The Distribution, Impacts and Identification of Exotic Stipoid Grasses in Australia

Total Page:16

File Type:pdf, Size:1020Kb

The Distribution, Impacts and Identification of Exotic Stipoid Grasses in Australia Plant Protection Quarterly Vol.19(2) 2004 59 • Texas needlegrass (N. leucotricha Trin. & Rupr.) The distribution, impacts and identifi cation of exotic • Lobed needlegrass (N. charruana Are- stipoid grasses in Australia chav.) • Short-spined needlegrass (N. megapota- A,D B C mia Spreng. ex Trin.) David A. McLaren , Val Stajsic and Linda Iaconis • Uruguayan ricegrass (Piptochaetium A Primary Industries Research Victoria (PIRVic), Department of Primary montevidense (Spreng.) Parodi) Industries, Frankston Centre, PO Box 48, Frankston, Victoria 3199, Australia. • Broad-kernel espartillo (Achnatherum B National Herbarium of Victoria, Royal Botanic Gardens, Birdwood Avenue, caudatum Trin.) South Yarra, Victoria 3141, Australia. • Narrow-kernel espartillo (A. brachycha- C Catchment and Agriculture Services, Department of Primary Industries, etum (Godr.) Barkworth) and Frankston Centre, PO Box 48, Frankston, Victoria 3199, Australia. • Plumerillo (Jarava plumosa (Spreng.) D CRC for Australian Weed Management. S.W.L.Jacobs & J.Everett). All of these species are proclaimed plants in South Australia, under the Animal and Plant Control (Agricultural Protection and Other Purposes) Act, 1986. Abstract For each species, a summary has been Exotic stipoid grasses are one of the structures at the base of a spikelet) which produced of its: most signifi cant issues affecting grazing are often purplish in colour, and one fl oret • Distribution – known overseas distri- industries and threatening nationally im- (in which the seed is formed). The fl oret butions, current Australian distribu- portant remnant grasslands in Australia. consists of the lemma and palea. The lem- tion and potential distribution in Aus- This paper documents their distribution, ma is usually terete (i.e. circular in cross tralia (based on its current distribution impacts and identifi cation. It also dis- section) or gibbous (i.e. asymmetric) and in Australia). cusses how these grasses are coming into fi rmly membranous. The palea is enfolded • Impacts – agricultural and environ- Australia and makes recommendations and concealed by the lemma. Seed may be mental. on how this could be addressed. tipped by a callus of hairs (see Figure 1), • Identifi cation – vegetative and fl oral and has an awn (a curved, bristle-like tail) characteristics that help differentiate Introduction at the opposite end. the species. South-eastern Australian indigenous The exotic stipoid grasses are one of grasslands are now regarded as one of the most signifi cant threats facing graz- Serrated tussock, Nassella Australia’s most threatened ecosystems. ing industries and indigenous grasslands trichotoma Only half of one percent (10 000 hectares) in south-eastern Australia (McLaren et al. Distribution of the original two million hectares of low- 1998). Eleven exotic stipoid grass species Nassella trichotoma (syn. Stipa trichotoma) land grasslands now remain in near natu- have naturalized in Australia (McLaren is a perennial, drought resistant species ral condition, and they contain the greatest et al. 1998), whilst white tussock (Nassella that is native to the pampas grasslands number of species facing extinction (Mar- tenuissima (Trin.) Barkworth) has been sold of Argentina, Uruguay, Chile and Peru riott and Marriott 1998). Since European in Australia through the nursery trade (Parodi 1930, Rosengurtt et al. 1970) and settlement, native grasslands have been (McLaren et al. 1999). The stipoid grasses it has been reported from Bolivia (Walsh rapidly transformed due to land clear- come from the Poaceae Family that com- and Entwisle 1994). It has also natural- ance, urbanization, grazing by introduced prises approximately 9500 species and 650 ized in Australia, New Zealand and South ungulates (e.g., sheep, cattle, horses) genera worldwide (Walsh and Entwisle Africa, whilst small infestations also occur and large scale agricultural production 1994). The Stipeae is a cosmopolitan tribe in England, France, Italy, Scotland (Camp- (cropping and grazing using introduced of approximately 450 species in 14 genera bell 1982, Stace 1997) and the United States grasses and wide-scale addition of su- (Barkworth 1993, Reyna and Barkworth (Westbrooks 1991, Westbrooks and Cross perphosphate). Introduced pests such as 1994, Jacobs and Everett 1996). There are 1993). rabbits and weeds have added additional six stipoid genera in Australia, of which Nassella trichotoma was probably intro- pressures to these remnant grasslands. At fi ve are of exotic origin. Austrostipa is the duced into Australia in the early 1900s but the same time, sheep and beef production only indigenous Australian genus. The was not recorded in Australia until 1935 have become some of Australia’s most im- exotic genera include Achnatherum, Jarava, when a collection was made at Yass, 55 portant rural industries. For many years Nassella, Piptochaetium and Piptatherum. km north-east of Canberra (Campbell and Australia’s economy was said to ‘live off As rice millet (Piptatherum miliaceum (L.) Vere 1995). In 1977 it occupied 680 000 the sheep’s back’. This paper examines the Coss.) appears to be confi ned to urban hectares (Campbell 1977) and now occu- impacts caused by exotic stipoid grasses to settlements, in Victoria at least (Walsh and pies more than 870 000 hectares in New agriculture and the environment and how Entwisle 1994), it will not be considered in South Wales with an estimated 2 000 000 we can recognize these serious weeds. this paper. Species of the other genera are a hectares at risk of infestation (McGowan The Stipeae are strongly tussock cause for serious alarm from both an envi- personal communication). In Victoria N. forming, mostly perennial grasses that ronmental and agricultural perspective. trichotoma was fi rst collected in 1954 at generally have narrow, inrolled leaves. Eleven exotic stipoid grass species are Broadmeadows where infestations were The ligule (a small fl ap at the junction described in this paper, in the following then estimated at four hectares (Lane of the leaf blade and leaf sheath) is often order: personal communication). By 1979 it had short, membranous and fringed. Au- • Serrated tussock (Nassella trichotoma spread to occupy approximately 30 000 ricles (paired projections either side of (Nees) Hack. ex Arechav.) hectares (Lane et al. 1980) and by 1995 the ligule) are glabrous or fringed. The • White tussock (N. tenuissima (Trin.) it occupied in excess of 130 000 hectares infl orescence (fl owering stem) is a panicle Barkworth) (Pest Management Information System, which is rarely branched at the base or • Chilean needlegrass (N. neesiana Trin. & Department of Primary Industries (DPI) occasionally reduced to a few spikelets. Rupr.) Frankston). The Victorian Government Each spikelet has two glumes (leaf-like • Cane needlegrass (N. hyalina Nees) has recently increased N. trichotoma 60 Plant Protection Quarterly Vol.19(2) 2004 control operations that have been fa- Identifi cation White tussock, Nassella tenuissima cilitated by the Victorian Serrated Tussock Vegetative characters Nassella trichotoma Distribution Working Party. It has been estimated that forms a very dense tussock, to 50 cm high Nassella tenuissima (syn. Stipa tenuissima) in excess of 70 000 hectares of serrated tus- and 60 cm across, composed of numerous is native to Argentina, Chile, New Mexico sock infestations have now been treated in fi ne leaves. Leaves are tightly rolled and and Texas (Jacobs et al. 1998). In 1996, Victoria (Boyle personal communication). appear cylindrical when cut in cross sec- N. tenuissima was found being sold at a N. trichotoma now occupies 82 000 hectares tion. Unlike Australian native grasses, N. nursery in Melbourne. Its potential dis- in Victoria, which is a 37% reduction from trichotoma leaves, when rolled between tribution in Australia, predicted from its the 1995 infestation (Boyle 2003). N. tri- the index fi nger and thumb, roll smoothly countries of origin, has been estimated at chotoma is also found in Tasmania where – like a needle. N. trichotoma leaves are 14.2 million hectares (McLaren et al. 1999). it was fi rst recorded in 1956 (Parsons and rough to touch due to small serrations N. tenuissima can potentially occupy six Cuthbertson 1992) and is currently spread on their surfaces and these are easily felt times the area predicted for N. trichotoma in scattered populations over an area of when drawn between the fi ngers. Mature in Australia. The availability of N. ten- approximately 1000 hectares (Goninon plants have drooping leaves. Flower- uissima via the internet and other plant personal communication). Its potential ing stems emerge in spring and grow to purchasing situations makes its entry and distribution in Australia, predicted from a length of 95 cm, twice as long as the naturalization in Australia almost inevita- its current distribution in Australia, has leaves. They are initially erect but droop ble (McLaren et al. 1999). been estimated at 32 million hectares at maturity. They are much branched and (McLaren et al. 1998). usually break off at the base after seed set. Impacts The ligule is about 1 mm long, rounded, In Argentina N. tenuissima is regarded as Impacts membranous and glabrous. an unpalatable grass (Moretto and Distel Nassella trichotoma probably accounts for 1998). It has been classifi ed as a non-pre- a greater reduction in pasture carrying Floral characters The general floral ferred species that can become dominant capacity than any other weed in Australia characteristics of the Genus Nassella under continual
Recommended publications
  • Declared Plant Policy
    Declared Plant Policy This policy relates to natural resources management under section 9(1)(d) of the Landscape South Australia Act 2019 (the Act), enabling co-ordinated implementation and promotion of sound management programs and practices for the use, development or protection of natural resources of the State. Specifically, this policy provides guidance on the use and management of natural resources relating to the prevention or control of impacts caused by pest species of plants that may have an adverse effect on the environment, primary production or the community, as per object s7(1)(f) of the Act. Texas needlegrass (Nassella leucotricha) Texas needlegrass is an unpalatable perennial grass that vegetatively resembles some native Austrostipa species and invades unsown pastures or native vegetation with a grassy understorey. It is localised in South Australia, with the largest infestations occurring in the Onkaparinga valley. The closely related Chilean needlegrass, Nassella neesiana, is the subject of a separate policy. Management Plan for Texas Needlegrass Outcomes • Pasture and native vegetation protected from degradation by unpalatable invasive grasses. Objectives • Contain and control existing infestations. • Prevent the establishment of new infestations. Best Practice Implementation • Containment and destruction of known infestations. • Inspection for new infestations as part of routine inspection by regional landscape boards and Green Adelaide, particularly in high risk regions containing or adjacent to existing infestations
    [Show full text]
  • Vascular Plants of Williamson County Stipa Leucotricha − TEXAS NEEDLE GRASS, TEXAS WINTERGRASS, TEXAS NASSELLA [Poaceae]
    Vascular Plants of Williamson County Stipa leucotricha − TEXAS NEEDLE GRASS, TEXAS WINTERGRASS, TEXAS NASSELLA [Poaceae] Stipa leucotricha Trin. & Rupr. (syn. Nassella leucotricha), TEXAS NEEDLE GRASS, TEXAS NASSELLA, TEXAS WINTERGRASS. Perennial herb, bunchgrass, rhizomatous (condensed; “not rhizomatous”), canopy wispy, not rosetted, several−many-stemmed at base, cespitose and in old plants forming closely spaced ramets by segmentation, having shoots crowded along rhizome or on new vertical portion with many axillary buds, unbranched aboveground, ascending to arching or spreading, 35–70 cm tall, fertile shoots to 135 cm long; shoots with to 2 basal leaves and 2−3 cauline leaves becoming tightly inrolled concealing the upper blade surface when water-stressed, leaves scabrous when flat or inrolled, with short, stiff, ascending hairs on foliage; rhizomes shallow, slow-creeping and ± horizontal, to 20 mm long, to 4 mm across, obscured by adventitious roots and prophylls and sheaths of basal leaves of crowded aerial shoots; adventitious roots nodal on rhizome and at basal nodes of aerial shoots erupting through basal leaf sheaths. Stems (culms): faintly ridged above foliage, to 2 mm diameter near soil level with a flat side, internodes to 200 mm long, stiff-puberulent and short-hairy below each node, the internodes otherwise glabrous where covered by leaf sheath but sometimes minutely pubescent along grooves; internodes of the below the lowest cauline leaf solid, internodes along culm narrowly hollow. Leaves: alternate distichous, simple
    [Show full text]
  • Illustrated Flora of East Texas Illustrated Flora of East Texas
    ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.
    [Show full text]
  • Grasses of the Texas Hill Country: Vegetative Key and Descriptions
    Hagenbuch, K.W. and D.E. Lemke. 2015. Grasses of the Texas Hill Country: Vegetative key and descriptions. Phytoneuron 2015-4: 1–93. Published 7 January 2015. ISSN 2153 733X GRASSES OF THE TEXAS HILL COUNTRY: VEGETATIVE KEY AND DESCRIPTIONS KARL W. HAGENBUCH Department of Biological Sciences San Antonio College 1300 San Pedro Avenue San Antonio, Texas 78212-4299 [email protected] DAVID E. LEMKE Department of Biology Texas State University 601 University Drive San Marcos, Texas 78666-4684 [email protected] ABSTRACT A key and a set of descriptions, based solely on vegetative characteristics, is provided for the identification of 66 genera and 160 grass species, both native and naturalized, of the Texas Hill Country. The principal characters used (features of longevity, growth form, roots, rhizomes and stolons, culms, leaf sheaths, collars, auricles, ligules, leaf blades, vernation, vestiture, and habitat) are discussed and illustrated. This treatment should prove useful at times when reproductive material is not available. Because of its size and variation in environmental conditions, Texas provides habitat for well over 700 species of grasses (Shaw 2012). For identification purposes, the works of Correll and Johnston (1970); Gould (1975) and, more recently, Shaw (2012) treat Texas grasses in their entirety. In addition to these comprehensive works, regional taxonomic treatments have been done for the grasses of the Cross Timbers and Prairies (Hignight et al. 1988), the South Texas Brush Country (Lonard 1993; Everitt et al. 2011), the Gulf Prairies and Marshes (Hatch et al. 1999), and the Trans-Pecos (Powell 1994) natural regions. In these, as well as in numerous other manuals and keys, accurate identification of grass species depends on the availability of reproductive material.
    [Show full text]
  • The Biology of Nassella and Achnatherum Species Naturalized In
    76 Plant Protection Quarterly Vol.13(2) 1998 benefit would be captured by wool and Campbell, M.H. (1977). Assessing the area Outline. Unpublished mimeograph, lamb producers who operate in that part and distribution of serrated tussock CSIRO Division of Plant Industry, Can- of the Australian wool and lamb indus- (Nassella trichotoma), St. John’s wort berra. tries represented by the study area. (Hypericum perforatum var. angusti- Prograze (1995). NSW Agriculture. It must be emphasized that these re- folium) and sifton bush (Cassinia Vere, D.T., Sinden, J.A. and Campbell, sults are preliminary because both the arcuata) in New South Wales. Depart- M.H. (1980). Social benefits of serrated RPM and econometric modelling compo- ment of Agriculture New South Wales tussock control in New South Wales. nents require further refinement. In rela- Technical Bulletin No. 18. Review of Marketing and Agricultural Eco- tion to the RPM, further work is required Campbell, M.H. (1987). Area and distribu- nomics 48, 123-38. on refining the soils and rainfall digitized tion of serrated tussock (Nassella Vere, D.T., Auld, B.A., Auld, J.A. and data and to incorporate elevations into the trichotoma (Nees) Arech.) in New South Campbell, M.H. (1993). ‘Economic as- GIS model so as to be able to determine Wales, 1975 to 1985. Plant Protection sessments of serrated tussock (Nassella arable and non-arable country. Also, the Quarterly 2, 161-4. trichotoma) as a pasture weed. Weed livestock feed energy requirements in the Cousens, R. (1985). A simple model relat- Technology 7, 776-82. model are preliminary values as the study ing yield loss to weed density.
    [Show full text]
  • Tussock Times Is a Newsletter of the Victorian Serrated Tussock Working Party VICTORIAN SERRATED TUSSOCK WORKING PARTY
    Edition 5, January 2009 Inside this issue Throwing the book at Serrated Tussock • Throwing the nook at An important new tool to help Serrated Tussock landholders and managers control serrated tussock is now available. Practice Best National Tussock Serrated • Start with identifi cation and prevent Serrated The ‘National Serrated Tussock Best Tussock getting a goot Practice Management Manual’ was Weeds of National Significance hold in your local area th launched in Victoria on Friday the 28 Manual Management National Best Practice • Mexican feather grass November 2008 attracting over 50 Management Manual incursion continues landholders and key stakeholders to Serrated Tussock the private property located in Bacchus • More than $1 million Marsh. given to local councils to tackle invasive species on Department of Primary Industries (DPI) roadsides Current management and control options for serrated tussock ( Landscape Protection Manager Brendan Nassella trichotoma ) in Australia • VSTWP works with Roughead launched the Manual and Wyndham and Melton says “serrated tussock could strike fear councils to reducethe to any farmer or land manager familiar impact of Serrated with its devastating impacts.” Tussock in a plains “As a Weed of National Signifi cance, “Thee manualmanual brbringsings togethertogether dedetailedtailed grassland it’s one of the worst perennial grass information about the plant itself, as weeds in Australia, invading pastures, well as best practice information about • Looking for ways to native grasslands and urban areas, and improve - The VSTWP existing control and management at present covers more than a million options,” Mr Crowe said. completes governance hectares in Victoria, New South Wales, training Tasmania and the Australian Capital To help fi ght the threat of serrated • Improving the Victorian Territory,” Mr Roughead said.
    [Show full text]
  • Flora of North Central Texas Flora of North Central Texas
    SHINNERS & MAHLER’S FLOR A OF NORTH CENTRAL TEXAS GEORGE M. DIGGSIGGS,, JJR.. BBARNEY L. LIPSCOMBIPSCOMB ROBERT J. O’KENNON D VEGETATIONAL AREAS OF TEXAS MODIFIED FROM CHECKLIST OF THE VASCULAR PLANTS OF TEXAS (HATCH ET AL. 1990). NEARLY IDENTICAL MAPS HAVE BEEN USED IN NUMEROUS WORKS ON TEXAS INCLUDING GOULD (1962) AND CORRELL AND JOHNSTON (1970). 1 PINEYWOODS 2 GULF PRAIRIES AND MARSHEs 3 POST OAK SAVANNAH 4 BLACKLAND PRAIRIES 5 CROSS TIMBERS AND PRAIRIES 6 SOUTH TEXAS PLAINS 7 EDWARDS PLATEAU 8 ROLLING PLAINS 9 HIGH PLAINS 10 TRANS-PECOS, MOUNTAINS AND BASINS D VEGETATIONAL AREAS OF NORTH CENTRAL TEXAS D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D SHINNERS & MAHLER’S ILLUSTRATED FLORA OF NORTH CENTRAL TEXAS Shinners & Mahler’s ILLUSTRATED FLORA OF NORTH CENTRAL TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) BASS FOUNDATION ROBERT J. O’KENNON RUTH ANDERSSON MAY MARY G. PALKO AMON G. CARTER FOUNDATION MARGRET M. RIMMER MIKE AND EVA SANDLIN INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE OTHER CONTRIBUTORS: PEG AND BEN KEITH FRIENDS OF HAGERMAN NAT IONAL WILDLIFE REFUGE SUMMERLEE FOUNDATION JOHN D.
    [Show full text]
  • Supporting Information
    Supporting Information Christin et al. 10.1073/pnas.1216777110 SI Materials and Methods blades were then embedded in resin (JB-4; Polysciences), Phylogenetic Inference. A previously published 545-taxa dataset of following the manufacturer’s instructions. Five-micrometer the grasses based on the plastid markers rbcL, ndhF,andtrnK-matK thick cross-sections of the embedded leaf fragments were cut (1) was expanded and used for phylogenetic inference. For species with a microtome and stained with saturated cresyl violet sampled for anatomical cross-sections but not included in the acetate (CVA). Some samples were fixed in formalin-pro- published dataset, the markers ndhF and/or trnK-matK were either pionic acid-alcohol (FPA), embedded in paraffin, sectioned at retrieved from GenBank when available or were newly sequenced 10 μm, and stained with a safranin O-orange G series (11) as from extracted genomic DNA with the method and primers de- described in (12). All slides were made permanent and are scribed previously (1, 2). These new sequences were aligned to the available on request. dataset, excluding the regions that were too variable as described previously (1). The final dataset totaled 604 taxa and was used for Anatomical Measurements. All C3 grasses possess a double BS, with “ phylogenetic inference as implemented in the software Bayesian the outer layer derived from ground meristem to form a paren- ” Evolutionary Analysis by Sampling Trees (BEAST) (3). chyma sheath, and the internal layer derived from the vascular “ ” The phylogenetic tree was inferred under a general time-re- procambium to form a mestome sheath (13). Many C4 grasses versible substitution model with a gamma-shape parameter and also possess these two BS layers, with one of them specialized in “ ” a proportion of invariants (GTR+G+I).
    [Show full text]
  • The Reverchon Naturalist
    Helping People Help The Land July/August 2010 Issue No. 4 The Reverchon Naturalist Recognizing the work of French botanist Julien Reverchon, who began collecting throughout the North Central Texas area in 1876, and all the botanists/naturalists who have followed ... (Sporobolus USING YOUR SENSES Noseburn pyramidatus) on Story and Photos by Tyson Hart (Tragia sp.) NRCS Soil Conservationist the tongue quickly pro- lant identification is a passion shared by vided a salty many. No greater feeling exists than keying snack. For des- out a plant for 30 minutes, and finally con- sert, a sip from firming a new personal discovery. When a honey-suckle Pusing a key, most characteristics are based upon ocular (Lonicera sp.) observations. Common features include compound or did the trick. simple leaves, yellow or red flowers, and radial or bi- Use caution lateral symmetry just to name a few. though, a poi- Too often the others senses are left forgotten, so son ivy (Toxicodendron radicans) popsicle was never touching plants ranks second for identification. A developed for a reason. quick slide of your fingers down a Texas wintergrass A challenge arises when using sounds to distinguish (Nassella leucotricha) leaf blade feels like sandpaper. plant species. For me, conjuring up memories of Also, Noseburn (Tragia sp.) may not burn the nose, walking past white pricklypoppy (Argemone albiflora) but the leaves burn and sting exposed skin when in the winter present quite a scare. When the seed touched. Bitter sneezeweed (Helenium amarum) can pods dry in the winter, carelessly brushing against a quickly be identified from common sneezeweed plant can cause a whipping action imitating the unmis- (Helenium autumnale) by rubbing a portion on the takable rattling of a feared snake.
    [Show full text]
  • Mexican Feather Grass (Nassella Tenuissima) a Potential Disaster for Australia
    Twelfth Australian Weeds Conference MEXICAN FEATHER GRASS (NASSELLA TENUISSIMA) A POTENTIAL DISASTER FOR AUSTRALIA D.A. McLaren1, M. Whattam2, K. Blood1, V. Stajsic3 and R. Hore1 1 CRC for Weed Management Systems and Department of Natural Resources and Environment, Keith Turnbull Research Institute, PO Box 48, Frankston, Victoria 3199 2 Australian Quarantine and Inspection Service, Plant Quarantine Nursery, 621 Burwood Hwy, Knoxfield, Victoria 3180 3 National Herbarium of Victoria, Birdwood Avenue, South Yarra, Victoria 3141 Abstract Nassella tenuissima (Mexican feather grass) has led to the removal and destruction of these plants has been sold from nurseries in Victoria and NSW since from two Victorian nurseries and a review of AQIS 1998. This paper examines how such a potentially import regulations. weedy species could be legally brought into Australia Nassella tenuissima (Synonym - Stipa tenuissima) is and the pressures being applied by the nursery indus- native to Argentina, Chile, New Mexico and Texas try to continually introduce new exotic species. It also (Jacobs et al. 1998). N. tenuissima is commonly called examines actions by the Australian Quarantine and Mexican feather grass, Texas tussock, white tussock, Inspection Service (AQIS) to prevent such an incident ponytail grass and tussock grass. In Argentina, N. occurring again and explores the use of new technolo- tenuissima is regarded as an unpalatable grass (Moretto gies in both introducing and alerting authorities to the and Distel 1998) and has been classified as a non-pre- existence of emerging weeds. The potential distribu- ferred species that can become dominant under con- tion of N. tenuissima is assessed and compared to its tinual heavy grazing pressure with a low frequency of close relative, Nassella trichotoma (serrated tussock) high intensity fire (Distel and Boo 1995).
    [Show full text]
  • Plan De Manejo “Área Natural Protegida Reserva
    Plan de Manejo “Área Natural Protegida Reserva Estatal Real de Guadalcázar” San Luis Potosí 2020 Contenido 1. INTRODUCCIÓN ................................................................................................................. 7 2. ANTECEDENTES ............................................................................................................... 8 3. OBJETIVOS DEL AREA NATURAL PROTEGIDA......................................................... 11 4. DESCRIPCIÓN DEL ÁREA PROTEGIDA ...................................................................... 11 4.1. LOCALIZACIÓN Y LÍMITES ......................................................................................... 11 4.2. CARACTERÍSTICAS FÍSICO-GEOGRÁFICAS .......................................................... 14 4.2.1. Relieve .................................................................................................................... 14 4.2.2 Geología .................................................................................................................. 14 4.2.3 Geomorfología y suelos ....................................................................................... 15 4.2.4 Clima ........................................................................................................................ 17 4.2.5 Hidrología ................................................................................................................ 20 4.2.6 Perturbaciones ......................................................................................................
    [Show full text]
  • Chilean Needlegrass Policy.Pdf
    Declared Plant Policy This policy relates to natural resources management under section 9(1)(d) of the Landscape South Australia Act 2019 (the Act), enabling co-ordinated implementation and promotion of sound management programs and practices for the use, development or protection of natural resources of the State. Specifically, this policy provides guidance on the use and management of natural resources relating to the prevention or control of impacts caused by pest species of plants that may have an adverse effect on the environment, primary production or the community, as per object s7(1)(f) of the Act. Chilean needlegrass (Nassella neesiana) Chilean needlegrass is an unpalatable perennial grass that vegetatively resembles some native Austrostipa species and invades unsown pastures or native vegetation with a grassy understorey. It is localised in South Australia, with the largest infestations occurring around Gawler and Wirrina. The closely related Texas needlegrass, Nassella leucotricha, is the subject of a separate policy. Management Plan for Chilean Needlegrass Outcomes • Pasture and native vegetation protected from degradation by unpalatable invasive grasses. Objectives • Contain and control existing infestations. • Prevent the establishment of new infestations. Best Practice Implementation • Containment and destruction of known infestations. • Inspection for new infestations as part of routine inspection by regional landscape boards and Green Adelaide, particularly in high risk regions containing or adjacent to existing infestations
    [Show full text]