Large Trees, Supertrees and the Grass Phylogeny

Total Page:16

File Type:pdf, Size:1020Kb

Large Trees, Supertrees and the Grass Phylogeny LARGE TREES, SUPERTREES AND THE GRASS PHYLOGENY Thesis submitted to the University of Dublin, Trinity College for the Degree of Doctor of Philosophy (Ph.D.) by Nicolas Salamin Department of Botany University of Dublin, Trinity College 2002 Research conducted under the supervision of Dr. Trevor R. Hodkinson Department of Botany, University of Dublin, Trinity College Dr. Vincent Savolainen Jodrell Laboratory, Molecular Systematics Section, Royal Botanic Gardens, Kew, London DECLARATION I thereby certify that this thesis has not been submitted as an exercise for a degree at any other University. This thesis contains research based on my own work, except where otherwise stated. I grant full permission to the Library of Trinity College to lend or copy this thesis upon request. SIGNED: ACKNOWLEDGMENTS I wish to thank Trevor Hodkinson and Vincent Savolainen for all the encouragement they gave me during the last three years. They provided very useful advice on scientific papers, presentation lectures and all aspects of the supervision of this thesis. It has been a great experience to work in Ireland, and I am especially grateful to Trevor for the warm welcome and all the help he gave me, at work or outside work, since the beginning of this Ph.D. in the Botany Department. I will always remember his patience and kindness to me at this time. I am also grateful to Vincent for his help and warm welcome during the different periods of time I stayed in London, but especially for all he did for me since my B.Sc. at the University of Lausanne. I wish also to thank Prof. Mark Chase for his comments and advice on different manuscripts taken from this thesis. Thanks to Jonathan Davis for being an interested beta tester for my programs, and the members of the Molecular Systematic Section from the Jodrell Laboratory for their welcome. Thanks finally to all members of the Botany Department from Trinity College. I will not forget Ireland! Finally, I could not imagine having spent the last three years in Dublin without Karine. This project was funded by the Irish Higher Education Authority, the Roche Research Foundation, the Agassiz Foundation and a University of Lausanne Research Grant. Large Trees, Supertrees and the Grass Phylogeny TABLE OF CONTENT Table of Content ......................................................................................................i List of Figures........................................................................................................vi List of Appendices ................................................................................................ix List of Appendices ................................................................................................ix List of Abbreviations..............................................................................................x List of Abbreviations..............................................................................................x Phylogenetic inference .................................................................................... x DNA sequencing ............................................................................................. x Grass systematics .......................................................................................... xi Abstract.................................................................................................................xii Chapter 1. Introduction ........................................................................................1 1.1 Historical overview of phylogenetics ........................................................1 1.2 Beyond classification purposes................................................................5 1.2.1 Ancestral character states ................................................................5 1.2.2 Timing of evolutionary events ...........................................................6 1.2.3 Tempo and mode of evolution...........................................................7 1.2.4 Comparative methods.......................................................................7 1.2.5 Genomics and evolution of development ..........................................8 1.3 Phylogenetic inference ..........................................................................10 1.3.1 Choosing an optimality criterion......................................................10 1.3.2 Searching the tree space ................................................................11 1.3.3 Meta-analysis approaches ..............................................................12 1.3.4 Confidence intervals .......................................................................12 1.3.5 Networks.........................................................................................13 i Large Trees, Supertrees and the Grass Phylogeny 1.3.6 Coalescent process ........................................................................14 1.4 Angiosperm and grass phylogeny..........................................................14 1.4.1 Angiosperms...................................................................................15 1.4.2 Poaceae .........................................................................................15 1.5 Aims of this thesis..................................................................................16 1.6 Structure of the thesis............................................................................18 Chapter 2. Towards the Reconstruction of Complete Generic-Level Angiosperm Phylogenies: Are the Big Indeed Easy? ............................20 2.1 Introduction............................................................................................20 2.1.1 Pitfalls of phylogenetics ..................................................................20 2.1.2 Aims ...............................................................................................22 2.2 Material and Methods ............................................................................22 2.2.1 Data matrices and phylogenetic trees .............................................22 2.2.2 Simulations.....................................................................................24 2.2.3 A 13,000 taxa tree ..........................................................................25 2.3 Results ..................................................................................................26 2.3.1 Parameter estimation......................................................................26 2.3.2 Branch length and number of substitutions .....................................28 2.3.3 Simulations of 18S rDNA, atpB and rbcL ........................................31 2.3.4 Simulations based on three codon positions ...................................34 2.3.5 A 13,000 taxa tree ..........................................................................36 2.4 Discussion.............................................................................................38 2.5 Conclusion.............................................................................................42 Chapter 3. Assessing Internal Support with Large Phylogenetic DNA Matrices for the Angiosperms.................................................................................44 3.1 Introduction............................................................................................44 3.1.1 Searching the tree space................................................................44 3.1.2 Aims ...............................................................................................45 3.2 Material and Methods ............................................................................46 ii Large Trees, Supertrees and the Grass Phylogeny 3.2.1 Data and phylogenetic analyses .....................................................46 3.2.2 Statistical analyses .........................................................................46 3.3 Results ..................................................................................................47 3.4 Discussion.............................................................................................53 3.5 Conclusion.............................................................................................55 Chapter 4. Building Supertrees: an Empirical Assessment using the Grass Family ........................................................................................................57 4.1 Introduction............................................................................................57 4.1.1 Building large phylogenetic trees ....................................................57 4.1.2 Supertree reconstructions...............................................................58 4.1.3 Coding procedures .........................................................................59 4.1.4 Aims ...............................................................................................60 4.2 Material and Methods ............................................................................60 4.2.1 Combined phylogenetic tree ...........................................................60 4.2.2 MRP reconstructions ......................................................................61 4.2.3 Topological comparisons ................................................................64 4.3 Results ..................................................................................................64 4.3.1 GPWG combined tree.....................................................................64
Recommended publications
  • Buy Fargesia Dracocephala - Plant Online at Nurserylive | Best Plants at Lowest Price
    Buy fargesia dracocephala - plant online at nurserylive | Best plants at lowest price Fargesia dracocephala - Plant Sacred Bamboo, Heavenly Bamboo, Nandina Rating: Not Rated Yet Price Variant price modifier: Base price with tax Price with discount ?399 Salesprice with discount Sales price ?399 Sales price without tax ?399 Discount Tax amount Ask a question about this product Description With this purchase you will get: 01 Fargesia dracocephala Plant Description for Fargesia dracocephala Plant height: 9 - 15 inches (22 - 39 cm) Plant spread: Sacred Bamboo is a woody shrub, native to China and Japan, often used in landscaping. Its distinctive double-compound or triple-compoud leaves which have lance shaped leaflets are held on multiple nonbranching stems. 1 / 5 Buy fargesia dracocephala - plant online at nurserylive | Best plants at lowest price Common name(s): Sacred Bamboo, Heavenly Bamboo, Nandina Flower colours: Green Bloom time: May-July. Max reachable height: 9 to 16 feet Difficulty to grow: Easy to grow Planting and care An accurate soil test will tell you where your pH currently stands. Acidic (sour) soil is counteracted by applying finely ground limestone, and alkaline (sweet) soil is treated with ground sulfur. If you order roses from a mail-order company, shipped in the spring as bare roots when plants are fully dormant, well before they have leafed out Sunlight: Full Sun Soil: Well-drained soil Water: Medium Temperature: - Fertilizer: Apply any organic fertilizer Caring for Fargesia dracocephala Start with pruning shears for smaller growth. Use loppers, which look like giant, long-handle shears, for growth that is more than half an inch thick.
    [Show full text]
  • Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property
    Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property. Los Alerces National Park, Argentina 185 Map 2: Andean-North Patagonian Biosphere Reserve: Context for the Nominated Proprty. Los Alerces National Park, Argentina 186 Map 3: Vegetation of the Valdivian Ecoregion 187 Map 4: Vegetation Communities in Los Alerces National Park 188 Map 5: Strict Nature and Wildlife Reserve 189 Map 6: Usage Zoning, Los Alerces National Park 190 Map 7: Human Settlements and Infrastructure 191 Appendix 2: Species Lists Ap9n192 Appendix 2.1 List of Plant Species Recorded at PNLA 193 Appendix 2.2: List of Animal Species: Mammals 212 Appendix 2.3: List of Animal Species: Birds 214 Appendix 2.4: List of Animal Species: Reptiles 219 Appendix 2.5: List of Animal Species: Amphibians 220 Appendix 2.6: List of Animal Species: Fish 221 Appendix 2.7: List of Animal Species and Threat Status 222 Appendix 3: Law No. 19,292 Append228 Appendix 4: PNLA Management Plan Approval and Contents Appendi242 Appendix 5: Participative Process for Writing the Nomination Form Appendi252 Synthesis 252 Management Plan UpdateWorkshop 253 Annex A: Interview Guide 256 Annex B: Meetings and Interviews Held 257 Annex C: Self-Administered Survey 261 Annex D: ExternalWorkshop Participants 262 Annex E: Promotional Leaflet 264 Annex F: Interview Results Summary 267 Annex G: Survey Results Summary 272 Annex H: Esquel Declaration of Interest 274 Annex I: Trevelin Declaration of Interest 276 Annex J: Chubut Tourism Secretariat Declaration of Interest 278
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Ucsifwdkif;&If;Om;Pum;Yhkrsm; Avhvmcsuf
    Taxonomic Study on Some Members of Angiosperms from Htooma Mountain Title Area, Patheingyi Township, Mandalay Myat Hnin Wai and Soe Myint Aye All Authors Local Publication Publication Type Publisher Journal of the Myanmar Academy of Arts and Science, Vol. 13 (Journal name, issue no., page no etc.) Taxonomic studies on some members of angiosperms from Htooma mountain area in Patheingyi Township, Mandalay were conducted. The flowering plants were collected, preserved, identified and classified. All together 12 species belonging to 12 genera of 9 families were included. Among them,Aristolochia tagala Cham., Boscia variabilis (Kurz) Coll. & Hensl Paederia tomentosa Blume, Myriopteron paniculatum Griff, Streptocaulon tomentosum Wight & Arn and Sterculia versicolor Wall. are medicinal plants, Bombax anceps Pierre Abstract andErythrina microcarpa Kurz &Vahl are valuable trees, Blinkworthia lycioides Choisy, Ceropegia lucida Wall. and Kalancho laciniata (L.) Pers. are valuable species for ornamental purposes. Aristolochia tagala Cham. is under the basal angiosperms, and the rest species are under the clade eudicot. The description of the collected species with figures, Scientific names, Myanmar names, and flowering period have been mentioned. An artificial key to the species was also constructed and stated. Angiosperms, Patheingyi Township, Myanmar Keywords Citation 2015 Issue Date 1 Taxonomic Study on Some Members of Angiosperms from Htooma Mountain Area, Patheingyi Township, Mandalay Myat Hnin Wai1 & Soe Myint Aye2 Abstract Taxonomic studies on some members of angiosperms from Htooma mountain area in Patheingyi Township, Mandalay were conducted. The flowering plants were collected, preserved, identified and classified. All together 12 species belonging to 12 genera of 9 families were included. Among them, Aristolochia tagala Cham., Boscia variabilis (Kurz) Coll.
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Systematics of Chusquea Section Chusquea, Section Swallenochloa, Section Verticillatae, and Section Serpentes (Poaceae: Bambusoideae) Lynn G
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1986 Systematics of Chusquea section Chusquea, section Swallenochloa, section Verticillatae, and section Serpentes (Poaceae: Bambusoideae) Lynn G. Clark Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Clark, Lynn G., "Systematics of Chusquea section Chusquea, section Swallenochloa, section Verticillatae, and section Serpentes (Poaceae: Bambusoideae) " (1986). Retrospective Theses and Dissertations. 7988. https://lib.dr.iastate.edu/rtd/7988 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques Is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing jiages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3.
    [Show full text]
  • Bosque Pehuén Park's Flora: a Contribution to the Knowledge of the Andean Montane Forests in the Araucanía Region, Chile Author(S): Daniela Mellado-Mansilla, Iván A
    Bosque Pehuén Park's Flora: A Contribution to the Knowledge of the Andean Montane Forests in the Araucanía Region, Chile Author(s): Daniela Mellado-Mansilla, Iván A. Díaz, Javier Godoy-Güinao, Gabriel Ortega-Solís and Ricardo Moreno-Gonzalez Source: Natural Areas Journal, 38(4):298-311. Published By: Natural Areas Association https://doi.org/10.3375/043.038.0410 URL: http://www.bioone.org/doi/full/10.3375/043.038.0410 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. R E S E A R C H A R T I C L E ABSTRACT: In Chile, most protected areas are located in the southern Andes, in mountainous land- scapes at mid or high altitudes. Despite the increasing proportion of protected areas, few have detailed inventories of their biodiversity. This information is essential to define threats and develop long-term • integrated conservation programs to face the effects of global change.
    [Show full text]
  • American Bamboo Society
    $5.00 AMERICAN BAMBOO SOCIETY Bamboo Species Source List No. 34 Spring 2014 This is the thirty-fourth year that the American Bamboo Several existing cultivar names are not fully in accord with Society (ABS) has compiled a Source List of bamboo plants requirements for naming cultivars. In the interests of and products. The List includes more than 510 kinds nomenclature stability, conflicts such as these are overlooked (species, subspecies, varieties, and cultivars) of bamboo to allow continued use of familiar names rather than the available in the US and Canada, and many bamboo-related creation of new ones. The Source List editors reserve the products. right to continue recognizing widely used names that may not be fully in accord with the International Code of The ABS produces the Source List as a public service. It is Nomenclature for Cultivated Plants (ICNCP) and to published on the ABS website: www.Bamboo.org . Copies are recognize identical cultivar names in different species of the sent to all ABS members and can also be ordered from ABS same genus as long as the species is stated. for $5.00 postpaid. Some ABS chapters and listed vendors also sell the Source List. Please see page 3 for ordering Many new bamboo cultivars still require naming, description, information and pages 50 and following for more information and formal publication. Growers with new cultivars should about the American Bamboo Society, its chapters, and consider publishing articles in the ABS magazine, membership application. “Bamboo.” Among other requirements, keep in mind that new cultivars must satisfy three criteria: distinctiveness, The vendor sources for plants, products, and services are uniformity, and stability.
    [Show full text]
  • Structural Characteristics of Scbx Genes Controlling the Biosynthesis of Hydroxamic Acids in Rye (Secale Cereale L.)
    J Appl Genetics (2015) 56:287–298 DOI 10.1007/s13353-015-0271-z PLANT GENETICS • ORIGINAL PAPER Structural characteristics of ScBx genes controlling the biosynthesis of hydroxamic acids in rye (Secale cereale L.) Beata Bakera & Bogna Makowska & Jolanta Groszyk & Michał Niziołek & Wacław Orczyk & Hanna Bolibok-Brągoszewska & Aneta Hromada-Judycka & Monika Rakoczy-Trojanowska Received: 15 July 2014 /Revised: 12 January 2015 /Accepted: 13 January 2015 /Published online: 10 February 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Benzoxazinoids (BX) are major secondary metab- analyses of the resulting contigs were used to examine the olites of gramineous plants that play an important role in dis- structure and other features of these genes, including their ease resistance and allelopathy. They also have many other promoters, introns and 3’UTRs. Comparative analysis unique properties including anti-bacterial and anti-fungal ac- showed that the ScBx genes are similar to those of other tivity, and the ability to reduce alfa–amylase activity. The bio- Poaceae species, especially to the TaBx genes. The polymor- synthesis and modification of BX are controlled by the genes phisms present both in the coding sequences and non-coding Bx1 ÷ Bx10, GT and glu, and the majority of these Bx genes regions of ScBx in relation to other Bx genes are predicted to have been mapped in maize, wheat and rye. However, the have an impact on the expression, structure and properties of genetic basis of BX biosynthesis remains largely the encoded proteins. uncharacterized apart from some data from maize and wheat.
    [Show full text]
  • Ornamental Grasses for the Midsouth Landscape
    Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential.
    [Show full text]
  • The Genetic Background of Benzoxazinoid Biosynthesis in Cereals
    Acta Physiol Plant (2015) 37:176 DOI 10.1007/s11738-015-1927-3 REVIEW The genetic background of benzoxazinoid biosynthesis in cereals 1 1 1 B. Makowska • B. Bakera • M. Rakoczy-Trojanowska Received: 8 July 2014 / Revised: 11 May 2015 / Accepted: 22 July 2015 / Published online: 6 August 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Benzoxazinoids (BXs) are important com- Occurrence, characterization and biological role pounds in plant defense. Their allelopathic, nematode of BXs suppressive and antimicrobial properties are well known. BXs are found in monocot plants and in a few Benzoxazinoids (BXs) are protective and allelophatic sec- species of dicots. Over 50 years of study have led to ondary metabolites found in numerous species belonging to the characterization of the chromosomal locations and the Poaceae family, including maize, rye, wheat (Niemeyer coding sequences of almost all the genes involved in 1988a;Gru¨netal.2005;Nomuraetal.2007;Freyetal. BX biosynthesis in a number of cereal species: 2009; Chu et al. 2011; Sue et al. 2011), the wheat progen- ZmBx1–ZmBx10a7c in maize, TaBx1–TaBx5, TaGT itors Triticum urartu, Aegilops speltoides, Aegilops squar- and Taglu in wheat, ScBx17ScBx5, ScBx6-like, ScGT rosa (Niemeyer 1988b), and wild barleys: Hordeum and Scglu in rye. So far, the ortholog of the maize Bx7 roshevitzii, Hordeum flexuosum, Hordeum brachyantherum, gene has not been identified in the other investigated Hordeum lechleri (Gru¨netal.2005) and in genera—Chus- species. This review aims to summarize the available quea, Elymus, Arudo (Zu`n˜iga et al. 1983), Coix (Nagao et al.
    [Show full text]
  • Xxx-Xxx, Xxxx
    PSRU Journal of Science and Technology 5(3): 74-96, 2020 ความหลากหลายของพรรณพืชในวัดป่าเขาคงคา อ าเภอครบุรี จังหวัดนครราชสีมา PLANT DIVERSITY IN KHAO KHONG KHA FOREST MONASTERY KHON BURI DISTRICT, NAKHON RATCHASIMA PROVINCE เทียมหทัย ชูพันธ์* นาริชซ่า วาดี ศรัญญา กล้าหาญ สุนิษา ยิ้มละมัย และ สุวรรณี อุดมทรัพย์ Thiamhathai Choopan*, Narissa Wadee, Saranya Klahan, Sunisa Yimlamai and Suwannee Udomsub คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครราชสีมา Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University *corresponding author e-mail: [email protected] (Received: 27 July 2020; Revised: 8 October 2020; Accepted: 9 October 2020) บทคัดย่อ การวิจัยครั้งนี้เป็นการศึกษาความหลากหลายของพรรณพืชในวัดป่าเขาคงคา อ าเภอครบุรี จังหวัดนครราชสีมา ด้วยการสุ่มวางแปลงตัวอย่าง จ านวน 18 แปลง ขนาด 2020 เมตร เพื่อส ารวจ ไม้ต้น และขนาด 55 เมตร เพื่อส ารวจไม้พื้นล่างร่วมกับการส ารวจตามเส้นทางศึกษาธรรมชาติ ผลการศึกษาพบว่ามีไม้ต้น จ านวน 38 วงศ์ 83 สกุล 98 ชนิด โดยไม้ต้นชนิดที่พบมากที่สุด ได้แก่ ติ้วเกลี้ยง (Cratoxylum cochinchinense (Lour.) Blume) รองลงมา คือ เสี้ยวป่า (Bauhinia saccocalyx Pierre) และแดง (Xylia xylocarpa (Roxb.) W. Theob. var. kerrii (Craib & Hutch.) I.C. Nielsen) ตามล าดับ ส่วนไม้ต้นชนิดที่มีค่าดัชนีความส าคัญสูงที่สุด คือ เสี้ยวป่า ติ้วเกลี้ยง และแดง ตามล าดับ ค่าดัชนี ความหลากหลายของไม้ต้น มีค่าเท่ากับ 3.6656 ค่าความสม่ าเสมอในการกระจายตัว มีค่าเท่ากับ 0.7995 ค่าความหลากหลาย มีค่าเท่ากับ 39.0785 นอกจากนั้นพบว่ามีไม้พื้นล่าง จ านวน 61 วงศ์ 137 สกุล 145 ชนิด ไม้พื้นล่างชนิดที่พบมากที่สุด ได้แก่ พลูช้าง (Scindapus officinalis
    [Show full text]