Invasive Grass Identification and Management Module

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Grass Identification and Management Module Invasive grass identification and management Insert Presenter Name Insert Presentation Date Introduction This module is part of a series of modules in the Pests Cost Us All project. The project aims to improve and up date landholder knowledge in pest animal management and weed management across South Australia. This will be achieved through provision of training and awareness sessions and demonstration sites. The Pests Cost Us All project is part of the Australian Government’s Agricultural Competitiveness White Paper, the government’s plan for stronger farmers and a stronger economy. Learning outcomes from this module • Know what invasive grasses could spread to your area • Recognise the impacts of invasive grasses • Know key features to identify exotic vs native grasses • Learn how to collect samples • Understand the benefits of machinery and property hygiene in preventing grass spread • Select appropriate objectives for invasive grass management • Understand the legal requirements for invasive grass control Learning outcomes from this module…continued • Select appropriate management techniques that will result in effective long term grass control • Employ correct timing of grass management on the property (create a management calendar) • Assess the effectiveness of grass management activities • Understand options for reporting new species Before we start – your issues What other issues would you like to address in relation to invasive grass management on your property? We will record these and refer to this list throughout the session Best practice weed management - key steps 1. Define the problem 2. Determine objectives 3. Develop plan 4. Implement plan 5. Monitor, evaluate and revise plan Weed Management Principles • Correctly identify weed species and understand their biology and ecology • Set appropriate goals for weed management • Use a range of methods • Correctly time your activities and apply long term effort • Monitor, evaluate and adapt management Step 1. Define the Problem • How to identify grasses? • What invasive grasses to look for? • Introduced grass vs native species? • Help with identifying grasses…(NR and State Herbarium) • Is it a declared species in SA? • Is it a Weed of National Significance? • Is it an alert species? Identification is an essential first step before control is undertaken… (Step 1). Identification - Anatomy Plant characteristics - What does it looks like? • Growth habit, (size, colour, shape, etc.) • Flower & seed characteristics (size and shape) (Step 1). Biology and ecology 1. Annual or perennial? 2. Summer active or winter active? 3. How does it spread? Can it regenerate from roots, bulbs, seeds etc.? How long do seeds or propagules remain viable in soil? 4. How fast can it spread? 5. Promoted, or controlled by grazing? (Step 1). What are the Impacts? • Low nutrient value • Low palatability / digestibility • Poisonous if eaten • Physical injury (toxic or irritating?) • Devalue skins and wool • Change fire regimes (Interactions/ response to fire?) • Outcompete preferred native/pasture species ID and impacts – Cenchrus ciliaris Buffel grass • Perennial clumps with high seed production – an aggressive invader • Significant fire threat due to rapid growth rate and fast maturation • Loss of other vegetation & useful pasture plants Declared Data from AVH Jan 2017 ID and impacts – Cenchrus ciliaris Adult: purple at base Seeds dispersed / detached seed Juvenile spike Flowering spike Mature seed spike ID and impacts – Cenchrus ciliaris ID – Buffel Grass look-a-likes Birdwood grass- Cenchrus setiger Data from AVH Jan 2017 ID – Buffel Grass look-a-likes Native Enneapogon species - Black-heads (left) Introduced Setaria verticillata – pigeon grass (right) ID – Buffel Grass look-a-likes Native Mitchell grass – Astrebla pectinata ID – Buffel Grass look-a-likes Introduced Cenchrus setaceus – Pennisetum or Fountain grass (left) Introduced Chloris gayana – Rhodes grass (right) ID and impacts – Cenchrus pennisetiformis Also known as Buffel grass • ID and threat status - same as Cenchrus ciliaris • Seed heads are slightly different - not as soft and hairy & darker in colour Declared Data from AVH Jan 2017 ID and impacts – Cenchrus longispinus and C. incertus Innocent weed • fast-growing annual grasses that produce spiny burrs • pest plant in pastures and irrigated crops Data from AVH Jan 2017 Declared ID and impacts - Cenchrus macrourus (Pennisetum macrourum) - African feathergrass Declared Data from AVH Jan 2017 ID and impacts – Cenchrus setaceus (Pennisetum setaceum) - Fountain grass Data from AVH Jan 2017 Declared ID and impacts – Cenchrus longisetus (Pennisetum villosum) - Feather-top grass Data from AVH Jan 2017 ID and impacts – Cortaderia species Pampas grasses • Large (gigantic) perennial tussock Data from AVH Jan 2017 Declared ID and impacts- Nassella leucotricha Texas needlegrass • Perennial tussock forming Native spear-grass seed Nassella leucotricha grass, up to 1m high • Found in: AMLR (Belair, Clarendon, Scott Creek, Mt Bold) SE (Penola) Data from AVH Jan 2017 Declared ID and impacts – Nassella neesiana Chilean needlegrass • Perennial tussock forming C3 grass, up to 1m high CNG ID Video Declared WoNS Data from AVH Jan 2017 Above: purple glumes ID and impacts – Nassella neesiana Above: distinctive ring of hairs known as the corona ID and impacts – Nassella tenuissima Mexican feathergrass • Perennial grass forming dense tussocks • Extremely vigorous invasive plant Data from AVH Jan 2017 ID and impacts- Nassella tenuissima ID and impacts – Nassella trichotoma Serrated tussock • Perennial, reproduces by seed • Will significantly reduce carrying capacity Left: tussock. Right: Old leaves with fawn coloured tips Data from AVH Jan 2017 Declared WoNS ID and impacts- Nassella trichotoma ID and impacts- Nassella hyalina Cane needlegrass • Perennial tussock forming grass Corona Data from AVH Jan 2017 Declared ID and impacts- Nassella seeds ID and impacts- Nassella seeds ID – Nassella look-a-likes Native spear grasses- Austrostipa species ID – Nassella look-a-likes • Nassella species have a corona where the seed and awn meet. • The corona is contained in the red circle below (in Chilean needle grass) • Native spear-grasses have no corona. Awn and seed grade into each other. • Native spear grass pictured below lacking a corona ID and impacts – Eragrostis curvula African lovegrass • large perennial tussocks that grow to between 30 and 120 cm high Data from AVH Jan 2017 Declared ID – Eragrostis curvula look-a-likes Eragrostis trichophora Piptatherum miliaceum – Rice millet ID and impacts – Hyparrhenia hirta Coolatai grass • long lived summer active perennial tussock Data from AVH Jan 2017 ID and impacts – Jarava plumosa Plumerillo • long lived summer active perennial tussock • Only seen in AMLR in Adelaide Parklands & Waite Arboretum, Urrbrae, Adelaide. Declared ID and impacts – Andropogon gayanus Gamba grass • Very large straight clumping tufted grass - 5 m tall • hairy stems and veins on leaves • A big fire risk! • Similar to Cane sugar • Spread by seed • Not yet in SA… Declared WoNS ID and impacts – Andropogon gayanus ID and impacts – Melinis repens Red Natal Grass Data from AVH Jan 2017 (Step 1). Collect the plant • You can collect a fresh or pressed specimen for identification by an expert at your NRM Board • You can collect a pressed specimen for identification by an expert at the State Herbarium. • Local Officer contact details (Step 1). Pressing a plant Collecting and pressing a plant for identification by a grass specialist • What plant parts to collect and how… • What information to record • Habit - what it looks and smells like when alive and growing • Habitat where plant grows and abundance (Step 1). Pressing a plant (Step 1). Pressing a plant Representative parts for grasses… Just one or a few stems from root to flower • Flowers (Important) • Roots • Stem • Leaves (arrangement on stem) • Press in paper to flatten and dry the plant out. (Step 1). Pressing a plant • Your name • Date collected (uprooted) • Location in words • GPS • Habitat • Frequency • Habit • Flower colour • Any additional / helpful information Identification – Resources • NRM Officers and agronomists are good sources of information • Submission to SA Herbarium Internet resources • Grasses of Australia - Ausgras 2 identification tool • Weeds of Australia Identification tool • Australia's Virtual Herbarium • GRDC Ute guide • Atlas of Living Australia Step 2. Determine Objectives • Prevention • Eradication • Containment • Asset based protection • Feasibility and cost effectiveness of each goal based on circumstances • SMART Objectives Roadside Weed Control Step 3. Develop Plan • Choose your control methods- consider feasibility, cost effectiveness • Legal considerations • Possible ‘side effects’ of removing weeds • Integrated weed management (IWM) – what is it and why is it important (Step 3). Working with Others • Discuss options with NRM staff • Work with neighbours wherever possible • Landscape approach is much more effective • Are there regional programs? (Step 3). Legal considerations • NRM Act 2004- your obligation to manage declared plants • Other Acts • Agricultural and Veterinary Products (control of use) Act 2012 • Native Vegetation Act 1991 • Fire and Emergency Services Act 2005 • Roadside Weed Control (Step 3). Work Health and Safety • Work Health and Safety Act 2012 • You have a duty of care to employees and people working on your property • YOUR welfare is also important • Risks of working with equipment, machinery,
Recommended publications
  • View Has Suggested Tween Australian Native Grasses and the Introduced a Range of Possibilities for Exploring Plant-Fungus Weed Nassella Trichotoma
    Sixteenth Australian Weeds Conference Towards an understanding of interactions between serrated tussock ( Nassella trichotoma) and soil fungal communities Annemieke Schneider, Brian M. Sindel, David Backhouse and Kathy King School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia Email: [email protected] Summary Serrated tussock (Nassella trichotoma) is REFERENCES a grass of South American origin that has become a Allen, E., Siguenza, C. and Gillespie, I. (2003). Im- weed of pastures in southeastern Australia. It has been pacts of invasive annual grasses on mycorrhizal designated a weed of national significance (Thorp and fungi and their restoration. Proceedings of the Lynch 2000), and has been the subject of considerable 7th International Conference on the Ecology research. However, so far little research effort has and Management of Alien Plant Invasions. Fort been directed towards understanding the interactions Lauderdale. between serrated tussock and fungal communities Badgery, W.B., Kemp, D.R., Michalk, D.L. and King, in the soil. This PhD project is currently in its early W.M.C.G. (2005). Competition for nitrogen be- stages, but already the literature review has suggested tween Australian native grasses and the introduced a range of possibilities for exploring plant-fungus weed Nassella trichotoma. Annals of Botany 96, interactions for this species. 799-809. Fungal pathogens with potential as biological Callaway, R.M., Thelen, G.C., Barth, S., Ramsey, P.W. control agents have been identified that attack the seed and Gannon, J.E. (2004). Soil fungi alter interac- (Casonato et al. 2004, Casonato et al. 2005) and roots tions between the invader Centaurea maculosa and (Hussaini et al.
    [Show full text]
  • (Poaceae, Pooideae) with Descriptions and Taxonomic Names
    A peer-reviewed open-access journal PhytoKeysA key 126: to 89–125 the North (2019) American genera of Stipeae with descriptions and taxonomic names... 89 doi: 10.3897/phytokeys.126.34096 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research A key to the North American genera of Stipeae (Poaceae, Pooideae) with descriptions and taxonomic names for species of Eriocoma, Neotrinia, Oloptum, and five new genera: Barkworthia, ×Eriosella, Pseudoeriocoma, Ptilagrostiella, and Thorneochloa Paul M. Peterson1, Konstantin Romaschenko1, Robert J. Soreng1, Jesus Valdés Reyna2 1 Department of Botany MRC-166, National Museum of Natural History, Smithsonian Institution, Washing- ton, DC 20013-7012, USA 2 Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo, C.P. 25315, México Corresponding author: Paul M. Peterson ([email protected]) Academic editor: Maria Vorontsova | Received 25 February 2019 | Accepted 24 May 2019 | Published 16 July 2019 Citation: Peterson PM, Romaschenko K, Soreng RJ, Reyna JV (2019) A key to the North American genera of Stipeae (Poaceae, Pooideae) with descriptions and taxonomic names for species of Eriocoma, Neotrinia, Oloptum, and five new genera: Barkworthia, ×Eriosella, Pseudoeriocoma, Ptilagrostiella, and Thorneochloa. PhytoKeys 126: 89–125. https://doi. org/10.3897/phytokeys.126.34096 Abstract Based on earlier molecular DNA studies we recognize 14 native Stipeae genera and one intergeneric hybrid in North America. We provide descriptions, new combinations, and 10 illustrations for species of Barkworthia gen. nov., Eriocoma, Neotrinia, Oloptum, Pseudoeriocoma gen. nov., Ptilagrostiella gen. nov., Thorneochloa gen. nov., and ×Eriosella nothogen. nov. The following 40 new combinations are made: Barkworthia stillmanii, Eriocoma alta, E. arida, E.
    [Show full text]
  • Weed Risk Assessment for Nassella Neesiana (Trin. & Rupr.) Barkworth
    Weed Risk Assessment for Nassella United States neesiana (Trin. & Rupr.) Barkworth Department of (Poaceae) – Chilean needlegrass Agriculture Animal and Plant Health Inspection Service August 13, 2013 Version 1 Left: Infestation of N. neesiana in Australia (source: Southern Tablelands and South Coast Noxious Plants Committee; Anonymous, 2013). Right: Seeds of N. neesiana with awn still attached (source: Tracey Slotta, USDA-ARS; NRCS, 2013). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Nassella neesiana Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA)— specifically, the PPQ WRA model (Koop et al., 2012)—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or for any area within it.
    [Show full text]
  • Invasive Plant Spotlight: Stipa Tenuissima (Mexican Feathergrass)
    Invasive Plant Spotlight: Stipa tenuissima (Mexican feathergrass) Have you seen this deceptively beautiful plant in your neighborhood, someone’s yard, a parking lot, or running along a sidewalk? It seems like a great drought tolerant plant... So what’s the problem? Stipa tenuissima, also known as Mexican feathergrass or Nassella tenuissima, is an emerging invasive plant in California. An invasive plant is an introduced species that out-competes native plants and wildlife for space and resources, causing harm — and is often difficult to remove or control. S. tenuissima produces thousands of seeds, which are dispersed by wind, water, contaminated soil, automobiles and animal droppings. The seed bank can persist for four years, and since the plant commonly self sows it will likely Photo credit: Susan Morrison/The Designer spread out of its designated place in the garden. In addition to being a landscaping headache, S. tenuissima is an extremely vigorous plant. In Australia and New Zealand, it forms pure, dense stands, preventing native plants from establishing. This plant can crowd out pasture species as well as native grasses in coastal areas. With a high fiber content and low nutritional value, it is unpalatable to cattle and forms indigestible balls in the stomach of livestock. Invaded hillside in New Zealand, Photo credit: NZGovt Why is it not on the California Invasive Plant Council (Cal-IPC) Inventory? To be on the Cal-IPC Inventory, a plant must already cause ecological or economic harm in California. Because S. tenuissima is an emerging invasive species, it is just starting to show signs of being invasive and spreading into natural areas.
    [Show full text]
  • Phylogenetics of Piptatherum Sl (Poaceae: Stipeae)
    TAXON 60 (6) • December 2011: 1703–1716 Romaschenko & al. • Phylogenetics of Piptatherum Phylogenetics of Piptatherum s.l. (Poaceae: Stipeae): Evidence for a new genus, Piptatheropsis, and resurrection of Patis Konstantin Romaschenko,1,2 Paul M. Peterson,2 Robert J. Soreng,2 Oksana Futorna3 & Alfonso Susanna1 1 Laboratory of Molecular Systematics, Botanic Institute of Barcelona (CSIC−ICUB), Passeig del Migdia s.n., 08038 Barcelona, Spain 2 Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013, U.S.A. 3 M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 01601 Kiev, Ukraine Author for correspondence: Paul M. Peterson, [email protected] Abstract Historically, there has been taxonomic confusion among agrostologists regarding the short-spikeleted Stipeae. We refer to these as the Oryzopsis/Piptatherum complex which consists of short-spikeleted species with coriaceous to cartilaginous and often caducous-awned lemmas, and florets with a blunt callus. We conducted a phylogenetic analysis of 53 species that have been associated with this complex using four plastid regions (ndhF, rpl32-trnL, rps16-trnK, rps16 intron) in combination with lemma micromorphology to infer evolutionary relationships. Piptatherum as currently circumscribed is polyphyletic and is found in five strongly supported clades in our maximum likelihood tree. Based on our phylogenetic and morphological evidence we recognize a Eurasian Piptatherum s.str., propose a new genus, Piptatheropsis, to include five North American species, and resurrect the genus Patis to include three species, two from Eurasia and one from North America. We provide morphological descriptions of Patis, Piptatherum, and Piptatheropsis, and provide keys to the genera and species of the Oryzopsis/Piptatherum complex.
    [Show full text]
  • Mexican Feather Grass (Nassella Tenuissima) a Potential Disaster for Australia
    Twelfth Australian Weeds Conference MEXICAN FEATHER GRASS (NASSELLA TENUISSIMA) A POTENTIAL DISASTER FOR AUSTRALIA D.A. McLaren1, M. Whattam2, K. Blood1, V. Stajsic3 and R. Hore1 1 CRC for Weed Management Systems and Department of Natural Resources and Environment, Keith Turnbull Research Institute, PO Box 48, Frankston, Victoria 3199 2 Australian Quarantine and Inspection Service, Plant Quarantine Nursery, 621 Burwood Hwy, Knoxfield, Victoria 3180 3 National Herbarium of Victoria, Birdwood Avenue, South Yarra, Victoria 3141 Abstract Nassella tenuissima (Mexican feather grass) has led to the removal and destruction of these plants has been sold from nurseries in Victoria and NSW since from two Victorian nurseries and a review of AQIS 1998. This paper examines how such a potentially import regulations. weedy species could be legally brought into Australia Nassella tenuissima (Synonym - Stipa tenuissima) is and the pressures being applied by the nursery indus- native to Argentina, Chile, New Mexico and Texas try to continually introduce new exotic species. It also (Jacobs et al. 1998). N. tenuissima is commonly called examines actions by the Australian Quarantine and Mexican feather grass, Texas tussock, white tussock, Inspection Service (AQIS) to prevent such an incident ponytail grass and tussock grass. In Argentina, N. occurring again and explores the use of new technolo- tenuissima is regarded as an unpalatable grass (Moretto gies in both introducing and alerting authorities to the and Distel 1998) and has been classified as a non-pre- existence of emerging weeds. The potential distribu- ferred species that can become dominant under con- tion of N. tenuissima is assessed and compared to its tinual heavy grazing pressure with a low frequency of close relative, Nassella trichotoma (serrated tussock) high intensity fire (Distel and Boo 1995).
    [Show full text]
  • Green Needlegrass Is a Cool-Season (C3) Contributed By: USDA NRCS Bismarck Plant Native Perennial Bunchgrass
    Plant Guide GREEN Status Please consult the PLANTS Web site and your State NEEDLEGRASS Department of Natural Resources for this plant’s Nassella viridula (Trin.) current status (e.g. threatened or endangered species, state noxious status, and wetland indicator values). Barkworth Plant Symbol = NAVI4 Description General: Green needlegrass is a cool-season (C3) Contributed by: USDA NRCS Bismarck Plant native perennial bunchgrass. It grows to a height of Materials Center 18 to 36 inches. The seed head is a compacted panicle, varying from 4 to 10 inches in length. Flowering occurs in early June with seed usually maturing in late June or early July. The awns are curved, sharply bent in the middle, and about one inch long. The leaves are often rolled, thread-like, 4 to 12 inches long, smooth, with prominent veins above. Auricles are absent. The ligule is a ring of hairs, and the sheath is hairy at the margins. This species has rather deep, fibrous roots which in favorable situations may extend to a depth of 10 feet or more. Green needlegrass is very resistant to disease. It occurs only sparingly in most associations of native vegetation. Distribution: For current distribution, please consult the Plant Profile page for this species on the PLANTS Web site. Habitat: This grass is an important native of the Northern Great Plains, and is found as far south as Arizona. Green needlegrass grows on medium to fine-textured soils in both the True Prairie and Mixed Britton & Brown 1913 Illustrated Flora of the Northern States and Canada Prairie. On medium-textured soils, green needlegrass @ PLANTS grows with western wheatgrass, needleandthread, and blue grama.
    [Show full text]
  • Plant Guide for California Oatgrass
    Plant Guide moist lowland prairies as well as open woodlands. CALIFORNIA Therefore, it is commonly recommended for revegetation, wildlife plantings, and restoration of OATGRASS oak savannas, transitional wetlands, and grasslands, especially in the Pacific Coast states where it is most Danthonia californica common. Bolander Plant Symbol = DACA3 Native bunchgrasses like California oatgrass are valuable for enhancing biodiversity. Healthy stands Contributed by: NRCS Plant Materials Center, can reduce invasion by exotic species yet exhibit a Corvallis, Oregon spatial distribution compatible with forbs (Maslovat 2001). Combined with other native grasses and forbs, California oatgrass improves habitat diversity for feeding, nesting, and hiding by songbirds (Oregon Department of Fish and Wildlife 2000), as well as other animals. The grains are eaten by small birds and mammals (Mohlenbrock 1992). Prairies with California oatgrass as a definitive species are also unique refuges for other endemic organisms. For example, the Ohlone tiger beetle (Cicindela ohlone) is an endangered (federally listed) predatory insect known only to five remnant stands of California native grassland in Santa Cruz County (Santa Cruz Public Libraries 2003). These rare grasslands, including the coastal terrace prairies, remain biodiversity “hotspots” and are considered in need of protection (Stromberg et al. 2001). Forage: As a rangeland plant, California oatgrass is well utilized by livestock and certain wildlife. Prior to maturity, the species is rated as good to very good forage for cattle and horses in the Pacific Coast states, but less palatable for sheep and goats. Ratings are lower for eastern, drier portions of its natural range (USDA Forest Service 1988). Others claim it is palatable to all classes of livestock and a mainstay grass for range grazing in places like Humboldt County, California (Cooper 1960).
    [Show full text]
  • Nassella Notes
    Nassella Notes By David Amme Reprinted from Grasslands A Publication of the California Native Grass Association 2003 13(4):3p Nassella Notes by David Amme Nassella is a genus that is native to the western hemisphere. Nassella includes 116 species, making it one of the largest genera in the tribe Stipeae (Barkworth and Torres 2001). Argentina has the largest number of species with over 72 species. The rest of the Nassella species are spread out over the rest of South America, Central America, Mexico, the United States and Canada. Mexico has eight native species, five of which grow in the United States (California, New Mexico and Texas). There are five Nassella species growing in California, three native and two introduced. The native purple needlegrass (N. pulchra), nodding needlegrass (N. cernua) and foothill needlegrass (N. lepida), are confined to California and northern Baja California. The introduced Nassella species include N. manicata and N. tenuissima. N. manicata is from Chile and was misidentified by Barkworth in the Jepson Manual as N. formicarum (Barkworth and Torres 2001). N. tenuissima, known as Mexican feathergrass is native to the dry open woods of Texas, New Mexico, and northern Mexico as well as Argentina. In addition to California’s three Nassella species, and the Mexican feathergrass, there are two other native Nassella species north of the Mexican border: Green needlegrass (N. viridula) of the western plains of the United States and Canada, and Texas needlegrass (N. leucotricha) of the dry open grasslands of Oklahoma, Texas and central Mexico, with a grand total of 6 native Nassella species north of the Mexican border.
    [Show full text]
  • Nassella Pulchra (A. Hitchc.) Barkworth
    SPECIES Nassella pulchra (A. Hitchc.) Barkworth [= Stipa pulchra Hitchc.] NRCS CODE: Tribe: Stipeae NAPU4 Family: Poaceae Order: Cyperales Subclass: Commelinidae Class: Liliopsida A. Montalvo A. Montalvo Carol W. Witham © 2004 Synonyms Stipa pulchra Hitchc. (Hickman 1993) (NRCS code STPU2); S. setigera Calif. (Munz 1974) Common name Purple needlegrass. Other names include: purple stipa, purple tussockgrass (Steinberg 2002); purple nassella; California purple needle grass; purple needle stipa (Painter 2009). Subspecific taxa None. Taxonomic relationships Species of Nassella were once considered part of the genus Stipa and are related to Stipa, Achnatherum , and Hesperostipa (Barkworth 1990). Barkworth & Torres (2001) report that there are at least 116 species of Nassella , most of which occur in South America; seven species are native to North America. Related taxa in region Nassella cernua (Stebbins & Love) Barkworth; Nassella lepida (Hitchc.) Barkworth. Amme (2003) provides hints to tell these species apart (see Distinguishing Traits, below). The non-native N. manicata (E. Desv.) Barkworth from South America strongly resembles N. pulchra and is now present in at least three counties in central CA. Taxonomic issues The Jepson Manual, 2nd Edition (JepsonOnline 2nd Ed 2010 ) will be returning to the name Stipa pulchra. The USDA PLANTS (2010) database is currently using N. pulchra (as of 9/29/10). Amme (2003) reports that N. pulchra included the species N. cernua up until Stebbins & Love (1941). Not all botanists agree with the separation of the genus Nassella from Stipa, and recent publications sometimes include the name Stipa pulchra (e.g., Roberts et al. 2004, Roberts 2008). Barkwork & Torres (2001) found diagnostic characters to separate Nassella from other species in the tribe Stipeae.
    [Show full text]
  • Nassella Neesiana (Trin
    BioInvasions Records (2019) Volume 8, Issue 3: 478–486 CORRECTED PROOF Research Article First record of Nassella neesiana (Trin. & Rupr.) Barkworth (Poaceae) in Croatia Eva Kabaš1, Ivica Ljubičić2,* and Sandro Bogdanović2,3 1University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, Takovska 43, 11000 Belgrade, Serbia 2University of Zagreb, Faculty of Agriculture, Department of Agricultural Botany, Svetošimunska cesta 25, 10000 Zagreb, Croatia 3Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia Author e-mails: [email protected] (EK), [email protected] (IL), [email protected] (SB) *Corresponding author Citation: Kabaš E, Ljubičić I, Bogdanović S (2019) First record of Nassella neesiana Abstract (Trin. & Rupr.) Barkworth (Poaceae) in Croatia. BioInvasions Records 8(3): 478– Chilean needle grass, Nassella neesiana belonging to the tribe Stipeae (Poaceae), 486, https://doi.org/10.3391/bir.2019.8.3.02 native to South America was recorded for the first time in Croatia. It was found in ruderal vegetation on the island of Veli Brijun in the Brijuni National Park (Istria, NW Received: 28 November 2018 Croatia). This species can cause negative impacts to native grasslands, outcompeting Accepted: 8 May 2019 native grasses or can increase fire hazards in peri-urban areas. Considering the Published: 20 July 2019 species has already naturalized in a number of European countries, and the fact that Handling editor: Giuseppe Brundu the territory of Northern Croatia has been evaluated as suitable for its eastward Thematic editor: Stelios Katsanevakis expansion, it is of great importance to monitor and control the spread of the species Copyright: © Kabaš et al.
    [Show full text]
  • Plant Guide for Purple Needlegrass
    Plant Guide Wildlife/livestock PURPLE NEEDLEGRASS Purple needlegrass is a valuable forage species which provides food for deer, elk and other wildlife. It can be an Nassella pulchra (Hitchc.) important source of food for livestock, having moderate Barkworth protein values and high palatability (USDA 2009). The Plant Symbol = NAPU4 leaves green up early in the season and provide good quality early forage for grazing animals. Unfortunately, Contributed by: USDA NRCS California State Office and but the sharp-tipped seeds and awns can become injurious Lockeford Plant Materials Center, California as they dry later in the season. However, shatter is complete within a month of maturity and difficulties can be avoided through pasture management. This species is generally not that important as a livestock forage as it fails to make up a significant portion of the forage base over most of its range, and because under rangeland conditions livestock tend to avoid it later in the season. The fact that livestock do not prefer the species over others is part of reason why it persists in such abundance when compared to other natives of greater palatability for livestock. Low water use lawn and landscaping Purple needlegrass is an excellent native grass for use in low water landscaping. The species has also been used in native grass lawns, but its bunching habit prevents it from forming a uniform sod. Animals such as dogs have been known to get the seed lodged in their fur. The awns then break off leaving the small, sharp seed which can burrow under the skin. These problems can be avoided by mowing the seed prior to maturity.
    [Show full text]