to new transmission projects like the Atlantic Wind Connection that require large sums of capital that are totally at risk. The Atlantic Wind Connection investment will create thousands of offshore wind development jobs and expand reliability and national security through improvements in the electric grid. "This is an important and significant step forward to build the interstate electric super highway necessary for offshore wind to reach scale," said Robert Mitchell, CEO of Atlantic Grid Development, the project's developer. "The Atlantic Wind Connection project will allow thousands of megawatts of clean power to efficiently connect to the PJM transmission grid, while spurring the creation of thousands of clean energy jobs and improving the reliability and security of the power grid in the Mid-Atlantic. We are gratified and appreciate that the Commissioners recognize the important benefits this project will provide in furthering the efficient and timely development of offshore wind in New Jersey, Delaware, Maryland and Virginia.” AWC originally filed its petition with FERC regarding its backbone transmission project in December. Announced in October, the AWC project is the super highway for potential offshore wind energy along the Mid-Atlantic coast.
    [Show full text]
  • Meeting Minutes PJM Interconnection PJM Planning Committee PJM Conference and Training Center Valley Forge, PA January 9Th, 2014 9:30 AM Members Present
    Meeting Minutes PJM Interconnection PJM Planning Committee PJM Conference and Training Center Valley Forge, PA January 9th, 2014 9:30 AM Members Present: David Canter AEP John Syner (FE) Allegheny Power Takis Laios American Electric Power Chris Norton American Municipal Power, Inc. Dale Burmester American Transmission Company, LLC Gary Fuerst American Transmission Systems, Inc. David Tates American Transmission Systems, Inc. Patricia Esposito Atlantic Grid Operations A, LLC Mohamed El Gassier Atlantic Wind Connection Paul McCoy Atlatic Wind Connection James Jablonski Borough of Butler, Butler Electric Division Ron Pezon Borough of Chambersburg Wil Burns Burns Law Firm Barry Trayers Citigroup Energy, Inc. Deral Danis CLEAN LINE ENERGY PARTNERS LLC William Allen Commonwealth Edison Company Thomas Leeming Commonwealth Edison Company Rehan Gilani ConEdison Energy Griffin Reilly Consolidated Edison Company of NY, Inc. Dan Griffiths Consumer Advocates of PJM States Bill Dugan Customized Energy Solutions, Ltd.* Guy Filomena Customized Energy Solutions, Ltd.* Carl Johnson Customized Energy Solutions, Ltd.* John Horstmann Dayton Power & Light Company (The) Jaclyn Cantler Delmarva Power & Light Company David Hastings DhastCo,LLC David Scarpignato Direct Energy Janhavi Dharmadhikari (ES) Dominion Energy Marketing, Inc. George Owens Downes Associates, Inc. Greg Pakela DTE Energy Trading, Inc. Kenneth Jennings Duke Energy Business Services LLC Steve Steinkuhl Duke Energy Business Services LLC Jason Harchick Duquesne Light Company Jennifer Ayers-Brasher
    [Show full text]
  • Modulhandbuch Wind Engineering
    Module Handbook - Master „Wind Engineering“ 1 Module Handbook Master “Wind Engineering” Last updated_August 2019 Module Handbook - Master „Wind Engineering“ 2 Table of content Table of content .................................................................................................................................. 2 Module overview ................................................................................................................................. 3 Electives ............................................................................................................................................... 4 Module number [1]: Scientific and Technical Writing......................................................................... 5 Module number [2]: Global Wind industry and environmental conditions........................................ 6 Module number [3]: Wind farm project management and GIS .......................................................... 8 Module number [4]: Advanced Engineering Mathematics ............................................................... 10 Module number [5]: Mechanical Engineering for Electrical Engineers ............................................. 11 Module number [6]: Electrical Engineering for Mechanical Engineers ............................................. 13 Module number [7]: German for foreign students ........................................................................... 14 Module number [8]: English for engineers ......................................................................................
    [Show full text]
  • Request to Study the Atlantic Wind Connection Project
    1 DRAFT – April 12 2012 Request to Study the Atlantic Wind Connection Project and Request For Scoping Meeting 1. New Jersey, Delaware, Maryland, and Washington D.C. (Eastern PJM States) hereby jointly request PJM to evaluate the Atlantic Wind Connection (AWC) project as a transmission solution to their combined offshore renewable energy needs. The Eastern PJM States would like PJM to: (i) Quantify the various categories of benefits that AWC will provide, including impacts on reliability, market efficiency, congestion costs, LMPs, and capacity payments relative to a baseline scenario without AWC; (i) Identify the likely beneficiaries within the states served by PJM, (ii) Quantify the distribution of the benefits among the beneficiaries. The Eastern PJM States would also like PJM to indicate how AWC would be treated under the Critical Mass Approach ("CMA") as it is currently envisioned by PJM. The Eastern PJM States further request that PJM calculate the additional reliability and congestion costs and benefits that would result from the ability of the AWC backbone line to provide power into the northern New Jersey market including the additional revenues that would be available to wind developers. 2. In examining how the transmission method selected for offshore wind projects may impact the PJM states generally, and the states that support offshore wind energy in particular, the Eastern PJM States request that PJM consider, at a minimum, alternate transmission approaches as outlined in the table below (and shown on the attached maps). To the extent PJM needs to prioritize tasks, we suggest starting with the 3,000 MW configuration for study year 2019, followed by 7,000 MW for study year 2023.
    [Show full text]