Guidance Document Pohakuloa Training Area Plant Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Midpacific Volume37 Issue1.Pdf
/6.3— THE Vol. XXXVII. No. 1 LLID—PAC I 1I January, 1929 LIAGAZ IN/1 IDACIric ifraga,w?-1e. Old lolani Palace. now the Executive Building in Honolulu, where the First Pan-Pacific Food Conservation and other Conferences called by the Pan-Pacific Union were held. Cattle feed on cactus in Hawaii and get their drink from this succulent plant. In Australia the cactus is a dreaded pest, and steps were taken at the First Pan-Pacific Food Conservation Conference for its possible eradication and a way has been found. eire-aigavoraffory1I ~17 • • rremsaredvairervararesiyai • • • vemvetivarao • - 4. • ,%. outirr filth_trarifir maga3inr • CONDUCTED BY ALEXANDER HUME FO RD IX 01 Volume XXXVI1 Number 1 5 CONTENTS FOR JANUARY, 1929 ■ ■ i 1 5 N Plant Pathology 3 i I By Dr. C. L. Shear. Y. 1 Microbiological Investigations 11 • • By Arao Itano, Ph. D. ■ =• i The Termite Problem in the Pacific 17 "I By Thomas E. Snyder. • The Strawberry—A Gift of the Pacific 27 • By George M. Darrow. i • The Background of Hawaiian Botany 33 • By E. H. Bryan, Jr. • • The Economic Value of Plant Quarantine 41 • By L. A. Whitney, Associate Plant Inspector, Board of Coin. of y,-. Agriculture and Forestry. @ L- 13 II Government Forest Work in Hawaii 49 13 X" 1 h By C. S. Judd, Territorial Forester. i The Universal Calendar 53 :1:4 By B. Richmond. "3 Ei $ Geography of the Island of Maui 57 -. By Lawrence Hite Daingerfield. • p • 0 4 Pan-Pacific Youth. Vol. I, No. 11. i Eh Bulletin of the Pan-Pacific Union, New Series No. -
Alien Plant Invasions in Mediterranean Habitats: an Assessment for Sicily
Biol Invasions https://doi.org/10.1007/s10530-021-02561-0 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Alien plant invasions in Mediterranean habitats: an assessment for Sicily Riccardo Guarino . Milan Chytry´ . Fabio Attorre . Flavia Landucci . Corrado Marceno` Received: 9 November 2020 / Accepted: 1 May 2021 Ó The Author(s) 2021 Abstract Levels of plant invasions in different longer flowering period than the native species. The habitat types were assessed in several regional studies, investigated habitats differed strongly in their level of but few of them were from the Mediterranean. Here invasion by alien species, ranging from 0 to 15.6% of we compare the levels of vascular plant invasion aliens of all species recorded. Most of the habitats across habitats and plant communities of Sicily. We were colonized by very few alien species or com- used a large dataset of plant species presences/ pletely lacked them, except for sandy coasts, natu- absences in vegetation plots to analyze the invasion rally-disturbed riverbeds, and synanthropic habitats. It patterns across habitats considering biogeography, life must be noted, however, that the number of alien form and phenology of alien plants. Vegetation plots species occurring in a given habitat does not relate to were classified based on the EUNIS classification of the severity of the impact of invasion in that habitat. European habitats. The invasiveness of each species Some habitats are invaded by few (or single) species, was expressed in terms of its absolute and percentage which attain a high cover, transforming the whole frequency. Representation of different life forms and ecosystem. The habitat-based approach proved to be phenological patterns was compared between alien suitable for evaluating the habitat specificity and and native species. -
Recovery Plan for Tyoj5llllt . I-Bland Plants
Recovery Plan for tYOJ5llllt. i-bland Plants RECOVERY PLAN FOR MULTI-ISLAND PLANTS Published by U.S. Fish and Wildlife Service Portland, Oregon Approved: Date: / / As the Nation’s principal conservation agency, the Department of the Interior has responsibility for most ofour nationally owned public lands and natural resources. This includes fostering the wisest use ofour land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values ofour national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests ofall our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island Territories under U.S. administration. DISCLAIMER PAGE Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance ofrecovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Costs indicated for task implementation and/or time for achievement ofrecovery are only estimates and are subject to change. Recovery plans do not necessarily represent the views nor the official positions or approval ofany individuals or agencies involved in the plan formulation, otherthan the U.S. Fish and Wildlife Service. They represent the official position ofthe U.S. -
Genetic Differentiation and Polyploid Formation Within the Cryptogramma Crispa Complex (Polypodiales: Pteridaceae)
Turkish Journal of Botany Turk J Bot (2016) 40: 231-240 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1501-54 Genetic differentiation and polyploid formation within the Cryptogramma crispa complex (Polypodiales: Pteridaceae) Jordan METZGAR*, Mackenzie STAMEY, Stefanie ICKERT-BOND Herbarium (ALA), University of Alaska Museum of the North and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA Received: 28.01.2015 Accepted/Published Online: 14.07.2015 Final Version: 08.04.2016 Abstract: The tetraploid fern Cryptogramma crispa (L.) R.Br. ex Hook. is distributed across alpine and high latitude regions of Europe and western Asia and is sympatric with the recently described octoploid C. bithynica S.Jess., L.Lehm. & Bujnoch in north-central Turkey. Our analysis of a 6-region plastid DNA sequence dataset comprising 39 accessions of Cryptogramma R.Br., including 14 accessions of C. crispa and one accession of C. bithynica, revealed a deep genetic division between the accessions of C. crispa from western, northern, and central Europe and the accessions of C. crispa and C. bithynica from Turkey and the Caucasus Mountains. This legacy likely results from Pleistocene climate fluctuations and appears to represent incipient speciation between the eastern and western clades. These plastid DNA sequence data also demonstrate that the western clade of C. crispa, specifically the western Asian clade, is the maternal progenitor of C. bithynica. Our analysis of DNA sequence data from the biparentally inherited nuclear locus gapCp supports an autopolyploid origin of C. bithynica, with C. crispa as the sole progenitor. Key words: Cryptogramma, ferns, autopolyploidy, phylogeography, glacial refugium 1. -
Monilophyte Mitochondrial Rps1 Genes Carry a Unique Group II Intron That Likely Originated from an Ancient Paralog in Rpl2
Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Monilophyte mitochondrial rps1 genes carry a unique group II intron that likely originated from an ancient paralog in rpl2 NILS KNIE, FELIX GREWE,1 and VOLKER KNOOP Abteilung Molekulare Evolution, IZMB–Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany ABSTRACT Intron patterns in plant mitochondrial genomes differ significantly between the major land plant clades. We here report on a new, clade-specific group II intron in the rps1 gene of monilophytes (ferns). This intron, rps1i25g2, is strikingly similar to rpl2i846g2 previously identified in the mitochondrial rpl2 gene of seed plants, ferns, and the lycophyte Phlegmariurus squarrosus. Although mitochondrial ribosomal protein genes are frequently subject to endosymbiotic gene transfer among plants, we could retrieve the mitochondrial rps1 gene in a taxonomically wide sampling of 44 monilophyte taxa including basal lineages such as the Ophioglossales, Psilotales, and Marattiales with the only exception being the Equisetales (horsetails). Introns rps1i25g2 and rpl2i846g2 were likewise consistently present with only two exceptions: Intron rps1i25g2 is lost in the genus Ophioglossum and intron rpl2i846g2 is lost in Equisetum bogotense. Both intron sequences are moderately affected by RNA editing. The unprecedented primary and secondary structure similarity of rps1i25g2 and rpl2i846g2 suggests an ancient retrotransposition event copying rpl2i846g2 into rps1, for which we suggest a model. Our phylogenetic analysis adding the new rps1 locus to a previous data set is fully congruent with recent insights on monilophyte phylogeny and further supports a sister relationship of Gleicheniales and Hymenophyllales. Keywords: group II intron; RNA editing; intron transfer; reverse splicing; intron loss; monilophyte phylogeny INTRODUCTION and accordingly the genome sizes of most free-living bacteria, are an example for the latter (Ward et al. -
New Hawaiian Plant Records from Herbarium Pacificum for 20081
Records of the Hawaii Biological Survey for 2008. Edited by Neal L. Evenhuis & Lucius G. Eldredge. Bishop Museum Occasional Papers 107: 19–26 (2010) New Hawaiian plant records from Herbarium Pacificum for 2008 1 BARBARA H. K ENNEDY , S HELLEY A. J AMES , & CLYDE T. I MADA (Hawaii Biological Survey, Bishop Museum, 1525 Bernice St, Honolulu, Hawai‘i 96817-2704, USA; emails: [email protected], [email protected], [email protected]) These previously unpublished Hawaiian plant records report 2 new naturalized records, 13 new island records, 1 adventive species showing signs of naturalization, and nomen - clatural changes affecting the flora of Hawai‘i. All identifications were made by the authors, except where noted in the acknowledgments, and all supporting voucher speci - mens are on deposit at BISH. Apocynaceae Rauvolfia vomitoria Afzel. New naturalized record The following report is paraphrased from Melora K. Purell, Coordinator of the Kohala Watershed Partnership on the Big Island, who sent an email alert to the conservation com - munity in August 2008 reporting on the incipient outbreak of R. vomitoria, poison devil’s- pepper or swizzle stick, on 800–1200 ha (2000–3000 acres) in North Kohala, Hawai‘i Island. First noticed by field workers in North Kohala about ten years ago, swizzle stick has become a growing concern within the past year, as the tree has spread rapidly and invaded pastures, gulches, and closed-canopy alien and mixed alien-‘ōhi‘a forest in North Kohala, where it grows under the canopies of eucalyptus, strawberry guava, common guava, kukui, albizia, and ‘ōhi‘a. The current distribution is from 180–490 m (600–1600 ft) elevation, from Makapala to ‘Iole. -
List 01 Hawaiian Names 01 Plants
V\.{). 3 v BOTANICAL BULLETIN NO.2 JUNE. 1913 TERRITORY OF HAWAII BOARD OF AGRICULTURE AND FORESTRY List 01 Hawaiian Names 01 Plants BY JOSEPH F. ROCK Consulting Botanist, Board of Agriculture and Forestry HONOLULU: HAWAIIAN GAZETTE CO., LTD. 1913 ALPHABETICAL LIST OF HAWAIIAN NAMES OF PLANTS. The following list of Hawaiian plant-names has been compiled from various sources. Hillebrand in his valuable Flora of the Hawaiian Islands has given many Hawaiian names, especially of the more common species; these are incorporated in this list with a few corrections. Nearly all Hawaiian plant-names found in this list and not in Hillebrand's Flora were secured from Mr. Francis Gay of the Island of Kauai, an old resident in this Terri tory and well acquainted with its plants from a layman's stand point. It was the writer's privilege to camp with Mr. Gay in the mountains of Kauai collecting botanical material; for almost every species he could give the native name, which he had se cured in the early days from old and reliable natives. Mr. Gay had made spatter prints of many of the native plants in a large record book with their names and uses, as well as their symbolic meaning when occurring in mele (songs) or olioli (chants), at tached to them. For all this information the writer is indebted mainly to Mr. Francis Gay and also to Mr. Augustus F. Knudsen of the same Island. The writer also secured Hawaiian names from old na tives and Kahunas (priests) in the various islands of the group. -
Horizontal Transfer of an Adaptive Chimeric Photoreceptor from Bryophytes to Ferns
Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns Fay-Wei Lia,1, Juan Carlos Villarrealb, Steven Kellyc, Carl J. Rothfelsd, Michael Melkoniane, Eftychios Frangedakisc, Markus Ruhsamf, Erin M. Sigela, Joshua P. Derg,h, Jarmila Pittermanni, Dylan O. Burgej, Lisa Pokornyk, Anders Larssonl, Tao Chenm, Stina Weststrandl, Philip Thomasf, Eric Carpentern, Yong Zhango, Zhijian Tiano, Li Cheno, Zhixiang Yano, Ying Zhuo, Xiao Suno, Jun Wango, Dennis W. Stevensonp, Barbara J. Crandall-Stotlerq, A. Jonathan Shawa, Michael K. Deyholosn, Douglas E. Soltisr,s,t, Sean W. Grahamu, Michael D. Windhama, Jane A. Langdalec, Gane Ka-Shu Wongn,o,v,1, Sarah Mathewsw, and Kathleen M. Pryera aDepartment of Biology, Duke University, Durham, NC 27708; bSystematic Botany and Mycology, Department of Biology, University of Munich, 80638 Munich, Germany; cDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; dDepartment of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; eBotany Department, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany; fRoyal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland; gDepartment of Biology and hHuck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802; iDepartment of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064; jCalifornia Academy of Sciences, San Francisco, CA 94118; kReal Jardín Botánico, 28014 Madrid, Spain; lSystematic Biology, Evolutionary Biology Centre, -
Natural History of Hawaiian Native Plants
SOME HELPFUL RESOURCES ABOUT NATIVE HAWAIIAN PLANTS NEW - nativeplants.hawaii.edu - over 200 detailed horticultural information and 100’s of photos of native plants for the landscape linked to nurseries growing native plants and their business information and plant inventory 1. MANUAL OF THE FLOWERING PLANTS OF HAWAI’I by Wagner, Herbst and Sohmer: Two Volumes. Technical but most complete. 2. IN GARDENS OF HAWAII by Marie Neal. Mostly about non- native plants but includes many natives as well. 3. PLANTS AND FLOWERS OR HAWAII by Sohmer and Gustafson. Easiest book to use with many color photos. Limited number of plants. 4. WEBSITE: http://www.botany.hawaii.edu/faculty/carr/natives.htm Most complete online resource with hundreds of pictures of native plants. Disadvantage for novice: all plants listed by scientific names. Provided by Dr. Carr of University of Hawai’i. LCC RESOURCES 1. Plants in the Hawaiian Environment is televised every semester starting in the 3rd week of August and 2nd week of January at 5:30 or 5:45 for 1 ¼ hour. Labs on Saturday mornings. 2. Website for the course can be found at: http://emedia.leeward.hawaii.edu/millen/bot130/ It contains about 200 pages with many graphics. 3. Native plant gardens with over 130 species and types of native plants. All are labeled and can be found at several sites on campus. 4. Seeds and cuttings of native plants available to groups interested in propagating them for teaching and conservation. 5. Shade house propagation center used for education and training. 1 NATURAL HISTORY OF HAWAIIAN NATIVE PLANTS Native White Hibiscus Koki’o ke’o ke’o Hibiscus arnottianus Hawaiian Plant and Ecology Unit 2 1. -
Origin and Age of Australian Chenopodiaceae
ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 59–80 www.elsevier.de/ode Origin and age of Australian Chenopodiaceae Gudrun Kadereita,Ã, DietrichGotzek b, Surrey Jacobsc, Helmut Freitagd aInstitut fu¨r Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany bDepartment of Genetics, University of Georgia, Athens, GA 30602, USA cRoyal Botanic Gardens, Sydney, Australia dArbeitsgruppe Systematik und Morphologie der Pflanzen, Universita¨t Kassel, D-34109 Kassel, Germany Received 20 May 2004; accepted 31 July 2004 Abstract We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times. -
Breeding Biology of the Brown Noddy on Tern Island, Hawaii
Wilson Bull., 108(2), 1996, pp. 317-334 BREEDING BIOLOGY OF THE BROWN NODDY ON TERN ISLAND, HAWAII JENNIFER L. MEGYESI’ AND CURTICE R. GRIFFINS ABSTRACT.-we observed Brown Noddy (Anous stolidus pileatus) breeding phenology and population trends on Tern Island, French Frigate Shoals, Hawaii, from 1982 to 1992. Peaks of laying ranged from the first week in January to the first week in November; however, most laying occurred between March and September each year. Incubation length was 34.8 days (N = 19, SD = 0.6, range = 29-37 days). There were no differences in breeding pairs between the measurements of the first egg laid and successive eggs laid within a season. The proportion of light- and dark-colored chicks was 26% and 74%, respectively (N = 221) and differed from other Brown Noddy colonies studied in Atlantic and Pacific oceans. The length of time between clutches depended on whether the previous outcome was a failed clutch or a successfully fledged chick. Hatching, fledging, and reproductive success were significantly different between years. The subspecies (A. s. pihtus) differs in many aspects of its breeding biology from other colonies in the Atlantic and Pacific oceans, in regard to year-round occurrence at the colony, frequent renesting attempts, large egg size, proportion of light and dark colored chicks, and low reproductive success caused by in- clement weather and predation by Great Frigatebirds (Fregata minor). Received 31 Mar., 1995, accepted 5 Dec. 1995. The Brown Noddy (Anous stolidus) is the largest and most widely distributed of the tropical and subtropical tern species (Cramp 1985). -
Arthropod Diversity Estimates for Three Native Subalpine Plant
ARTHROPOD DIVERSITY ESTIMATES FOR THREE NATIVE SUBALPINE PLANT SPECIES ON THE MAUNAKEA VOLCANO OF HAWAI‘I ISLAND A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT HILO IN PARTIAL FULFULLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL CONSERVATION BIOLOGY AND ENVIRONMENTAL SCIENCE DECEMBER 2016 By Heather Stever Thesis Committee: Jesse Eiben, Chairperson Ryan Perroy Paul Selmants Keywords: Arthropods, Endemic, Hawai‘i, Insects, Maunakea, Subalpine Acknowledgements I am immensely grateful for the knowledge, advice, support, and funding that I received from the many people and organizations that helped to make this project possible. I would like to especially thank my academic advisor, Jesse Eiben, the University of Hawai‘i at Hilo Office of Maunakea Management, and the Tropical Conservation Biology and Environmental Science faculty and students. I would also like to thank, in alphabetical order, Nina Buchanan, Jessica Kirkpatrick, Frederick Klasner, Devin Leopold, Stephanie Nagata, Julien Pétillon, Ryan Perroy, Daniel Rubinoff, Esther Sebastián-González, Paul Selmants, Marleena Sheffield, Michael Shintaku, Andrew Stever, Amber Stillman, and Darcy Yogi. ii Abstract Terrestrial arthropods are among the most abundant and diverse animals on Earth, especially in Hawai‘i where they constitute the vast majority of endemic fauna and play crucial roles in nearly every habitat throughout the islands. Arthropod surveys and inventories are useful methods for documenting arthropod diversity, but studying arthropods can be extremely difficult. Arthropod collection is often taxing because many species are very mobile and exist in harsh climates or on terrain that is difficult to access. Arthropod identification can also be challenging since many arthropods are remarkably small with complex morphologies and diverse life histories.