Identification of Invasive Alien Species Using DNA Barcodes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ehrharta Longiflora Sm. and Pennisetum Setaceum (Forsk
EHRHARTA LONGIFLORA SM. AND PENNISETUM SETACEUM (FORSK.) CHIOV., TWO NEW ALIEN GRASSES FOR MADEIRA ISLAND (PORTUGAL) Laura Cabral*, João Pedro Ferreira*, André Brazão* Pedro Nascimento* & Miguel Menezes de Sequeira** Abstract The number of introduced, and possible introduced, taxa in the Madeira and Selvagens islands currently accounts for nearly 36% of the total flora of these archipelagos, including 53 Poaceae taxa (out of 141 Poaceae taxa), therefore constituting the family with the higher proportion of introduced taxa (38.4%). The genus Ehrharta Thunb. comprises about 35 species, with one species, E. longiflora Sm., recorded as introduced in Gran Canaria. The genus Pennisetum Rich. includes ca. 80 species of which a total of nine species are present in Macaronesia, with three: P. clandestinum Hochst. & Chiov., P. purpureum Schum. and P. villosum R. Br. ex Fresen, occurring in the Madeira archipelago. Ehrharta longiflora Sm. and Pennisetum setaceum (Forssk.) Chiov., are here recorded for the first time for the Ma- deira island, found in disturbed areas at low and medium altitudes. The finding of several mature and flowering/fructifying individuals of both species suggests a fully naturalized status. Naturalization, invasiveness and ecological impacts are discussed. Keywords: alien, Ehrharta longiflora, grasses, Madeira, Pennisetum setaceum. EHRHARTA LONGIFLORA SM. Y PENNISETUM SETACEUM (FORSK.) CHIOV., DOS NUEVAS GRAMÍNEAS EXÓTICAS PARA LA ISLA DE MADEIRA (PORTUGAL) 133 Resumen El número de taxones introducidos y posiblemente introducidos en los archipiélagos de Ma- deira y Salvajes supone aproximadamente un 36% de su flora total, incluyendo 53 taxa de poáceas (sobre un total de 141 taxa de poáceas), constituyendo, de esta manera, la familia botánica con mayor número de taxa introducidos (38,4%). -
Download?Doi=10.1.1.446.8608Andrep=Rep1andtype=Pdf Du Sol Du Burkina Faso
ORIGINAL RESEARCH published: 22 April 2021 doi: 10.3389/fsufs.2021.632624 Assessment of Livestock Water Productivity in Seno and Yatenga Provinces of Burkina Faso Tunde Adegoke Amole 1*, Adetayo Adekeye 1 and Augustine Abioye Ayantunde 2 1 International Livestock Research Institute, Ibadan, Nigeria, 2 International Livestock Research Institute, Dakar, Senegal The expected increase in livestock production to meet its increasing demand could lead to increased water depletion through feeds production. This study aimed at estimating the amount of water depletion through feeds and its corresponding productivity in livestock within the three dominant livestock management systems namely sedentary-intensive, sedentary-extensive, and transhumance in Yatenga and Seno provinces in the Sahelian zone of Burkina Faso. Using a participatory rapid appraisal and individual interview, beneficial animal products, and services were estimated, and consequently, livestock water productivity (LWP) as the ratio of livestock products and services to the amount of water depleted. Our results showed feed resources are mainly natural pasture and crop residues are common in all the management Edited by: Yaosheng Wang, systems though the proportion of each feed type in the feed basket and seasonal Chinese Academy of Agricultural preferences varied. Consequently, water depleted for feed production was similar across Sciences, China the systems in both provinces and ranged from 2,500 to 3,200 m−3 ha−1 yr−1. Values Reviewed by: Katrien Descheemaeker, for milk (40 US$US$/household) and flock offtake (313 US$/household) derived from Wageningen University and the transhumant system were higher (P < 0.05) than those from other systems in the Research, Netherlands Seno province. -
Effects of Fertilization and Harvesting Age on Yield and Quality of Desho
Agriculture, Forestry and Fisheries 2020; 9(4): 113-121 http://www.sciencepublishinggroup.com/j/aff doi: 10.11648/j.aff.20200904.13 ISSN: 2328-563X (Print); ISSN: 2328-5648 (Online) Effects of Fertilization and Harvesting Age on Yield and Quality of Desho (Pennisetum pedicellatum ) Grass Under Irrigation, in Dehana District, Wag Hemra Zone, Ethiopia Awoke Kefyalew 1, Berhanu Alemu 2, Alemu Tsegaye 3 1Department of Animal Science, College of Agriculture, Oda Bultum University, Chiro, Ethiopia 2Department of Animal Science, College of Agriculture and Natural Resources, Debre Markos University, Debre Markos, Ethiopia 3Sekota Dry Land Agricultural Research Center, Sekota, Ethiopia Email address: To cite this article: Awoke Kefyalew, Berhanu Alemu, Alemu Tsegaye. Effects of Fertilization and Harvesting Age on Yield and Quality of Desho (Pennisetum pedicellatum ) Grass Under Irrigation, in Dehana District, Wag Hemra Zone, Ethiopia. Agriculture, Forestry and Fisheries . Vol. 9, No. 4, 2020, pp. 113-121. doi: 10.11648/j.aff.20200904.13 Received : June 5, 2020; Accepted : June 19, 2020; Published : July 28, 2020 Abstract: The experiment was conducted to evaluating the effects of fertilizer and harvesting age on agronomic performance, chemical composition and economic feasibility of Desho (Pennisetum Pedicellatum) grass under irrigation, in Ethiopia. A factorial arrangement with four fertilizer types (control, urea, compost and urea + compost), and three harvesting ages (90, 120 and 150) with three replications were used. Data on morphological characteristics of the grass were recorded. Based on the data collected, harvesting age was significantly affected the agronomic parameters of the grass. Plant height (PH), number of tillers per plant (NTPP), number of leaves per plant (NLPP), number of leaves per tiller (NLPT), dry matter yield (DMY), leaf length (LL) and leaf area (LA) were increased with increasing harvesting age, while leaf to stem ratio (LSR) showed a decreasing trend. -
A Review of Kikuyu Grass (Pennisetum Clandestinum) Poisoning in Cattle
avj_168.fm Page 261 Wednesday, June 20, 2007 10:56 AM PRODUCTION ANIMALS ABlackwell Publishing Asiareview of kikuyu grass (Pennisetum clandestinum) poisoning in cattle CA BOURKE New South Wales Department of Primary Industries, Orange Agricultural Institute, Forest Rd, Orange NSW 2800 [email protected] PRODUCTION ANIMALS selected until a fertile seed producing variety was produced and Key words: poisoning, cattle, Pennisetum clandestinum this was released in 1969 as ‘Whittet’ kikuyu.6 Fertile bisexual Aust Vet J 2007;85:261–267 doi: 10.1111/j.1751-0813.2007.00168.x plants of Common kikuyu were also selected and the seed from this selection was released in 1972 as ‘Breakwell’ kikuyu.6 In 1972, cold tolerant common kikuyu plants were selected from a pasture ikuyu grass (Pennisetum clandestinum) is a perennial at Camden, New South Wales, propagated and subsequently pasture species with a spring to autumn growth habit. registered as a variety and distributed as ‘Crofts’. A cross between Although it is usually grazed without ill effect, spasmodic Breakwell and Whittet, called ‘Noonan’, was produced at Grafton, K 1 New South Wales, in 1972 and later released commercially incidents of poisoning in cattle and, to a much lesser extent, sheep2 and goats,3 have been encountered. The aetiology and because of its good tolerance to the fungal disease kikuyu yellows. pathogenesis of kikuyu poisoning remains poorly understood. The production of kikuyu pasture seed in commercial quantities Outbreaks are characteristically acute to peracute, lethal, sudden proved very difficult, but a successful seed production system in onset, spasmodic in occurrence, restricted in geographical was established by one seed producing company, at Quirindi, distribution, and short in duration. -
Invasive Weeds of the Appalachian Region
$10 $10 PB1785 PB1785 Invasive Weeds Invasive Weeds of the of the Appalachian Appalachian Region Region i TABLE OF CONTENTS Acknowledgments……………………………………...i How to use this guide…………………………………ii IPM decision aid………………………………………..1 Invasive weeds Grasses …………………………………………..5 Broadleaves…………………………………….18 Vines………………………………………………35 Shrubs/trees……………………………………48 Parasitic plants………………………………..70 Herbicide chart………………………………………….72 Bibliography……………………………………………..73 Index………………………………………………………..76 AUTHORS Rebecca M. Koepke-Hill, Extension Assistant, The University of Tennessee Gregory R. Armel, Assistant Professor, Extension Specialist for Invasive Weeds, The University of Tennessee Robert J. Richardson, Assistant Professor and Extension Weed Specialist, North Caro- lina State University G. Neil Rhodes, Jr., Professor and Extension Weed Specialist, The University of Ten- nessee ACKNOWLEDGEMENTS The authors would like to thank all the individuals and organizations who have contributed their time, advice, financial support, and photos to the crea- tion of this guide. We would like to specifically thank the USDA, CSREES, and The Southern Region IPM Center for their extensive support of this pro- ject. COVER PHOTO CREDITS ii 1. Wavyleaf basketgrass - Geoffery Mason 2. Bamboo - Shawn Askew 3. Giant hogweed - Antonio DiTommaso 4. Japanese barberry - Leslie Merhoff 5. Mimosa - Becky Koepke-Hill 6. Periwinkle - Dan Tenaglia 7. Porcelainberry - Randy Prostak 8. Cogongrass - James Miller 9. Kudzu - Shawn Askew Photo credit note: Numbers in parenthesis following photo captions refer to the num- bered photographer list on the back cover. HOW TO USE THIS GUIDE Tabs: Blank tabs can be found at the top of each page. These can be custom- ized with pen or marker to best suit your method of organization. Examples: Infestation present On bordering land No concern Uncontrolled Treatment initiated Controlled Large infestation Medium infestation Small infestation Control Methods: Each mechanical control method is represented by an icon. -
Poaceae Phytoliths from the Niassa Rift, Mozambique
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/222149229 Poaceae phytoliths from the Niassa Rift, Mozambique Article in Journal of Archaeological Science · August 2010 DOI: 10.1016/j.jas.2010.03.001 CITATIONS READS 44 409 9 authors, including: Fernando Astudillo Mary Barkworth Universidad San Francisco de Quito (USFQ) Utah State University 4 PUBLICATIONS 45 CITATIONS 81 PUBLICATIONS 902 CITATIONS SEE PROFILE SEE PROFILE Tim Aaron Bennett Chris Esselmont 8 PUBLICATIONS 242 CITATIONS The University of Calgary 6 PUBLICATIONS 161 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Stipeae (no longer a major focus) View project Grasses in North America View project All content following this page was uploaded by Rahab N Kinyanjui on 19 March 2018. The user has requested enhancement of the downloaded file. Journal of Archaeological Science 37 (2010) 1953e1967 Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas Poaceae phytoliths from the Niassa Rift, Mozambique Julio Mercader a,*, Fernando Astudillo a, Mary Barkworth b, Tim Bennett a, Chris Esselmont c, Rahab Kinyanjui d, Dyan Laskin Grossman a, Steven Simpson a, Dale Walde a a Department of Archaeology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada b Intermountain Herbarium, Utah State University, 5305 Old Main Hill, Logan, UH 84322-5305, USA c Environics Research Group, 999 8th Street S.W., Calgary, Alberta T2R 1J5, Canada d National Museum of Kenya, Department of Earth Sciences, Palynology and Paleobotany Section, P.O. -
NON-REGULATED PESTS (Non-Actionable)
Import Health Standard Commodity Sub-class: Fresh Fruit/Vegetables Grape, Vitis vinifera from Australia ISSUED Issued pursuant to Section 22 of the Biosecurity Act 1993 Date Issued: 20 December 2000 1 NEW ZEALAND NATIONAL PLANT PROTECTION ORGANISATION The official contact point in New Zealand for overseas NPPOs is the Ministry for Primary Industries (MPI). All communication pertaining to this import health standard should be addressed to: Manager, Import and Export Plants Ministry for Primary Industries PO Box 2526 Wellington NEW ZEALAND Fax: 64-4-894 0662 E-mail: [email protected] http://www.mpi.govt.nz 2 GENERAL CONDITIONS FOR ALL PLANT PRODUCTS All plants and plant products are PROHIBITED entry into New Zealand, unless an import health standard has been issued in accordance with Section 22 of the Biosecurity Act 1993. Should prohibited plants or plant products be intercepted by MPI, the importer will be offered the option of reshipment or destruction of the consignment. The national plant protection organisation of the exporting country is requested to inform MPI of any change in its address. The national plant protection organisation of the exporting country is required to inform MPI of any newly recorded organisms which may infest/infect any commodity approved for export to New Zealand. Pursuant to the Hazardous Substances and New Organisms Act 1996, proposals for the deliberate introduction of new organisms (including genetically modified organisms) as defined by the Act should be referred to: IHS Fresh Fruit/Vegetables. Grape, Vitis vinifera from Australia. (Biosecurity Act 1993) ISSUED: 20 December 2000 Page 1 of 16 Environmental Protection Authority Private Bag 63002 Wellington 6140 NEW ZEALAND Or [email protected],nz Note: In order to meet the Environmental Protection Authority requirements the scientific name (i.e. -
Modeling Gas Exchange and Biomass Production in West African Sahelian and Sudanian Ecological Zones
Geosci. Model Dev., 14, 3789–3812, 2021 https://doi.org/10.5194/gmd-14-3789-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones Jaber Rahimi1, Expedit Evariste Ago2,3, Augustine Ayantunde4, Sina Berger1,5, Jan Bogaert3, Klaus Butterbach-Bahl1,6, Bernard Cappelaere7, Jean-Martial Cohard8, Jérôme Demarty7, Abdoul Aziz Diouf9, Ulrike Falk10, Edwin Haas1, Pierre Hiernaux11,12, David Kraus1, Olivier Roupsard13,14,15, Clemens Scheer1, Amit Kumar Srivastava16, Torbern Tagesson17,18, and Rüdiger Grote1 1Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany 2Laboratoire d’Ecologie Appliquée, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou, Benin 3Biodiversity and Landscape Unit, Université de Liège Gembloux Agro-Bio Tech, Gembloux, Belgium 4International Livestock Research Institute (ILRI), Ouagadougou, Burkina Faso 5Regional Climate and Hydrology Research Group, University of Augsburg, Augsburg, Germany 6International Livestock Research Institute (ILRI), Nairobi, Kenya 7HydroSciences Montpellier, Université Montpellier, IRD, CNRS, Montpellier, France 8IRD, CNRS, Université Grenoble Alpes, Grenoble, France 9Centre de Suivi Ecologique (CSE), Dakar, Senegal 10Satellite-based Climate Monitoring, Deutscher Wetterdienst (DWD), Offenbach, Germany 11Géosciences Environnement Toulouse -
Grass Genera in Townsville
Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers. -
Alien Plant Invasions in Mediterranean Habitats: an Assessment for Sicily
Biol Invasions https://doi.org/10.1007/s10530-021-02561-0 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Alien plant invasions in Mediterranean habitats: an assessment for Sicily Riccardo Guarino . Milan Chytry´ . Fabio Attorre . Flavia Landucci . Corrado Marceno` Received: 9 November 2020 / Accepted: 1 May 2021 Ó The Author(s) 2021 Abstract Levels of plant invasions in different longer flowering period than the native species. The habitat types were assessed in several regional studies, investigated habitats differed strongly in their level of but few of them were from the Mediterranean. Here invasion by alien species, ranging from 0 to 15.6% of we compare the levels of vascular plant invasion aliens of all species recorded. Most of the habitats across habitats and plant communities of Sicily. We were colonized by very few alien species or com- used a large dataset of plant species presences/ pletely lacked them, except for sandy coasts, natu- absences in vegetation plots to analyze the invasion rally-disturbed riverbeds, and synanthropic habitats. It patterns across habitats considering biogeography, life must be noted, however, that the number of alien form and phenology of alien plants. Vegetation plots species occurring in a given habitat does not relate to were classified based on the EUNIS classification of the severity of the impact of invasion in that habitat. European habitats. The invasiveness of each species Some habitats are invaded by few (or single) species, was expressed in terms of its absolute and percentage which attain a high cover, transforming the whole frequency. Representation of different life forms and ecosystem. The habitat-based approach proved to be phenological patterns was compared between alien suitable for evaluating the habitat specificity and and native species. -
H. F. Gutiérrez Y O. Morrone - Novedades Nomenclaturalesissn En 0373-580Cenchrus X Bol
Bol. Soc. Argent. Bot. 47 (1-2) 2012 H. F. Gutiérrez y O. Morrone - Novedades nomenclaturalesISSN en 0373-580Cenchrus X Bol. Soc. Argent. Bot. 47 (1-2): 263-269. 2012 NOVEDADES NOMENCLATURALES EN CENCHRUS S.L. (POACEAE: PANICOIDEAE: PANICEAE) HUGO F. GUTIÉRREZ1 y OSVALDO MORRONE† Summary: Nomenclatural novelties in Cenchrus s.l. (Poaceae: Panicoideae: Paniceae). Recent phylogenetic studies with morphological and molecular data provided evidence on the monophyly of the genera Cenchrus, Pennisetum and Odontelytrum. Therefore, these studies propose the unification and transfer of species of Pennisetum and Odontelytrum to the genus Cenchrus, which has priority. Nomenclatural problems were detected when conducting a preliminary taxonomic revision of the genus Cenchrus s.l. from America (Gutiérrez, in preparation). To resolve these inconveniences, nine lectotypifications: Cenchrus bambusoides Caro & E.A. Sánchez, C. brevisetus E. Fourn., C. pennisetiformis Hochst. & Steud. var. intermedia Chiov., C. roseus E. Fourn., Gymnotrix mexicana E. Fourn., Hymenachne montana Griseb., Pennisetum amoenum Hochst. ex A. Rich., P. cenchroides Rich. var. hamphilahense Terracc., P. ciliare (L.) Link var. anachoreticum Chiov., P. petraeum Steud., P. pringlei Leeke, P. tristachyum (Kunth) Spreng. subsp. boliviense Chase and a new name for Gymnotrix crinita Kunth are here proposed. Key words: Cenchrus, Pennisetum, Poaceae, Paniceae, taxonomy. Resumen: Recientes estudios filogenéticos con datos morfológicos y moleculares aportaron evidencia sobre la monofilia de los géneros Cenchrus, Pennisetum y Odontelytrum y, por ello, se propuso su unificación y transferencia a Cenchrus, el cual tiene prioridad. Resultados preliminares de la revisión taxonómica del género Cenchrus s.l. para América (Gutiérrez, en preparación) permitieron detectar problemas nomenclaturales. Para resolver dichos inconvenientes, en el presente trabajo se presentan nueve lectotipificaciones: Cenchrus bambusoides Caro & E.A. -
503 Flora V7 2.Doc 3
Browse LNG Precinct ©WOODSIDE Browse Liquefied Natural Gas Precinct Strategic Assessment Report (Draft for Public Review) December 2010 Appendix C-18 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 Prepared for Department of State Development December 2009 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 © Biota Environmental Sciences Pty Ltd 2009 ABN 49 092 687 119 Level 1, 228 Carr Place Leederville Western Australia 6007 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 503 Prepared by: P. Chukowry, M. Maier Checked by: G. Humphreys Approved for Issue: M. Maier This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. This report has been designed for double-sided printing. Hard copies supplied by Biota are printed on recycled paper. Cube:Current:503 (Kimberley Hub Wet Season):Doc:Flora:503 flora v7_2.doc 3 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 4 Cube:Current:503 (Kimberley Hub Wet Season):Doc:Flora:503 flora v7_2.doc Biota A Vegetation and Flora Survey of James Price Point: Wet Season 2009 A Vegetation and Flora Survey of James Price