Risk Analysis of Alien Grasses Occurring in South Africa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ehrharta Longiflora Sm. and Pennisetum Setaceum (Forsk
EHRHARTA LONGIFLORA SM. AND PENNISETUM SETACEUM (FORSK.) CHIOV., TWO NEW ALIEN GRASSES FOR MADEIRA ISLAND (PORTUGAL) Laura Cabral*, João Pedro Ferreira*, André Brazão* Pedro Nascimento* & Miguel Menezes de Sequeira** Abstract The number of introduced, and possible introduced, taxa in the Madeira and Selvagens islands currently accounts for nearly 36% of the total flora of these archipelagos, including 53 Poaceae taxa (out of 141 Poaceae taxa), therefore constituting the family with the higher proportion of introduced taxa (38.4%). The genus Ehrharta Thunb. comprises about 35 species, with one species, E. longiflora Sm., recorded as introduced in Gran Canaria. The genus Pennisetum Rich. includes ca. 80 species of which a total of nine species are present in Macaronesia, with three: P. clandestinum Hochst. & Chiov., P. purpureum Schum. and P. villosum R. Br. ex Fresen, occurring in the Madeira archipelago. Ehrharta longiflora Sm. and Pennisetum setaceum (Forssk.) Chiov., are here recorded for the first time for the Ma- deira island, found in disturbed areas at low and medium altitudes. The finding of several mature and flowering/fructifying individuals of both species suggests a fully naturalized status. Naturalization, invasiveness and ecological impacts are discussed. Keywords: alien, Ehrharta longiflora, grasses, Madeira, Pennisetum setaceum. EHRHARTA LONGIFLORA SM. Y PENNISETUM SETACEUM (FORSK.) CHIOV., DOS NUEVAS GRAMÍNEAS EXÓTICAS PARA LA ISLA DE MADEIRA (PORTUGAL) 133 Resumen El número de taxones introducidos y posiblemente introducidos en los archipiélagos de Ma- deira y Salvajes supone aproximadamente un 36% de su flora total, incluyendo 53 taxa de poáceas (sobre un total de 141 taxa de poáceas), constituyendo, de esta manera, la familia botánica con mayor número de taxa introducidos (38,4%). -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Vernal Pool Tadpole Shrimp (Lepidurus Packardi)
Vernal Pool Tadpole Shrimp (Lepidurus packardi) 5-Year Review: Summary and Evaluation U.S. Fish and Wildlife Service Sacramento Fish and Wildlife Office Sacramento, California September 2007 5-YEAR REVIEW Vernal pool tadpole shrimp (Lepidurus packardi) I. GENERAL INFORMATION I.A. Methodology used to complete the review: This review was prepared by the Sacramento Fish and Wildlife Office (SFWO) of the U.S. Fish and Wildlife Service (Service) using information from the 2005 Recovery Plan for Vernal Pool Ecosystems of California and Southern Oregon (Recovery Plan) (Service 2005a), species survey and monitoring reports, peer-reviewed journal articles, documents generated as part of Endangered Species Act (Act) section 7 consultations and section 10 coordination, Federal Register notices, the California Natural Diversity Database (CNDDB) maintained by the California Department of Fish and Game (CDFG), and species experts who have been monitoring various occurrences of this species. We also considered information from a Service- contracted report. The Recovery Plan and personal communications with experts were our primary sources of information used to update the “species status” and “threats” sections of this review. I.B. Contacts Lead Regional or Headquarters Office – Diane Elam, Deputy Division Chief for Listing, Recovery, and Habitat Conservation Planning, and Jenness McBride, Fish and Wildlife Biologist, California/Nevada Operations Office, 916-414-6464 Lead Field Office – Kirsten Tarp, Recovery Branch, Sacramento Fish and Wildlife Office, 916- 414-6600 I.C. Background I.C.1. FR Notice citation announcing initiation of this review: 71 FR 14538, March 22, 2006. This notice requested information from the public; we received no information in response to the notice. -
Department of the Interior Fish and Wildlife Service
Thursday, February 27, 2003 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Final Designation or Nondesignation of Critical Habitat for 95 Plant Species From the Islands of Kauai and Niihau, HI; Final Rule VerDate Jan<31>2003 13:12 Feb 26, 2003 Jkt 200001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\27FER2.SGM 27FER2 9116 Federal Register / Vol. 68, No. 39 / Thursday, February 27, 2003 / Rules and Regulations DEPARTMENT OF THE INTERIOR units designated for the 83 species. This FOR FURTHER INFORMATION CONTACT: Paul critical habitat designation requires the Henson, Field Supervisor, Pacific Fish and Wildlife Service Service to consult under section 7 of the Islands Office at the above address Act with regard to actions carried out, (telephone 808/541–3441; facsimile 50 CFR Part 17 funded, or authorized by a Federal 808/541–3470). agency. Section 4 of the Act requires us SUPPLEMENTARY INFORMATION: RIN 1018–AG71 to consider economic and other relevant impacts when specifying any particular Background Endangered and Threatened Wildlife area as critical habitat. This rule also and Plants; Final Designation or In the Lists of Endangered and determines that designating critical Nondesignation of Critical Habitat for Threatened Plants (50 CFR 17.12), there habitat would not be prudent for seven 95 Plant Species From the Islands of are 95 plant species that, at the time of species. We solicited data and Kauai and Niihau, HI listing, were reported from the islands comments from the public on all aspects of Kauai and/or Niihau (Table 1). -
Major Vegetation Types of the Soutpansberg Conservancy and the Blouberg Nature Reserve, South Africa
Original Research MAJOR VEGETATION TYPES OF THE SOUTPANSBERG CONSERVANCY AND THE BLOUBERG NATURE RESERVE, SOUTH AFRICA THEO H.C. MOSTERT GEORGE J. BREDENKAMP HANNES L. KLOPPER CORNIE VERWEy 1African Vegetation and Plant Diversity Research Centre Department of Botany University of Pretoria South Africa RACHEL E. MOSTERT Directorate Nature Conservation Gauteng Department of Agriculture Conservation and Environment South Africa NORBERT HAHN1 Correspondence to: Theo Mostert e-mail: [email protected] Postal Address: African Vegetation and Plant Diversity Research Centre, Department of Botany, University of Pretoria, Pretoria, 0002 ABSTRACT The Major Megetation Types (MVT) and plant communities of the Soutpansberg Centre of Endemism are described in detail, with special reference to the Soutpansberg Conservancy and the Blouberg Nature Reserve. Phytosociological data from 442 sample plots were ordinated using a DEtrended CORrespondence ANAlysis (DECORANA) and classified using TWo-Way INdicator SPecies ANalysis (TWINSPAN). The resulting classification was further refined with table-sorting procedures based on the Braun–Blanquet floristic–sociological approach of vegetation classification using MEGATAB. Eight MVT’s were identified and described asEragrostis lehmanniana var. lehmanniana–Sclerocarya birrea subsp. caffra Blouberg Northern Plains Bushveld, Euclea divinorum–Acacia tortilis Blouberg Southern Plains Bushveld, Englerophytum magalismontanum–Combretum molle Blouberg Mountain Bushveld, Adansonia digitata–Acacia nigrescens Soutpansberg -
Project Rapid-Field Identification of Dalbergia Woods and Rosewood Oil by NIRS Technology –NIRS ID
Project Rapid-Field Identification of Dalbergia Woods and Rosewood Oil by NIRS Technology –NIRS ID. The project has been financed by the CITES Secretariat with funds from the European Union Consulting objectives: TO SELECT INTERNATIONAL OR NATIONAL XYLARIUM OR WOOD COLLECTIONS REGISTERED AT THE INTERNATIONAL ASSOCIATION OF WOOD ANATOMISTS – IAWA THAT HAVE A SIGNIFICANT NUMBER OF SPECIES AND SPECIMENS OF THE GENUS DALBERGIA TO BE ANALYZED BY NIRS TECHNOLOGY. Consultant: VERA TERESINHA RAUBER CORADIN Dra English translation: ADRIANA COSTA Dra Affiliations: - Forest Products Laboratory, Brazilian Forest Service (LPF-SFB) - Laboratory of Automation, Chemometrics and Environmental Chemistry, University of Brasília (AQQUA – UnB) - Forest Technology and Geoprocessing Foundation - FUNTEC-DF MAY, 2020 Brasília – Brazil 1 Project number: S1-32QTL-000018 Host Country: Brazilian Government Executive agency: Forest Technology and Geoprocessing Foundation - FUNTEC Project coordinator: Dra. Tereza C. M. Pastore Project start: September 2019 Project duration: 24 months 2 TABLE OF CONTENTS 1. INTRODUCTION 05 2. THE SPECIES OF THE GENUS DALBERGIA 05 3. MATERIAL AND METHODS 3.1 NIRS METHODOLOGY AND SPECTRA COLLECTION 07 3.2 CRITERIA FOR SELECTING XYLARIA TO BE VISITED TO OBTAIN SPECTRAS 07 3 3 TERMINOLOGY 08 4. RESULTS 4.1 CONTACTED XYLARIA FOR COLLECTION SURVEY 10 4.1.1 BRAZILIAN XYLARIA 10 4.1.2 INTERNATIONAL XYLARIA 11 4.2 SELECTED XYLARIA 11 4.3 RESULTS OF THE SURVEY OF DALBERGIA SAMPLES IN THE BRAZILIAN XYLARIA 13 4.4 RESULTS OF THE SURVEY OF DALBERGIA SAMPLES IN THE INTERNATIONAL XYLARIA 14 5. CONCLUSION AND RECOMMENDATIONS 19 6. REFERENCES 20 APPENDICES 22 APPENDIX I DALBERGIA IN BRAZILIAN XYLARIA 22 CACAO RESEARCH CENTER – CEPECw 22 EMÍLIO GOELDI MUSEUM – M. -
Comparative Wood Anatomy of Afromontane and Bushveld Species from Swaziland, Southern Africa
IAWA Bulletin n.s., Vol. 11 (4), 1990: 319-336 COMPARATIVE WOOD ANATOMY OF AFROMONTANE AND BUSHVELD SPECIES FROM SWAZILAND, SOUTHERN AFRICA by J. A. B. Prior 1 and P. E. Gasson 2 1 Department of Biology, Imperial College of Science, Technology & Medicine, London SW7 2BB, U.K. and 2Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, U.K. Summary The habit, specific gravity and wood anat of the archaeological research, uses all the omy of 43 Afromontane and 50 Bushveld well preserved, qualitative anatomical charac species from Swaziland are compared, using ters apparent in the charred modem samples qualitative features from SEM photographs in an anatomical comparison between the of charred samples. Woods with solitary ves two selected assemblages of trees and shrubs sels, scalariform perforation plates and fibres growing in areas of contrasting floristic com with distinctly bordered pits are more com position. Some of the woods are described in mon in the Afromontane species, whereas Kromhout (1975), others are of little com homocellular rays and prismatic crystals of mercial importance and have not previously calcium oxalate are more common in woods been investigated. Few ecological trends in from the Bushveld. wood anatomical features have previously Key words: Swaziland, Afromontane, Bush been published for southern Africa. veld, archaeological charcoal, SEM, eco The site of Sibebe Hill in northwest Swazi logical anatomy. land (26° 15' S, 31° 10' E) (Price Williams 1981), lies at an altitude of 1400 m, amidst a Introduction dramatic series of granite domes in the Afro Swaziland, one of the smallest African montane forest belt (White 1978). -
Threatened, Endangered, Candidate & Proposed Plant Species of Utah
TECHNICAL NOTE USDA - Natural Resources Conservation Service Boise, Idaho and Salt Lake City, Utah TN PLANT MATERIALS NO. 52 MARCH 2011 THREATENED, ENDANGERED, CANDIDATE & PROPOSED PLANT SPECIES OF UTAH Derek Tilley, Agronomist, NRCS, Aberdeen, Idaho Loren St. John, PMC Team Leader, NRCS, Aberdeen, Idaho Dan Ogle, Plant Materials Specialist, NRCS, Boise, Idaho Casey Burns, State Biologist, NRCS, Salt Lake City, Utah Last Chance Townsendia (Townsendia aprica). Photo by Megan Robinson. This technical note identifies the current threatened, endangered, candidate and proposed plant species listed by the U.S.D.I. Fish and Wildlife Service (USDI FWS) in Utah. Review your county list of threatened and endangered species and the Utah Division of Wildlife Resources Conservation Data Center (CDC) GIS T&E database to see if any of these species have been identified in your area of work. Additional information on these listed species can be found on the USDI FWS web site under “endangered species”. Consideration of these species during the planning process and determination of potential impacts related to scheduled work will help in the conservation of these rare plants. Contact your Plant Material Specialist, Plant Materials Center, State Biologist and Area Biologist for additional guidance on identification of these plants and NRCS responsibilities related to the Endangered Species Act. 2 Table of Contents Map of Utah Threatened, Endangered and Candidate Plant Species 4 Threatened & Endangered Species Profiles Arctomecon humilis Dwarf Bear-poppy ARHU3 6 Asclepias welshii Welsh’s Milkweed ASWE3 8 Astragalus ampullarioides Shivwits Milkvetch ASAM14 10 Astragalus desereticus Deseret Milkvetch ASDE2 12 Astragalus holmgreniorum Holmgren Milkvetch ASHO5 14 Astragalus limnocharis var. -
Psychopharmacological Effects of Ethanol Leaf Extract of Setaria Megaphylla in Mice
Okokon et al, Afr. J. Pharmacol. Ther. 2017. 6(4): 166-172 African Journal of Pharmacology and Therapeutics Vol. 6 No. 4 Pages 166-172, 2017 Open Access to full text available at http://www.uonbi.ac.ke/journals/kesobap/ Research Article Psychopharmacological effects of ethanol leaf extract of Setaria megaphylla in mice Jude E. Okokon a, Davies Koofreh b, and Elijah J. Otuikor b a Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Nigeria b Department of Physiology, Faculty of Basic Medical Sciences, University of Uyo, Nigeria _____________ * Corresponding author: Department Of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, P.M.B 1017, Uyo, Nigeria. Tel: +234-802-3453678. Email: [email protected] Background: Setaria megaphylla (Steud) Dur & Schinz (Poaceae), a perennial grass used traditionally in the treatment of various diseases including central nervous system disorders. Objective: To evaluate the Setaria megaphylla ethanol leaf extract for psychopharmacological effects in mice. Materials and Methods: Antidepressant activity was evaluated in mice using open field, force swimming and tail suspension tests as well as phenobarbitone-induced sleeping time. Anticonvulsant activity was also tested against pentylenetetrazol and aminophylline-induced convulsions. Results: The leaf extract (200-600 mg/kg) increased significantly (p<0.05- 0.001) the line crossing, walling and rearing activities in open field test and reduced significantly (p<0.05-0.001) the immobility time in force swimming and tail suspension tests. The leaf extract antagonized the hypnotic effect of phenobarbitone sodium and offered no protection to animals against convulsions induced by pentylenetetrazol and aminophylline in mice. -
Poaceae Pollen from Southern Brazil: Distinguishing Grasslands (Campos) from Forests by Analyzing a Diverse Range of Poaceae Species
ORIGINAL RESEARCH published: 06 December 2016 doi: 10.3389/fpls.2016.01833 Poaceae Pollen from Southern Brazil: Distinguishing Grasslands (Campos) from Forests by Analyzing a Diverse Range of Poaceae Species Jefferson N. Radaeski 1, 2, Soraia G. Bauermann 2* and Antonio B. Pereira 1 1 Universidade Federal do Pampa, São Gabriel, Brazil, 2 Laboratório de Palinologia da Universidade Luterana do Brasil–ULBRA, Universidade Luterana do Brazil, Canoas, Brazil This aim of this study was to distinguish grasslands from forests in southern Brazil by analyzing Poaceae pollen grains. Through light microscopy analysis, we measured the size of the pollen grain, pore, and annulus from 68 species of Rio Grande do Sul. Measurements were recorded of 10 forest species and 58 grassland species, representing all tribes of the Poaceae in Rio Grande do Sul. We measured the polar, equatorial, pore, and annulus diameter. Results of statistical tests showed that arboreous forest species have larger pollen grain sizes than grassland and herbaceous forest species, and in particular there are strongly significant differences between arboreous and grassland species. Discriminant analysis identified three distinct groups representing Edited by: each vegetation type. Through the pollen measurements we established three pollen Encarni Montoya, types: larger grains (>46 µm), from the Bambuseae pollen type, medium-sized grains Institute of Earth Sciences Jaume < Almera (CSIC), Spain (46–22 µm), from herbaceous pollen type, and small grains ( 22 µm), from grassland Reviewed by: pollen type. The results of our compiled Poaceae pollen dataset may be applied to the José Tasso Felix Guimarães, fossil pollen of Quaternary sediments. Vale Institute of Technology, Brazil Lisa Schüler-Goldbach, Keywords: pollen morphology, grasses, pampa, South America, Atlantic forest, bamboo pollen Göttingen University, Germany *Correspondence: Jefferson N. -
Biological Control of Serrated Tussock (Nassella Trichotoma): Is It Worth
94 Plant Protection Quarterly Vol.13(2) 1998 itch grass (Rottboellia cochinchinensis) as a Biological control of serrated tussock (Nassella case study, he found that highly specific fungal pathogens occur on this grassy trichotoma): Is it worth pursuing? weed in its centre of origin (Evans 1995). Indeed, both the rust and smut species D.T. BrieseA and H.C. EvansB under evaluation proved to be too specific A CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia. with clearly defined pathotype-biotype associations. Thus, it is probable that a B IIBC, Silwood Park, Ascot, Berkshire, SL5 7TA, United Kingdom. suite of pathotypes will have to be selected in order to cover the range of weed bio- Summary measures, revolving around the use of the types present in the neotropical target area. The potential for biological control of the herbicide fluproponate, have not pre- Nonetheless, the view that natural en- weedy grass, Nassella trichotoma, in vented the continued spread of the weed emies of grasses are not sufficiently spe- Australia is discussed in the light of re- (Campbell and Vere 1995). It is clear that cific and that the risk to economically-im- cent surveys for pathogens in its native other control options need to be investi- portant species of grass is too great to per- range and an improved understanding of gated in order to develop a more effective mit implementation of classical biological the taxonomic relationships of Nassella management strategy for this weed. One control remains a common one, and has to other Australian and South American such option is classical biological control; discouraged such projects in Australia. -
Plant List for Web Page
Stanford Working Plant List 1/15/08 Common name Botanical name Family origin big-leaf maple Acer macrophyllum Aceraceae native box elder Acer negundo var. californicum Aceraceae native common water plantain Alisma plantago-aquatica Alismataceae native upright burhead Echinodorus berteroi Alismataceae native prostrate amaranth Amaranthus blitoides Amaranthaceae native California amaranth Amaranthus californicus Amaranthaceae native Powell's amaranth Amaranthus powellii Amaranthaceae native western poison oak Toxicodendron diversilobum Anacardiaceae native wood angelica Angelica tomentosa Apiaceae native wild celery Apiastrum angustifolium Apiaceae native cutleaf water parsnip Berula erecta Apiaceae native bowlesia Bowlesia incana Apiaceae native rattlesnake weed Daucus pusillus Apiaceae native Jepson's eryngo Eryngium aristulatum var. aristulatum Apiaceae native coyote thistle Eryngium vaseyi Apiaceae native cow parsnip Heracleum lanatum Apiaceae native floating marsh pennywort Hydrocotyle ranunculoides Apiaceae native caraway-leaved lomatium Lomatium caruifolium var. caruifolium Apiaceae native woolly-fruited lomatium Lomatium dasycarpum dasycarpum Apiaceae native large-fruited lomatium Lomatium macrocarpum Apiaceae native common lomatium Lomatium utriculatum Apiaceae native Pacific oenanthe Oenanthe sarmentosa Apiaceae native 1 Stanford Working Plant List 1/15/08 wood sweet cicely Osmorhiza berteroi Apiaceae native mountain sweet cicely Osmorhiza chilensis Apiaceae native Gairdner's yampah (List 4) Perideridia gairdneri gairdneri Apiaceae