Botánica Sistemática II Guia De Actividades 2014

Total Page:16

File Type:pdf, Size:1020Kb

Botánica Sistemática II Guia De Actividades 2014 Facultad de Ciencias Naturales y Museo – Universidad Nacional de La Plata Cátedra de Botánica Sistematica II Botánica Sistemática II Guia de actividades 2014 1 Facultad de Ciencias Naturales y Museo – Universidad Nacional de La Plata Cátedra de Botánica Sistematica II Facultad de Ciencias Naturales y Museo Universidad Nacional de La Plata Cátedra de Botánica Sistemática II Profesor Titular: Dra. Susana E. Freire Jefes de Trabajos Prácticos: Lic. Gustavo Delucchi Lic. Laura Iharlegui Ayudantes: Lic. Marcelo Hernández Lic. Elena Rastelli Dra. Estrella Urtubey Lic. Carlos A. Zavaro Lic. Jessica Viera Barreto Lic. Damián Fernández Fernando Buet Pablo Simón La Plata, Abril 2014 2 Facultad de Ciencias Naturales y Museo – Universidad Nacional de La Plata Cátedra de Botánica Sistematica II Indice Actividades de las Clases Teórico-Prácticas Diversidad biológica. Crisis de la biodiversidad. El rol del sistemático………………………………...…6 Sistemas de Clasificación. Nomenclatura Botánica …………………………….…………………………...….…7 Concepto de Especie-Evidencia taxonómica: caracteres morfológicos y moleculares …….….…9 Evolución y especiación como explicación de la diversidad orgánica. …………………………………..10 Fuentes de información botánica ……………………………………………………………………………………….…11 Origen y características de las plantas terrestres (=Embriófitas). Briófitas. Origen de plantas vasculares (=Traqueófitas)……………………………………………………………………………..…………………12 Primeras plantas vasculares. Clases Rhyniopsida, Zosterophyllopsida, Trimerophytopsida, Subdivisión Lycopodiophytina: Clase Lycopodiopsida ..………………………………………………….…13 Subdivisión Euphyllophytina. Moniliofitas. Clases Psilotopsida, Equisetopsida, Marattiopsida, Polypodiopsida …………………………………………………………………………………………………………...…..15 “Gimnospermas”. Clases Progymnospermopsida, Ginkgopsida y Pinopsida ………………………….16 Clases Pteridospermopsida, Cycadopsida y Gnetopsida. ………………………………………………………20 Origen de las plantas con flores. Angiospermas basales. Clase Magnoliopsida: .Ordenes Nymphaeales, Ceratophyllales. Canellales, Piperales, Magnoliales, Laurales, Ranunculales …………………………………………………………………………………………………………………………………………22 Subclase Hamamelidae I: Ordenes: Hamamelidales, Juglandales, Fagales, Casuarinales y Urticales. ………………………………………………………………………………………………………………..…25 Subclase Caryophyllidae: Caryophyllales, Polygonales, Plumbaginales. ……………………….………28 Subclase Dilleniidae: Theales, Malvales, Nepenthales. Violales, Capparales, Salicales, Ericales, Ebenales y Primulales………………………………………………………………………...……………………..30 Subclase Rosidae I: Rosales, Fabales y Proteales. …………………………………………………………..………33 Rosidae II: Myrtales, Santalales- Euphorbiales, Celastrales, Rhamnales y Linales......................37 Subclase Rosidae III: Sapindales, Geraniales, Apiales …………………………………………………………….40 Subclase Asteridae I: Gentianales, Solanales, Lamiales. Scrophulariales, Plantaginales…………………………………………………………………………………………………………….……..42 Subclase Asteridae II: Rubiales, Dipsacales y Asterales …………………………………………….……………47 Subclase Alismatidae y Arecidae: Alismatales, Arales, Arecales. ……………………………………………50 3 Facultad de Ciencias Naturales y Museo – Universidad Nacional de La Plata Cátedra de Botánica Sistematica II Subclase Commelinidae: Cyperales…………………………………………………………………………………………53 Subclase Commelinidae: Commelinales, Juncales, Typhales y Subclase Zingiberidae: Bromeliales, Zingiberales………………………………………………………………………………………………….57 Subclase Liliidae: Dioscoreales, Asparagales, Liliales, Orchidales……………………………………………59 Actividades de las Clases Prácticas de Laboratorio Monilofitas, Clase Polipodiopsida: Orden Polypodiales ……………………………………………………..…63 “Gimnospermas”. Clases Ginkgopsida y Pinopsida. ………………………………………………………………64 Angiospermas Subclase Hamamelidae: Orden Fagales………………………………………….…………………….…………65 Subclase Dilleniidae: Ordenes Malvales, Capparales y Salicales …………….………………………66 Subclase Rosidae: Orden Fabales y Rosales ……………………………………………..………………………68 Subclase Rosidae: Ordenes Myrtales, Euphorbiales y Apiales ...........................................70 Subclase Asteridae: Ordenes Solanales, Lamiales y Scrophulariales ……………………………….72 Subclase Asteridae: Asterales …………………………………………………………………………………………74 Subclase Commelinidae: Orden Cyperales. : Familia Poaceae (=Gramineas) …………….……75 Clases de Determinación: Modelo de ficha para cada planta determinada ………………………….78 Calendario 2014 …………………………………………………………………………………………………………………………….…………79 4 Facultad de Ciencias Naturales y Museo – Universidad Nacional de La Plata Cátedra de Botánica Sistematica II Actividades de las Clases Teórico-Prácticas 5 Facultad de Ciencias Naturales y Museo – Universidad Nacional de La Plata Cátedra de Botánica Sistematica II Diversidad Biológica. Crisis de la biodiversidad. El rol del sistemático. Lectura de los siguientes artículos: - Espejos de nuestra época: biodiversidad, sistemática y educación (J.V. Crisci. Gayana Bot. 63(1): 106-114, 2006). - How many species are there on Earth and in the Ocean (C. Mora, D.P. Tittensor, s. Adl, A. G. B. Simpson & B. Worm. Plos Biology 9(8): 1-8. 2011). Discusión de los siguientes conceptos: Concepto de biodiversidad. Componentes de la diversidad biológica Valor científico, económico, estético y ético de la biodiversidad Crisis de la Biodiversidad Número estimativo de especies descriptas / de plantas superiores descriptas Tasa anual de extinción de especies en la actualidad Causas de la pérdida de especies originadas por el hombre. El rol del sistemático Conservación "ex situ" /”in situ”. 6 Facultad de Ciencias Naturales y Museo – Universidad Nacional de La Plata Cátedra de Botánica Sistematica II Sistemas de Clasificación – Nomenclatura Botánica Discusión de los siguientes conceptos: Objetivos de la clasificación biológica Ubicación de las plantas vasculares en los diferentes sistemas de clasificación biológica. El sistema de Linneo, Engler, Bessey, Cronquist, APG III para las Angiospermas. Principios básicos de la Nomenclatura Botánica Ejercicios de Nomenclatura Botánica: 1. El uso correcto del nombre científico del “quebracho colorado chaqueño” es: a. Schinopsis Balansae Engl. - b. Schinopsis balansae - c. schinopsis balansae - d. Schinopsis balansae Engl. 2. ¿Cómo se denominan el siguiente par de nombres y cuál puede seguir usándose válidamente? Qué debe hacerse con el restante? Hamiltonia Roxbl. (1814) Fam. Rubiaceae y Hamiltonia Sprengel (1825) Fam. Santalaceae 3. Hebeclinium hecatanthum fue descripta por DeCandolle en 1836. Luego Baker (en 1876) sostiene que esta especie pertenece al género Eupatorium. Si en 1971 R.M. King & H. Robinson ubican a esta especie en el género Urolepis, ¿cómo será el nombre de esta especie y cuál la sigla del autor? ¿qué pasan a ser los otros dos nombres? 4. ¿Cuál es el basónimo de Baccharis spartioides (De Candolle) Remy? a. Pseudobaccharis spartioides (De Candolle) Cabrera (1944) b. Heterothalamus spartioides De Candolle (1838) c. Baccharis sarophora Philippi (1861) 5. Si todos estos nombres pertenecen a una misma especie de Dicotiledóneas, que según Druce pertenece al género Centaurium ¿Cómo debe llamarse y por qué? Gentiana centaurium L. (1753) G. pulchella Swartz (1786) Erythraea ramosissima Pers. (1805) E. pulchella Pries. (1814) 6. Si los siguientes nombres corresponden al mismo taxon, indique cuál es el nombre correcto que debe aplicarse a la especie en consideración y en qué principio se basa la decisión. Stipa argentina Speg. (1901) Stipa tenuis var. papillosa Hackel (1911) Stipa puelches Speg. (1925) Stipa tenuis Phil. (1870) 7. La siguiente es una serie de ejemplares que aparecen en la descripción original de Baccharis meridionalis Heering & Dusén: Dusén 3956, Dusén 4212, Dusén 7925 ¿Qué clase de tipo son? 7 Facultad de Ciencias Naturales y Museo – Universidad Nacional de La Plata Cátedra de Botánica Sistematica II 8. La siguiente es una serie tipo de ejemplares que aparecen en la descripción de la especie Amaranthus kloosianus: Hunziker 2630, Hunziker 2826, Hunziker 4808, Hunziker 4810, Hunziker 4821, Hunziker 5310 y Zabala 564. Si el ejemplar de herbario Hunziker 2826 fue designado como holotipo ¿Qué clase de tipos son los restantes ejemplares? 9. La siguiente es una serie de ejemplares que aparecen en la descripción original de Amaranthus graecizans var. pubescens Uline & W.L. Bray: J. Torrey 457, F. H. Knowlton 198, A. Fendler 731, E. L. Greene 185, Bigelow s.n. y Jones 3978. Si el autor original no designa tipo ¿Qué clase de tipo es el ejemplar E.L. Green 185 si es designado posteriormente por otro autor como tipo de la especie? 10. Indique a qué categoría taxonómica pertenece cada uno de los siguientes taxones: Secale; Poaceae; Secale cereale L.; Poales; Festucoideae. 8 Facultad de Ciencias Naturales y Museo – Universidad Nacional de La Plata Cátedra de Botánica Sistematica II Concepto de Especie-Evidencia taxonómica: caracteres morfológicos y moleculares Lectura de los siguientes artículos: - Especie: ¿Es o son? (F. Fernández, J.M. Hoyos & D.R. Miranda. Innovación y Ciencia 4(1): 32- 37. 1995). - Fósiles, sistemática y evolución (J.M. Hoyos. Innovación y Ciencia 4(1): 64-69. 1995) - Morfología, moléculas y la historia de la vida (J.V. Crisci & J.J. Morrone. Innovación y Ciencia 4(1): 58-63. 1995) Discusión de los siguientes conceptos: Concepto biológico de especie. Principales objeciones que se hacen a este concepto. Ventaja/desventajas al uso del concepto filogenético de especie. Concepto de especie en plantas. Diferencias en el tratamiento de los fósiles al momento de describir las filogenias entre los sistemáticos evolutivos y los sistemáticos
Recommended publications
  • "Santalales (Including Mistletoes)"
    Santalales (Including Introductory article Mistletoes) Article Contents . Introduction Daniel L Nickrent, Southern Illinois University, Carbondale, Illinois, USA . Taxonomy and Phylogenetics . Morphology, Life Cycle and Ecology . Biogeography of Mistletoes . Importance of Mistletoes Online posting date: 15th March 2011 Mistletoes are flowering plants in the sandalwood order that produce some of their own sugars via photosynthesis (Santalales) that parasitise tree branches. They evolved to holoparasites that do not photosynthesise. Holopar- five separate times in the order and are today represented asites are thus totally dependent on their host plant for by 88 genera and nearly 1600 species. Loranthaceae nutrients. Up until recently, all members of Santalales were considered hemiparasites. Molecular phylogenetic ana- (c. 1000 species) and Viscaceae (550 species) have the lyses have shown that the holoparasite family Balano- highest species diversity. In South America Misodendrum phoraceae is part of this order (Nickrent et al., 2005; (a parasite of Nothofagus) is the first to have evolved Barkman et al., 2007), however, its relationship to other the mistletoe habit ca. 80 million years ago. The family families is yet to be determined. See also: Nutrient Amphorogynaceae is of interest because some of its Acquisition, Assimilation and Utilization; Parasitism: the members are transitional between root and stem para- Variety of Parasites sites. Many mistletoes have developed mutualistic rela- The sandalwood order is of interest from the standpoint tionships with birds that act as both pollinators and seed of the evolution of parasitism because three early diverging dispersers. Although some mistletoes are serious patho- families (comprising 12 genera and 58 species) are auto- gens of forest and commercial trees (e.g.
    [Show full text]
  • Full of Beans: a Study on the Alignment of Two Flowering Plants Classification Systems
    Full of beans: a study on the alignment of two flowering plants classification systems Yi-Yun Cheng and Bertram Ludäscher School of Information Sciences, University of Illinois at Urbana-Champaign, USA {yiyunyc2,ludaesch}@illinois.edu Abstract. Advancements in technologies such as DNA analysis have given rise to new ways in organizing organisms in biodiversity classification systems. In this paper, we examine the feasibility of aligning two classification systems for flowering plants using a logic-based, Region Connection Calculus (RCC-5) ap- proach. The older “Cronquist system” (1981) classifies plants using their mor- phological features, while the more recent Angiosperm Phylogeny Group IV (APG IV) (2016) system classifies based on many new methods including ge- nome-level analysis. In our approach, we align pairwise concepts X and Y from two taxonomies using five basic set relations: congruence (X=Y), inclusion (X>Y), inverse inclusion (X<Y), overlap (X><Y), and disjointness (X!Y). With some of the RCC-5 relationships among the Fabaceae family (beans family) and the Sapindaceae family (maple family) uncertain, we anticipate that the merging of the two classification systems will lead to numerous merged solutions, so- called possible worlds. Our research demonstrates how logic-based alignment with ambiguities can lead to multiple merged solutions, which would not have been feasible when aligning taxonomies, classifications, or other knowledge or- ganization systems (KOS) manually. We believe that this work can introduce a novel approach for aligning KOS, where merged possible worlds can serve as a minimum viable product for engaging domain experts in the loop. Keywords: taxonomy alignment, KOS alignment, interoperability 1 Introduction With the advent of large-scale technologies and datasets, it has become increasingly difficult to organize information using a stable unitary classification scheme over time.
    [Show full text]
  • Santalales: Opiliaceae) in Taiwan
    Biodiversity Data Journal 8: e51544 doi: 10.3897/BDJ.8.e51544 Taxonomic Paper First report of the root parasite Cansjera rheedei (Santalales: Opiliaceae) in Taiwan Po-Hao Chen‡, An-Ching Chung§, Sheng-Zehn Yang| ‡ Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Neipu Township, Pintung, Taiwan § Liouguei Research Center, Taiwan Forest Research Institute, Liouguei District, Kaohsiung, Taiwan | Department of Forestry, National Pingtung University of Science and Technology, Neipu Township, Pintung, Taiwan Corresponding author: Sheng-Zehn Yang ([email protected]) Academic editor: Yasen Mutafchiev Received: 27 Feb 2020 | Accepted: 08 Apr 2020 | Published: 10 Apr 2020 Citation: Chen P-H, Chung A-C, Yang S-Z (2020) First report of the root parasite Cansjera rheedei (Santalales: Opiliaceae) in Taiwan. Biodiversity Data Journal 8: e51544. https://doi.org/10.3897/BDJ.8.e51544 Abstract Background The family Opiliaceae in Santalales comprises approximately 38 species within 12 genera distributed worldwide. In Taiwan, only one species of the tribe Champereieae, Champereia manillana, has been recorded. Here we report the first record of a second member of Opiliaceae, Cansjera in tribe Opilieae, for Taiwan. New information The newly-found species, Cansjera rheedei J.F. Gmelin (Opiliaceae), is a liana distributed from India and Nepal to southern China and western Malaysia. This is the first record of both the genus Cansjera and the tribe Opilieae of Opiliaceae in Taiwan. In this report, we provide a taxonomic description for the species and colour photographs to facilitate identification in the field. © Chen P et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Phylogeny of Rosids! ! Rosids! !
    Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Alnus - alders A. rubra A. rhombifolia A. incana ssp. tenuifolia Alnus - alders Nitrogen fixation - symbiotic with the nitrogen fixing bacteria Frankia Alnus rubra - red alder Alnus rhombifolia - white alder Alnus incana ssp. tenuifolia - thinleaf alder Corylus cornuta - beaked hazel Carpinus caroliniana - American hornbeam Ostrya virginiana - eastern hophornbeam Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Fagaceae (Beech or Oak family) ! Fagaceae - 9 genera/900 species.! Trees or shrubs, mostly northern hemisphere, temperate region ! Leaves simple, alternate; often lobed, entire or serrate, deciduous
    [Show full text]
  • ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
    Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.
    [Show full text]
  • Updated Angiosperm Family Tree for Analyzing Phylogenetic Diversity and Community Structure
    Acta Botanica Brasilica - 31(2): 191-198. April-June 2017. doi: 10.1590/0102-33062016abb0306 Updated angiosperm family tree for analyzing phylogenetic diversity and community structure Markus Gastauer1,2* and João Augusto Alves Meira-Neto2 Received: August 19, 2016 Accepted: March 3, 2017 . ABSTRACT Th e computation of phylogenetic diversity and phylogenetic community structure demands an accurately calibrated, high-resolution phylogeny, which refl ects current knowledge regarding diversifi cation within the group of interest. Herein we present the angiosperm phylogeny R20160415.new, which is based on the topology proposed by the Angiosperm Phylogeny Group IV, a recently released compilation of angiosperm diversifi cation. R20160415.new is calibratable by diff erent sets of recently published estimates of mean node ages. Its application for the computation of phylogenetic diversity and/or phylogenetic community structure is straightforward and ensures the inclusion of up-to-date information in user specifi c applications, as long as users are familiar with the pitfalls of such hand- made supertrees. Keywords: angiosperm diversifi cation, APG IV, community tree calibration, megatrees, phylogenetic topology phylogeny comprising the entire taxonomic group under Introduction study (Gastauer & Meira-Neto 2013). Th e constant increase in knowledge about the phylogenetic The phylogenetic structure of a biological community relationships among taxa (e.g., Cox et al. 2014) requires regular determines whether species that coexist within a given revision of applied phylogenies in order to incorporate novel data community are more closely related than expected by chance, and is essential information for investigating and avoid out-dated information in analyses of phylogenetic community assembly rules (Kembel & Hubbell 2006; diversity and community structure.
    [Show full text]
  • Qiu Et Al. Fig.S3-1
    Fig. S3-1: gymnosperms & basal angiosperms eudicots monocots Chloranthus 43 100 93 Sarcandra Ascarina 100 100 65 Hedyosmum Ceratophyllum sub 100 Ceratophyllum dem Peumus 67 Hedycarya 68 Hernandia 90 98Gyrocarpus Cryptocarya 41 90 57Laurus 100 Daphnandra 82 62Atherosperma 100 Siparuna Idiospermum 100 Calycanthus Annona 84 100 99 Cananga 86 Eupomatia 51 Galbulimima Magnolia 98 82Liriodendron 100 Degeneria Myristica 100 77 Mauloutchia Aristolochia 100 36 Thottea 81 Saruma Lactoris 100 100 Saururus 67Houttuynia 100 Peperomia 92 100Piper 99 Drimys 100 Tasmannia 100 Takhtajania Canella 100 Cinnamodendron Kadsura 100 100 Schisandra 90 Illicium 100 Trimenia Austrobaileya Cabomba 98 80 Brasenia 100 Nuphar 74 Nymphaea Amborella Gnetum 100 100 Welwitschia 100 Pinus Ginkgo Zamia 100 Cycas Fig. S3-2: monocots & basal eudicots other eudicots 95 100 Pachysandra 89 100 Buxus Didymeles 97 Tetracentron 48 Trochodendron 100 Roupala 88 Petrophile 65 75 Platanus Nelumbo 100 Sabia Meliosma Glaucidium 87 99 Ranunculus 100 98 Hydrastis Caulophyllum 98 45 Nandina Lardizabala 18 76Decaisnea 96 Sargentodoxa 80 Euptelea 73 Dicentra 74 80 Hypecoum Eschscholzia Menispermum 100 Tinospora Sparganium 100Vriesea 100 Oryza 100Stegolepis 87 Philydrum 85Tradescantia 100 87Maranta 100Strelitzia 66 Chamaedorea Smilax 67 Lilium 64 100 Trillium Tacca 100Dioscorea 99 Croomia 100Carludovica Lomandra 100 100 80 Agave Beaucarnea 87 68Asparagus 100 Allium 90 Xanthorrhoea 100 Iris 100 99 Blandfordia Oncidium Potamogeton 100 Triglochin 100 83 Alisma Pleea 100 68Tofieldia Xanthosoma
    [Show full text]
  • BM CC EB What Can We Learn from a Tree?
    Introduction to Comparative Methods BM CC EB What can we learn from a tree? Net diversification (r) Relative extinction (ε) Peridiscaceae Peridiscaceae yllaceae yllaceae h h atop atop Proteaceae Proteaceae r r Ce Ce Tr oc T ho r M M o de c y y H H C C h r r e e a D D a o o nd o e e G G a a m m t t a a d r P r P h h e e u u c c p A p A r e a a e e a a a c a c n n a i B i B h h n d m d l m a l a m m e a e a e e t t n n c u u n n i i d i i e e e e o n o n p n p n a e a S e e S e e n n x x i i r c c a a n o n o p p h g e h g ae e l r a l r a a a a a a i i a a a e a e i b i b h y d c h d c i y i c a a c x c x c c G I a G I a n c n c c c y l y l t a a t a a e e e e e i l c i l c m l m l e c e c f a e a a f a e a a l r r l c c a i i r l e t e t a a r l a a e e u u u u o a o a a a c a c a a l a l e e e b b a a a a e e c e e c a a s c s c c e l c e l e e g e g e a a a a e e n n s e e s e e e e a a a P a P e e N N u u u S u S a e a e a a e e c c l n a l n e e a e e a e a e a e a e r a r a c c C i C i R R a e a e a e a e r c r c A A a d a a d a e i e i phanopetalaceae s r e ph s r e a a s e c s e c e e u u b a a b a e e P P r r l l e n e a a a a m m entho e e e Ha a H o a c r e c r e nt B B e p e e e c e e c a c c h e a p a a p a lo lo l l a a e s o t e s i a r a i a r r r r r a n e a n e a b a l b t a t gaceae e g e ceae a c a s c s a z e z M i a e M i a c a d e a d e ae e ae r e r a e a e a a a c c ce r e r L L i i ac a Vitaceae Vi r r C C e e ta v e v e a a c a a e ea p e ap c a c a e a P P e e l l e Ge G e e ae a t t e e p p r r ce c an u an
    [Show full text]
  • Field Identification of the 50 Most Common Plant Families in Temperate Regions
    Field identification of the 50 most common plant families in temperate regions (including agricultural, horticultural, and wild species) by Lena Struwe [email protected] © 2016, All rights reserved. Note: Listed characteristics are the most common characteristics; there might be exceptions in rare or tropical species. This compendium is available for free download without cost for non- commercial uses at http://www.rci.rutgers.edu/~struwe/. The author welcomes updates and corrections. 1 Overall phylogeny – living land plants Bryophytes Mosses, liverworts, hornworts Lycophytes Clubmosses, etc. Ferns and Fern Allies Ferns, horsetails, moonworts, etc. Gymnosperms Conifers, pines, cycads and cedars, etc. Magnoliids Monocots Fabids Ranunculales Rosids Malvids Caryophyllales Ericales Lamiids The treatment for flowering plants follows the APG IV (2016) Campanulids classification. Not all branches are shown. © Lena Struwe 2016, All rights reserved. 2 Included families (alphabetical list): Amaranthaceae Geraniaceae Amaryllidaceae Iridaceae Anacardiaceae Juglandaceae Apiaceae Juncaceae Apocynaceae Lamiaceae Araceae Lauraceae Araliaceae Liliaceae Asphodelaceae Magnoliaceae Asteraceae Malvaceae Betulaceae Moraceae Boraginaceae Myrtaceae Brassicaceae Oleaceae Bromeliaceae Orchidaceae Cactaceae Orobanchaceae Campanulaceae Pinaceae Caprifoliaceae Plantaginaceae Caryophyllaceae Poaceae Convolvulaceae Polygonaceae Cucurbitaceae Ranunculaceae Cupressaceae Rosaceae Cyperaceae Rubiaceae Equisetaceae Rutaceae Ericaceae Salicaceae Euphorbiaceae Scrophulariaceae
    [Show full text]
  • Download PDF 'Evolutionary Diversification of the Flowers in Angiosperms'
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2011 Evolutionary diversification of the flowers in angiosperms Endress, P K Abstract: Angiosperms and their flowers have greatly diversified into an overwhelming array of forms in the past 135 million years. Diversification was shaped by changes in climate and the biological environ- ment (vegetation, interaction with other organisms) and by internal structural constraints and potentials. This review focuses on the development and structural diversity of flowers and structural constraints. It traces floral diversification in the different organs and organ complexes (perianth, androecium, gynoe- cium) through the major clades of extant angiosperms. The continuously improved results of molecular phylogenetics provide the framework for this endeavor, which is necessary for the understanding of the biology of the angiosperms and their flowers. Diversification appears to work with innovations and mod- ifications of form. Many structural innovations originated in several clades and in special cases could become key innovations, which likely were hot spots of diversification. Synorganization between organs was an important process to reach new structural levels, from which new diversifications originated. Com- plexity of synorganization reached peaks in Orchidaceae and Apocynaceae with the independent evolution of pollinaria. Such a review throughout the major clades of angiosperms also shows how superficial and fragmentary our knowledge on floral structure in many clades is. Fresh studies and a multidisciplinary approach are needed. DOI: https://doi.org/10.3732/ajb.1000299 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-51351 Journal Article Published Version Originally published at: Endress, P K (2011).
    [Show full text]
  • An All-Taxa Biodiversity Inventory of the Huron Mountain Club
    AN ALL-TAXA BIODIVERSITY INVENTORY OF THE HURON MOUNTAIN CLUB Version: August 2016 Cite as: Woods, K.D. (Compiler). 2016. An all-taxa biodiversity inventory of the Huron Mountain Club. Version August 2016. Occasional papers of the Huron Mountain Wildlife Foundation, No. 5. [http://www.hmwf.org/species_list.php] Introduction and general compilation by: Kerry D. Woods Natural Sciences Bennington College Bennington VT 05201 Kingdom Fungi compiled by: Dana L. Richter School of Forest Resources and Environmental Science Michigan Technological University Houghton, MI 49931 DEDICATION This project is dedicated to Dr. William R. Manierre, who is responsible, directly and indirectly, for documenting a large proportion of the taxa listed here. Table of Contents INTRODUCTION 5 SOURCES 7 DOMAIN BACTERIA 11 KINGDOM MONERA 11 DOMAIN EUCARYA 13 KINGDOM EUGLENOZOA 13 KINGDOM RHODOPHYTA 13 KINGDOM DINOFLAGELLATA 14 KINGDOM XANTHOPHYTA 15 KINGDOM CHRYSOPHYTA 15 KINGDOM CHROMISTA 16 KINGDOM VIRIDAEPLANTAE 17 Phylum CHLOROPHYTA 18 Phylum BRYOPHYTA 20 Phylum MARCHANTIOPHYTA 27 Phylum ANTHOCEROTOPHYTA 29 Phylum LYCOPODIOPHYTA 30 Phylum EQUISETOPHYTA 31 Phylum POLYPODIOPHYTA 31 Phylum PINOPHYTA 32 Phylum MAGNOLIOPHYTA 32 Class Magnoliopsida 32 Class Liliopsida 44 KINGDOM FUNGI 50 Phylum DEUTEROMYCOTA 50 Phylum CHYTRIDIOMYCOTA 51 Phylum ZYGOMYCOTA 52 Phylum ASCOMYCOTA 52 Phylum BASIDIOMYCOTA 53 LICHENS 68 KINGDOM ANIMALIA 75 Phylum ANNELIDA 76 Phylum MOLLUSCA 77 Phylum ARTHROPODA 79 Class Insecta 80 Order Ephemeroptera 81 Order Odonata 83 Order Orthoptera 85 Order Coleoptera 88 Order Hymenoptera 96 Class Arachnida 110 Phylum CHORDATA 111 Class Actinopterygii 112 Class Amphibia 114 Class Reptilia 115 Class Aves 115 Class Mammalia 121 INTRODUCTION No complete species inventory exists for any area.
    [Show full text]
  • Whole-Genome Microsynteny-Based Phylogeny of Angiosperms Tao
    Whole-genome microsynteny-based phylogeny of angiosperms Tao Zhao ( [email protected] ) Ghent University Jiayu Xue Institute of Botany, Jiangsu Province and Chinese Academy of Sciences Arthur Zwaenepoel Ghent University Shu-min Kao Ghent University Zhen Li Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium. M. Schranz Wageningen University https://orcid.org/0000-0001-6777-6565 Yves Van de Peer Ghent University https://orcid.org/0000-0003-4327-3730 Article Keywords: Synteny network, gene order, matrix representation, phylogeny, angiosperms, maximum- likelihood Posted Date: August 17th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-51378/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Whole-genome microsynteny-based phylogeny of angiosperms 2 3 Tao Zhao1,2,3, Jia-Yu Xue4, Arthur Zwaenepoel1,2, Shu-Min Kao1,2, Zhen Li1,2, M. Eric 4 Schranz5, Yves Van de Peer1,2,6,7 5 6 1Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 7 Belgium. 8 2Center for Plant Systems Biology, VIB, Ghent, Belgium. 9 3State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory 10 of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, 11 China. 12 4Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 13 China. 14 5Biosystematics Group, Wageningen University and Research, Wageningen, The 15 Netherlands. 16 6Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics 17 and Microbiology, University of Pretoria, Pretoria, South Africa. 18 7College of Horticulture, Nanjing Agricultural University, Nanjing, China.
    [Show full text]