Mexican Feather Grass (Nassella Tenuissima) a Potential Disaster for Australia

Total Page:16

File Type:pdf, Size:1020Kb

Mexican Feather Grass (Nassella Tenuissima) a Potential Disaster for Australia Twelfth Australian Weeds Conference MEXICAN FEATHER GRASS (NASSELLA TENUISSIMA) A POTENTIAL DISASTER FOR AUSTRALIA D.A. McLaren1, M. Whattam2, K. Blood1, V. Stajsic3 and R. Hore1 1 CRC for Weed Management Systems and Department of Natural Resources and Environment, Keith Turnbull Research Institute, PO Box 48, Frankston, Victoria 3199 2 Australian Quarantine and Inspection Service, Plant Quarantine Nursery, 621 Burwood Hwy, Knoxfield, Victoria 3180 3 National Herbarium of Victoria, Birdwood Avenue, South Yarra, Victoria 3141 Abstract Nassella tenuissima (Mexican feather grass) has led to the removal and destruction of these plants has been sold from nurseries in Victoria and NSW since from two Victorian nurseries and a review of AQIS 1998. This paper examines how such a potentially import regulations. weedy species could be legally brought into Australia Nassella tenuissima (Synonym - Stipa tenuissima) is and the pressures being applied by the nursery indus- native to Argentina, Chile, New Mexico and Texas try to continually introduce new exotic species. It also (Jacobs et al. 1998). N. tenuissima is commonly called examines actions by the Australian Quarantine and Mexican feather grass, Texas tussock, white tussock, Inspection Service (AQIS) to prevent such an incident ponytail grass and tussock grass. In Argentina, N. occurring again and explores the use of new technolo- tenuissima is regarded as an unpalatable grass (Moretto gies in both introducing and alerting authorities to the and Distel 1998) and has been classified as a non-pre- existence of emerging weeds. The potential distribu- ferred species that can become dominant under con- tion of N. tenuissima is assessed and compared to its tinual heavy grazing pressure with a low frequency of close relative, Nassella trichotoma (serrated tussock) high intensity fire (Distel and Boo 1995). Similarly, in Australia. it is regarded as a species that is rarely eaten by deer in INTRODUCTION Texas (Simons 1996). It has been estimated that weeds cost Australia in ex- In the 1990s, native grasses have become very popu- cess $3,300 million every year (National Weeds Strat- lar as ornamental plantings in Australia. In Melbourne, egy 1997) and they are also causing severe impacts on native grasses such as Poa tussock, Poa labillardierei the natural environment (Carr et al. 1992). Eleven ex- is being used extensively as a low maintenance, at- otic stipoid grass species have become naturalised in tractive groundcover along road and freeway verges. Australia this century (McLaren et al. 1998). One of The popularity of grasses in urban areas has resulted these species, serrated tussock, Nassella trichotoma in rare plant nurseries taking an increased interest in costs agriculture in New South Wales more than $40 importing new, attractive, hardy, easily grown spe- million annually (Jones and Vere 1998) and is also cies. The resemblance of these exotic stipoid species causing severe environmental impacts (McLaren et al. to indigenous Austrostipa species, has meant that they 1998). Another Nassella species almost identical to are easily overlooked as weeds, increasing the likeli- serrated tussock was found being sold at a Sydney hood that they will of successfully naturalise. nursery in 1996. It was being sold under the name One of the principal factors determining a plant’s dis- “Elegant Spear Grass”; (known to botanists as tribution is climate. Since the factors defining the suit- Austrostipa elegantissima (Labill.) which is an Aus- ability of a habitat to a particular plant may be un- tralian native grass (Dellow, pers. comm.)) but was known, computer models which create an empirical subsequently identified as Nassella tenuissima (Trin.) set of parameters based on current distribution can be Barkworth (Jacobs et al. 1998). Similarly, in 1998, a used to describe areas possibly suitable for a plants landscape gardener identified a plant resembling ser- survival. These parameters can then be used to predict rated tussock at a rare plant nursery at Mount Macedon the potential spread of weed species by analysing the (57 km north west of Melbourne) called Stipa climatic variables where the species is naturalised tenuissima. He alerted authorities via a computer email (Cousens and Pheloung 1996, McLaren et al. 1998). network called “Enviroweeds” that links people inter- A climate matching system called CLIMATE, devel- ested in environmental weed issues around Australia oped by Agriculture Western Australia has been de- and the world. This set in train an investigation that veloped from the concepts contained in the BIOCLIM 658 Twelfth Australian Weeds Conference (Busby 1991) and CLIMEX (Sutherst and Maywald and has almost certainly increased the rate of illegal 1985) prediction systems. The CLIMATE system gen- plant introductions coming into Australia. Table 1 lists erates a prediction of a species distribution based on a selection of some current sources offering N. the climate of its known distributions and is used par- tenuissima for sale or advertising its virtues as an or- ticularly where detailed biological data on a species is namental plant. lacking. It does not take into consideration soil type, N. tenuissima has also been introduced into New Zea- day length or biotic factors and as such may produce land via the internet and the nursery industry. A con- overestimates of a plant’s potential distribution. tribution from the Stipa tenuissima – Imagine this web This paper presents data on some of the pathways by site (Table 1) stated: which these plants are entering Australia and outlines “I too fell in love with Stipa tenuissima at first sight. I some strategies that need to be put in place to ensure propagated heaps of it, only to find out that it could that such introductions are minimised. become a threat to our pastures in New Zealand, so I MATERIALS AND METHODS had to destroy them all. Our climate is very accommo- dating, i.e. they self-seed like mad. Do be warned Overseas distributions of N. tenuissima were obtained though, that the very fine seeds can get caught in pets from overseas herbaria and plant taxonomic descrip- coats and eyes and they are very difficult to detect. tions. A climate analysis was undertaken to determine However I am envious that you are allowed to grow the potential distribution of N. tenuissima and was then them and I loved your photo. In New Zealand it has compared to potential distribution of N. trichotoma. been mistakenly sold by garden outlets in recent years Overseas distributions were assessed using the CLI- and there is now a danger that it will invade the pas- MATE (Pheloung 1996) program which collected cli- toral land of Whitford.” mate data from the closest weather station to the N. tenuissima infestation. This climate data was then Climate Matching N. tenuissima is native to New compared to Australian climates using the BIOCLIM Mexico, Texas, Mexico, Argentina and Chile (Jacobs program (Nix 1986) using the CLIMATE system to et al. 1998). By using recorded native distributions, predict areas in Australia that possess similar climate its potential distributions were predicted using the profiles. CLIMATE program. For Mexico, its known distribu- tion’s were limited to presence or absence within states. Viability of N. tenuissima seed collected from a nurs- Whole Mexico states were therefore included for the ery in Mount Macedon, Victoria was tested by placing purpose of the climate analysis. An area from west- 100 seeds onto dampened seed germination paper in ern, central and southern Queensland to northern petri dishes within a constant temperature cabinet at NSW, northern Victoria, southern South Australia and 23°C under 16 hr daylength. central-east WA are predicted to be at risk of invasion RESULTS AND DISCUSSION (Figure 1). In total the potential distribution of N. tenuissima is predicted to be 14.1 million ha (best fit The Nursery Industry and the use of the internet only). In contrast, the potential distribution of ser- for introducing new plant species into Australia. rated tussock, Nassella trichotoma based on South Plant hunters have been roaming the planet for centu- American distributions is predicted to be 2.4 million ries, transporting plants for ornamental and commer- ha (best predictions only) primarily along the south cial uses to new countries. This practice continues and south-east coast of Australia (Figure 2). But based today and plant hunters are constantly bringing in new on current Australian distributions, the potential dis- material to Australia. Fads and fashion drive the nurs- tribution of N. trichotoma is estimated to be 32 mil- ery trade with customers constantly demanding new lion ha with substantial areas of New South Wales, and exciting plants resulting in a great deal of pressure Victoria and Tasmania at risk of invasion (McLaren et on nurseries and garden centres to seasonally provide al. 1998). The broader climatic profile of N. tenuissima new lines of plants. Novel plants are usually fist ob- enabling it to potentially invade nearly six times as tained legally but sometimes plant collectors, garden- much land as N. trichotoma in Australia, emphasises ers and some smaller nursery operators have brought the threat this species poses to the Australian environ- in material without approval from AQIS. The increased ment. N. tenuissima’s similarity in taxonomy, growth use of the internet for global trading has made plants and ecology to N. trichotoma means that it is very im- more accessible to a much wider range of customers portant to prevent it becoming naturalised in Australia. 659 Twelfth Australian Weeds Conference mel Figure 1. Potential distribution of Nassella tenuissima Figure 2. Potential distribution of Nassella trichotoma predicted from a climate profile of distributions in its predicted from a climate profile of distributions in its countries of origin countries of origin Best prediction (10% of mean) (20% of mean) Seed germination It was found that 20% of N. Worst prediction (30% of mean) tenuissima seeds germinated when exposed to constant 23°C and 16 hr daylengths.
Recommended publications
  • Taxonomical Notes on the Genus Piptatherum P. Beauv
    TAXONOMICAL NOTES ON THE GENUS PIPTATHERUM P. BEAUV. (POACEAE) IN IRAN ee & M. Assadi׳B. Hamzeh Received 2015. 02. 20; accepted for publication 2015. 05. 12 ee, B. & Assadi, M. 2015. 06. 30: Taxonomical notes on the genus Piptatherum P. Beauv. (Poaceae) in׳Hamzeh Iran. –Iran. J. Bot. 21 (1): 01-09. Tehran. Piptatherum denaense is described as a new species from south west of Iran, Dena Mountain. It is close to P. laterale but differs from it by having glabrous lemma in lower half and toward the apex, narrower vegetative shoots and unbearded anthers. Piptatherum holciforme subsp. holciforme var. glabrum is not accepted as a distinct variety. Piptatherum sphacelatum formerly known as a synonym of P. molinioides is established as a separate species due to having distinct morphological characters as well as molecular differences based on literature. Thus, the number of taxa in the genus Piptatherum changes to 9 species, 2 subspecies and 4 varieties in Iran. An identification key to Piptatherum taxa occuring in Iran is provided. The distribution map of P. denaense with P. laterale subsp. laterale and the illustration of the new species are included. ee (correspondence <[email protected]>) & Mostafa Assadi, Research Institute of Forests and׳Behnam Hamzeh Rangelands, P. O. Box: 13185-116, Tehran, Iran. Key words: Piptatherum; Poaceae; new species; new synonym; reestablished species; Iran ﻧﻜﺎﺗﻲ در ﻣﻮرد ﺟﻨﺲ .Poaceae ) Piptatherum P. Beauv) در اﻳﺮان ﺑﻬﻨﺎم ﺣﻤﺰة، اﺳﺘﺎدﻳﺎر ﭘﮋوﻫﺶ ﻣﺆﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﺟﻨﮕﻠﻬﺎ و ﻣﺮاﺗﻊ ﻛﺸﻮر ﻣﺼﻄﻔﻲ اﺳﺪي، اﺳﺘﺎد ﭘﮋوﻫﺶ ﻣﺆﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﺟﻨﮕﻠﻬﺎ و ﻣﺮاﺗﻊ ﻛﺸﻮر Piptatherum denaense ﺑﻪﻋﻨﻮان ﮔﻮﻧﻪاي ﺟﺪﻳﺪ از ﻛﻮه دﻧﺎ در ﺟﻨﻮب ﻏﺮب اﻳﺮان ﺷﺮح داده ﻣﻲﺷﻮد.
    [Show full text]
  • Environmental Weeds of Coastal Plains and Heathy Forests Bioregions of Victoria Heading in Band
    Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band b Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Contents Introduction 1 Purpose of the list 1 Limitations 1 Relationship to statutory lists 1 Composition of the list and assessment of taxa 2 Categories of environmental weeds 5 Arrangement of the list 5 Column 1: Botanical Name 5 Column 2: Common Name 5 Column 3: Ranking Score 5 Column 4: Listed in the CALP Act 1994 5 Column 5: Victorian Alert Weed 5 Column 6: National Alert Weed 5 Column 7: Weed of National Significance 5 Statistics 5 Further information & feedback 6 Your involvement 6 Links 6 Weed identification texts 6 Citation 6 Acknowledgments 6 Bibliography 6 Census reference 6 Appendix 1 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed alphabetically within risk categories. 7 Appendix 2 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by botanical name. 19 Appendix 3 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by common name. 31 Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria i Published by the Victorian Government Department of Sustainability and Environment Melbourne, March2008 © The State of Victoria Department of Sustainability and Environment 2009 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.
    [Show full text]
  • Invasive Grass Identification and Management Module
    Invasive grass identification and management Insert Presenter Name Insert Presentation Date Introduction This module is part of a series of modules in the Pests Cost Us All project. The project aims to improve and up date landholder knowledge in pest animal management and weed management across South Australia. This will be achieved through provision of training and awareness sessions and demonstration sites. The Pests Cost Us All project is part of the Australian Government’s Agricultural Competitiveness White Paper, the government’s plan for stronger farmers and a stronger economy. Learning outcomes from this module • Know what invasive grasses could spread to your area • Recognise the impacts of invasive grasses • Know key features to identify exotic vs native grasses • Learn how to collect samples • Understand the benefits of machinery and property hygiene in preventing grass spread • Select appropriate objectives for invasive grass management • Understand the legal requirements for invasive grass control Learning outcomes from this module…continued • Select appropriate management techniques that will result in effective long term grass control • Employ correct timing of grass management on the property (create a management calendar) • Assess the effectiveness of grass management activities • Understand options for reporting new species Before we start – your issues What other issues would you like to address in relation to invasive grass management on your property? We will record these and refer to this list throughout the session Best practice weed management - key steps 1. Define the problem 2. Determine objectives 3. Develop plan 4. Implement plan 5. Monitor, evaluate and revise plan Weed Management Principles • Correctly identify weed species and understand their biology and ecology • Set appropriate goals for weed management • Use a range of methods • Correctly time your activities and apply long term effort • Monitor, evaluate and adapt management Step 1.
    [Show full text]
  • Biological Control of Serrated Tussock (Nassella Trichotoma): Is It Worth
    94 Plant Protection Quarterly Vol.13(2) 1998 itch grass (Rottboellia cochinchinensis) as a Biological control of serrated tussock (Nassella case study, he found that highly specific fungal pathogens occur on this grassy trichotoma): Is it worth pursuing? weed in its centre of origin (Evans 1995). Indeed, both the rust and smut species D.T. BrieseA and H.C. EvansB under evaluation proved to be too specific A CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia. with clearly defined pathotype-biotype associations. Thus, it is probable that a B IIBC, Silwood Park, Ascot, Berkshire, SL5 7TA, United Kingdom. suite of pathotypes will have to be selected in order to cover the range of weed bio- Summary measures, revolving around the use of the types present in the neotropical target area. The potential for biological control of the herbicide fluproponate, have not pre- Nonetheless, the view that natural en- weedy grass, Nassella trichotoma, in vented the continued spread of the weed emies of grasses are not sufficiently spe- Australia is discussed in the light of re- (Campbell and Vere 1995). It is clear that cific and that the risk to economically-im- cent surveys for pathogens in its native other control options need to be investi- portant species of grass is too great to per- range and an improved understanding of gated in order to develop a more effective mit implementation of classical biological the taxonomic relationships of Nassella management strategy for this weed. One control remains a common one, and has to other Australian and South American such option is classical biological control; discouraged such projects in Australia.
    [Show full text]
  • View Has Suggested Tween Australian Native Grasses and the Introduced a Range of Possibilities for Exploring Plant-Fungus Weed Nassella Trichotoma
    Sixteenth Australian Weeds Conference Towards an understanding of interactions between serrated tussock ( Nassella trichotoma) and soil fungal communities Annemieke Schneider, Brian M. Sindel, David Backhouse and Kathy King School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia Email: [email protected] Summary Serrated tussock (Nassella trichotoma) is REFERENCES a grass of South American origin that has become a Allen, E., Siguenza, C. and Gillespie, I. (2003). Im- weed of pastures in southeastern Australia. It has been pacts of invasive annual grasses on mycorrhizal designated a weed of national significance (Thorp and fungi and their restoration. Proceedings of the Lynch 2000), and has been the subject of considerable 7th International Conference on the Ecology research. However, so far little research effort has and Management of Alien Plant Invasions. Fort been directed towards understanding the interactions Lauderdale. between serrated tussock and fungal communities Badgery, W.B., Kemp, D.R., Michalk, D.L. and King, in the soil. This PhD project is currently in its early W.M.C.G. (2005). Competition for nitrogen be- stages, but already the literature review has suggested tween Australian native grasses and the introduced a range of possibilities for exploring plant-fungus weed Nassella trichotoma. Annals of Botany 96, interactions for this species. 799-809. Fungal pathogens with potential as biological Callaway, R.M., Thelen, G.C., Barth, S., Ramsey, P.W. control agents have been identified that attack the seed and Gannon, J.E. (2004). Soil fungi alter interac- (Casonato et al. 2004, Casonato et al. 2005) and roots tions between the invader Centaurea maculosa and (Hussaini et al.
    [Show full text]
  • Risk Analysis of Alien Grasses Occurring in South Africa
    Risk analysis of alien grasses occurring in South Africa By NKUNA Khensani Vulani Thesis presented in partial fulfilment of the requirements for the degree of Master of Science at Stellenbosch University (Department of Botany and Zoology) Supervisor: Dr. Sabrina Kumschick Co-supervisor (s): Dr. Vernon Visser : Prof. John R. Wilson Department of Botany & Zoology Faculty of Science Stellenbosch University December 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2018 Copyright © 2018 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract Alien grasses have caused major impacts in their introduced ranges, including transforming natural ecosystems and reducing agricultural yields. This is clearly of concern for South Africa. However, alien grass impacts in South Africa are largely unknown. This makes prioritising them for management difficult. In this thesis, I investigated the negative environmental and socio-economic impacts of 58 alien grasses occurring in South Africa from 352 published literature sources, the mechanisms through which they cause impacts, and the magnitudes of those impacts across different habitats and regions. Through this assessment, I ranked alien grasses based on their maximum recorded impact. Cortaderia sellonoana had the highest overall impact score, followed by Arundo donax, Avena fatua, Elymus repens, and Festuca arundinacea.
    [Show full text]
  • The Distribution, Impacts and Identification of Exotic Stipoid Grasses in Australia
    Plant Protection Quarterly Vol.19(2) 2004 59 • Texas needlegrass (N. leucotricha Trin. & Rupr.) The distribution, impacts and identifi cation of exotic • Lobed needlegrass (N. charruana Are- stipoid grasses in Australia chav.) • Short-spined needlegrass (N. megapota- A,D B C mia Spreng. ex Trin.) David A. McLaren , Val Stajsic and Linda Iaconis • Uruguayan ricegrass (Piptochaetium A Primary Industries Research Victoria (PIRVic), Department of Primary montevidense (Spreng.) Parodi) Industries, Frankston Centre, PO Box 48, Frankston, Victoria 3199, Australia. • Broad-kernel espartillo (Achnatherum B National Herbarium of Victoria, Royal Botanic Gardens, Birdwood Avenue, caudatum Trin.) South Yarra, Victoria 3141, Australia. • Narrow-kernel espartillo (A. brachycha- C Catchment and Agriculture Services, Department of Primary Industries, etum (Godr.) Barkworth) and Frankston Centre, PO Box 48, Frankston, Victoria 3199, Australia. • Plumerillo (Jarava plumosa (Spreng.) D CRC for Australian Weed Management. S.W.L.Jacobs & J.Everett). All of these species are proclaimed plants in South Australia, under the Animal and Plant Control (Agricultural Protection and Other Purposes) Act, 1986. Abstract For each species, a summary has been Exotic stipoid grasses are one of the structures at the base of a spikelet) which produced of its: most signifi cant issues affecting grazing are often purplish in colour, and one fl oret • Distribution – known overseas distri- industries and threatening nationally im- (in which the seed is formed). The fl oret butions, current Australian distribu- portant remnant grasslands in Australia. consists of the lemma and palea. The lem- tion and potential distribution in Aus- This paper documents their distribution, ma is usually terete (i.e. circular in cross tralia (based on its current distribution impacts and identifi cation.
    [Show full text]
  • Notes on Grasses (Poaceae) for the Flora of China, VI. New Combinations in Stipeae and Anthoxanthum Author(S): Sylvia M
    Notes on Grasses (Poaceae) for the Flora of China, VI. New Combinations in Stipeae and Anthoxanthum Author(s): Sylvia M. Phillips and Wu Zhen-Lan Source: Novon, Vol. 15, No. 3 (Sep., 2005), pp. 474-476 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3393497 Accessed: 21-07-2016 02:11 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Missouri Botanical Garden Press is collaborating with JSTOR to digitize, preserve and extend access to Novon This content downloaded from 159.226.89.2 on Thu, 21 Jul 2016 02:11:29 UTC All use subject to http://about.jstor.org/terms Notes on Grasses (Poaceae) for the Flora of China, VI. New Combinations in Stipeae and Anthoxanthum S+-lvia;V. Phillips Herbarium, Royal Botanic Gardens, Keu. Surrey TB79 3ABt United Kingdom. [email protected] Wu Zhen-LvIrl Herbarium, Northwest Plateau Institute of Biolog!. \(aclemia Sinica, 78 Xiguan Street, Xining, Qinghai 810()01. China ABSTRACT. When Or^zopsis is e onfined to the tv^)e gelleIic reassessmellt for North America and w-ith species, Chinese species are placed in Achrlathe- ollal-)oIatoIs folloss-ed this uith a report on molec- rum and Piptatherum.
    [Show full text]
  • Poaceae: Pooideae) Based on Plastid and Nuclear DNA Sequences
    d i v e r s i t y , p h y l o g e n y , a n d e v o l u t i o n i n t h e monocotyledons e d i t e d b y s e b e r g , p e t e r s e n , b a r f o d & d a v i s a a r h u s u n i v e r s i t y p r e s s , d e n m a r k , 2 0 1 0 Phylogenetics of Stipeae (Poaceae: Pooideae) Based on Plastid and Nuclear DNA Sequences Konstantin Romaschenko,1 Paul M. Peterson,2 Robert J. Soreng,2 Núria Garcia-Jacas,3 and Alfonso Susanna3 1M. G. Kholodny Institute of Botany, Tereshchenkovska 2, 01601 Kiev, Ukraine 2Smithsonian Institution, Department of Botany MRC-166, National Museum of Natural History, P.O. Box 37012, Washington, District of Columbia 20013-7012 USA. 3Laboratory of Molecular Systematics, Botanic Institute of Barcelona (CSIC-ICUB), Pg. del Migdia, s.n., E08038 Barcelona, Spain Author for correspondence ([email protected]) Abstract—The Stipeae tribe is a group of 400−600 grass species of worldwide distribution that are currently placed in 21 genera. The ‘needlegrasses’ are char- acterized by having single-flowered spikelets and stout, terminally-awned lem- mas. We conducted a molecular phylogenetic study of the Stipeae (including all genera except Anemanthele) using a total of 94 species (nine species were used as outgroups) based on five plastid DNA regions (trnK-5’matK, matK, trnHGUG-psbA, trnL5’-trnF, and ndhF) and a single nuclear DNA region (ITS).
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • Floristic Quality Assessment Report
    FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al.
    [Show full text]
  • 1 Supplementary Information for Invasive Grasses Increase
    Supplementary Information For Invasive grasses increase fire occurrence and frequency across U.S. ecoregions Emily J. Fusco1*, John T. Finn2, Jennifer K. Balch3,4, R. Chelsea Nagy3, Bethany A. Bradley1,2 Affiliations: 1 Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts- Amherst, Amherst, Massachusetts, 01003, USA 2 Department of Environmental Conservation, University of Massachusetts- Amherst, Amherst, Massachusetts, 01003, USA 3 Earth Lab, University of Colorado- Boulder, Boulder, Colorado, 80309, USA 4 Department of Geography, University of Colorado-Boulder, Boulder, Colorado, 80309, USA Correspondence to: [email protected] This PDF file includes: Figure S1 Tables S1 to S4 SI References 1 www.pnas.org/cgi/doi/10.1073/pnas.1908253116 Supplemental Table S1: A list of 176 non-native invasive grass and other graminoid species as listed by the Invasive Plant Atlas of the United States (1). For each species, we conducted a Web of Science (WOS) search and recorded whether there was literature suggesting the species altered fire regimes (Yes/No). For each fire promoting species in WOS, we supplemented our determination of whether that species was a fire promoter using the Fire Effects Information System (FEIS; 2). For each species designated as a fire promoter, we searched for available spatial data, and kept only species that were both fire-promoting with spatial data for our analysis. Final species used are highlighted in yellow. WOS FEIS Fire Data Keep for Scientific Name Common Name(s) Search Database Promoter Available Analysis Achnatherum punagrass No - No - No brachychaetum Godr. Barkworth Aegilops cylindrica Host jointed goatgrass No - No - No Aegilops ovate goatgrass No - No - No geniculata Roth Aegilops triuncialis L.
    [Show full text]