Phylogeny of Rosids! ! Rosids! !

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny of Rosids! ! Rosids! ! Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Alnus - alders A. rubra A. rhombifolia A. incana ssp. tenuifolia Alnus - alders Nitrogen fixation - symbiotic with the nitrogen fixing bacteria Frankia Alnus rubra - red alder Alnus rhombifolia - white alder Alnus incana ssp. tenuifolia - thinleaf alder Corylus cornuta - beaked hazel Carpinus caroliniana - American hornbeam Ostrya virginiana - eastern hophornbeam Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Fagaceae (Beech or Oak family) ! Fagaceae - 9 genera/900 species.! Trees or shrubs, mostly northern hemisphere, temperate region ! Leaves simple, alternate; often lobed, entire or serrate, deciduous or evergreen. ! Flowers inconspicuous, unisexual; plants monoecious;! !Tepals usually 6, reduced.! !Male flowers in dangling catkins;! ! Stamens 4-numerous, subtended by a bract;! !Females flowers in groups of 1-3;! !Carpels 3(-12), connate; surrounded by an scaly or spiny cupule of !many overlapping bracts! Fruit a nut (fairly large, indehiscent, dry fruit with a thick bony wall ! !surrounding a single seed), closely associated with a scaly or spiny !cupule - involucre! Fagaceae (Beech or Oak family) ! Flowers inconspicuous, unisexual; plants monoecious;! !Tepals usually 6, reduced.! !Male flowersFagaceae in dangling (Beech catkins or ;Oak! family) ! Fagus grandifolia! Quercus sp.! Flowers are unisexual,Fagus males grandifolia flowers! are in a dangling ! catkin (Inflorescence consisting of a dense, elongated ! Quercus sp.!massFlowers of inconspicuous, are unisexual, males usually flowers wind-pollinated are in a dangling flowers) ! ! catkin (Inflorescence consisting of a dense, elongated ! mass of inconspicuous, usually wind-pollinated flowers)! Fagaceae (Beech or Oak family) ! Castanea sativa; ! staminate inflorescences! Tepals usually 6, reduced and ! inconspicuous; Stamens 4-numerous! Quercus sp.; ! Staminate (male) flower! Fagaceae (Beech or Oak family) ! Carpellate ! inflorescence! Carpellate ! inflorescence! Quercus sp.; ! Note that both staminate and carpellate ! (female) inflorescence are on the same ! individual; plants are monoecious.! Castanea mollissima; ! Fagaceae (Beech or Oak family) ! Quercus sp.; ! Carpellate flowers usually in group of ! 1-3 and associated with a scaly cupule ! (involucre).! Carpels 3-12, connate.! Involucre: cup-shaped structure, such as ! the scaly to spiny “cup” associated with ! the nut of members of Fagaceae.! Quercus palustris; ! Fagaceae (Beech or Oak family) ! Fruit a nut (fairly large, indehiscent, dry fruit with a thick bony wall ! !surrounding a single seed), closely associated with a scaly or spiny !cupule - involucre! Quercus virginiana; ! Fruit a nut, closely associated with a ! spiny to scaly involucre.! Quercus sp.; ! Fagaceae (Beech or Oak family) ! Fagus sylvatica ! Castanea pumila ! Fagus grandifolia! Inflorescence fruit/involucre Quercus oak Fagus beech Castanea chestnut Quercus Quercus leaves fruit/involucre section Quercus section Lobatae Quercus alba - northern white oak Quercus garryana - oregon white oak Quercus rubra - northern red oak Quercus kelloggii - California black oak Fagus grandifolia - American beech Fagus sylvatica - European beech Castanea dentata - American chestnut.
Recommended publications
  • CHESTNUT (CASTANEA Spp.) CULTIVAR EVALUATION for COMMERCIAL CHESTNUT PRODUCTION
    CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE By Ana Maria Metaxas Approved: James Hill Craddock Jennifer Boyd Professor of Biological Sciences Assistant Professor of Biological and Environmental Sciences (Director of Thesis) (Committee Member) Gregory Reighard Jeffery Elwell Professor of Horticulture Dean, College of Arts and Sciences (Committee Member) A. Jerald Ainsworth Dean of the Graduate School CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE by Ana Maria Metaxas A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science May 2013 ii ABSTRACT Chestnut cultivars were evaluated for their commercial applicability under the environmental conditions in Hamilton County, TN at 35°13ꞌ 45ꞌꞌ N 85° 00ꞌ 03.97ꞌꞌ W elevation 230 meters. In 2003 and 2004, 534 trees were planted, representing 64 different cultivars, varieties, and species. Twenty trees from each of 20 different cultivars were planted as five-tree plots in a randomized complete block design in four blocks of 100 trees each, amounting to 400 trees. The remaining 44 chestnut cultivars, varieties, and species served as a germplasm collection. These were planted in guard rows surrounding the four blocks in completely randomized, single-tree plots. In the analysis, we investigated our collection predominantly with the aim to: 1) discover the degree of acclimation of grower- recommended cultivars to southeastern Tennessee climatic conditions and 2) ascertain the cultivars’ ability to survive in the area with Cryphonectria parasitica and other chestnut diseases and pests present.
    [Show full text]
  • Quercus Robur (Fagaceae)
    Quercus robur (Fagaceae) The map description EEBIO area The integrated map shows the distribution and changes in the areal’s boundaries of pedunculate oak (Quercus robur). Q. robur is the dominant forest- formative species in the belt of broadleaf and mixed 4 needleleaf-broadleaf forests in the plains of the European part of the former USSR (Sokolov et al. 1977). In the northern part of its areal Q. robur grows in river valleys. In the central part, it forms mixed forests with Picea abies; closer to the south – a belt of broadleaf forests where Q. robur dominates. At the areal’s south boundary it forms small (marginal) forests in ravines and flood-plains (Atlas of Areals and Resources… , 1976). Q. robur belongs to the thermophilic species. The low temperature bound of possible occurrence of oak forests is marked by an average annual of 2?C l (http://www.forest.ru – in Russian). Therefore, l l l l l l hypotretically, oak areal boundaries will shift along l ll l l l l l l l with the changes in the average annual temperature. l l l l l l l l l l l For Yearly map of averaged mean annual air l l l l l l l l l l l l l l l l l l lll temperature (Afonin A., Lipiyaynen K., Tsepelev V., l l l l l l l ll ll l l l 2005) see http://www.agroatlas.spb.ru Climate. l l l l l l l l l l l l l l l l Oak forests are of great importance for the water l l l l l ll l lll l l l l l l l l l l l l l l l l l l l regime and soil structure, especially on the steep l l l l l l l l l l l l l l l l l l l l l l l l l l l l l slopes of river valleys and in forest-poor areas.
    [Show full text]
  • 5 Fagaceae Trees
    CHAPTER 5 5 Fagaceae Trees Antoine Kremerl, Manuela Casasoli2,Teresa ~arreneche~,Catherine Bod6n2s1, Paul Sisco4,Thomas ~ubisiak~,Marta Scalfi6, Stefano Leonardi6,Erica ~akker~,Joukje ~uiteveld', Jeanne ~omero-Seversong, Kathiravetpillai Arumuganathanlo, Jeremy ~eror~',Caroline scotti-~aintagne", Guy Roussell, Maria Evangelista Bertocchil, Christian kxerl2,Ilga porth13, Fred ~ebard'~,Catherine clark15, John carlson16, Christophe Plomionl, Hans-Peter Koelewijn8, and Fiorella villani17 UMR Biodiversiti Genes & Communautis, INRA, 69 Route d'Arcachon, 33612 Cestas, France, e-mail: [email protected] Dipartimento di Biologia Vegetale, Universita "La Sapienza", Piazza A. Moro 5,00185 Rome, Italy Unite de Recherche sur les Especes Fruitikres et la Vigne, INRA, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France The American Chestnut Foundation, One Oak Plaza, Suite 308 Asheville, NC 28801, USA Southern Institute of Forest Genetics, USDA-Forest Service, 23332 Highway 67, Saucier, MS 39574-9344, USA Dipartimento di Scienze Ambientali, Universitk di Parma, Parco Area delle Scienze 1lIA, 43100 Parma, Italy Department of Ecology and Evolution, University of Chicago, 5801 South Ellis Avenue, Chicago, IL 60637, USA Alterra Wageningen UR, Centre for Ecosystem Studies, P.O. Box 47,6700 AA Wageningen, The Netherlands Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA lo Flow Cytometry and Imaging Core Laboratory, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101,
    [Show full text]
  • Supplemental Information.Pdf
    SUPPORTING INFORMATION Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary Kevin Vanneste1,2, Guy Baele3, Steven Maere1,2,*, and Yves Van de Peer1,2,4,* 1 Department of Plant Systems Biology, VIB, Ghent, Belgium 2 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium 3 Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium 4 Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria, South Africa *Corresponding authors Yves Van de Peer Steven Maere VIB / Ghent University VIB / Ghent University Technologiepark 927 Technologiepark 927 Gent (9052), Belgium Gent (9052), Belgium Tel: +32 (0)9 331 3807 Tel: +32 (0)9 331 3805 Fax: +32 (0)9 331 3809 Fax: +32 (0)9 331 3809 E-mail: [email protected] E-mail: [email protected] Overview Species grouping topology ................................................ 3 Calibrations and constraints .............................................. 5 Alternative calibrations and constraints ............................ 13 Relative rate tests ............................................................. 27 Re-dating the Pyrus bretschneideri WGD ......................... 30 WGD age estimates from literature ................................... 33 Eschscholzia californica and Acorus americanus ............. 34 2 Species grouping topology In order to date the node joining the homeologous pair, orthogroups were constructed consisting of both homeologs and orthologs from other plant species for which full genome sequence information was available. Different plant species were grouped into ‘species groups’ for which one ortholog was selected and added to the orthogroup, in order to keep the orthogroup topology fixed and to facilitate automation on the one hand, but also to allow enough orthogroups to be constructed on the other hand (see Material and methods).
    [Show full text]
  • Arthur Monrad Johnson Colletion of Botanical Drawings
    http://oac.cdlib.org/findaid/ark:/13030/kt7489r5rb No online items Arthur Monrad Johnson colletion of botanical drawings 1914-1941 Processed by Pat L. Walter. Louise M. Darling Biomedical Library History and Special Collections Division History and Special Collections Division UCLA 12-077 Center for Health Sciences Box 951798 Los Angeles, CA 90095-1798 Phone: 310/825-6940 Fax: 310/825-0465 Email: [email protected] URL: http://www.library.ucla.edu/libraries/biomed/his/ ©2008 The Regents of the University of California. All rights reserved. Arthur Monrad Johnson colletion 48 1 of botanical drawings 1914-1941 Descriptive Summary Title: Arthur Monrad Johnson colletion of botanical drawings, Date (inclusive): 1914-1941 Collection number: 48 Creator: Johnson, Arthur Monrad 1878-1943 Extent: 3 boxes (2.5 linear feet) Repository: University of California, Los Angeles. Library. Louise M. Darling Biomedical Library History and Special Collections Division Los Angeles, California 90095-1490 Abstract: Approximately 1000 botanical drawings, most in pen and black ink on paper, of the structural parts of angiosperms and some gymnosperms, by Arthur Monrad Johnson. Many of the illustrations have been published in the author's scientific publications, such as his "Taxonomy of the Flowering Plants" and articles on the genus Saxifraga. Dr. Johnson was both a respected botanist and an accomplished artist beyond his botanical subjects. Physical location: Collection stored off-site (Southern Regional Library Facility): Advance notice required for access. Language of Material: Collection materials in English Preferred Citation [Identification of item], Arthur Monrad Johnson colletion of botanical drawings (Manuscript collection 48). Louise M. Darling Biomedical Library History and Special Collections Division, University of California, Los Angeles.
    [Show full text]
  • Lessons from 20 Years of Plant Genome Sequencing: an Unprecedented Resource in Need of More Diverse Representation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.446451; this version posted May 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Lessons from 20 years of plant genome sequencing: an unprecedented resource in need of more diverse representation Authors: Rose A. Marks1,2,3, Scott Hotaling4, Paul B. Frandsen5,6, and Robert VanBuren1,2 1. Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA 2. Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA 3. Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa 4. School of Biological Sciences, Washington State University, Pullman, WA, USA 5. Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA 6. Data Science Lab, Smithsonian Institution, Washington, DC, USA Keywords: plants, embryophytes, genomics, colonialism, broadening participation Correspondence: Rose A. Marks, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA; Email: [email protected]; Phone: (603) 852-3190; ORCID iD: https://orcid.org/0000-0001-7102-5959 Abstract The field of plant genomics has grown rapidly in the past 20 years, leading to dramatic increases in both the quantity and quality of publicly available genomic resources. With an ever- expanding wealth of genomic data from an increasingly diverse set of taxa, unprecedented potential exists to better understand the evolution and genome biology of plants.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Alnus P. Mill
    A Betulaceae—Birch family Alnus P. Mill. alder Constance A. Harrington, Leslie Chandler Brodie, Dean S. DeBell, and C. S. Schopmeyer Dr. Harrington and Ms. Brodie are foresters on the silviculture research team at the USDA Forest Service’s Pacific Northwest Research Station, Olympia,Washington; Dr. DeBell retired from the USDA Forest Service’s Pacific Northwest Research Station; Dr. Schopmeyer (deceased) was the technical coordinator of the previous manual Growth habit and occurrence. Alder—the genus (Tarrant and Trappe 1971). Alders also have been planted for Alnus—includes about 30 species of deciduous trees and wildlife food and cover (Liscinsky 1965) and for ornamental shrubs occurring in North America, Europe, and Asia and in use. European and red alders have been considered for use the Andes Mountains of Peru and Bolivia. Most alders are in biomass plantings for energy (Gillespie and Pope 1994) tolerant of moist sites and thus are commonly found along and are considered excellent firewood. In recent years, har­ streams, rivers, and lakes and on poorly drained soils; in vest and utilization of red alder has expanded greatly on the addition, some species occur on steep slopes and at high ele­ Pacific Coast of North America, where the species is used vations. The principal species found in North America are for paper products, pallets, plywood, paneling, furniture, listed in table 1. Many changes in the taxonomy of alder veneer, and cabinetry (Harrington 1984; Plank and Willits have been made over the years; in this summary, species are 1994). Red alder is also used as a fuel for smoking or curing referred to by their currently accepted names although in salmon and other seafood and its bark is used to make a red many cases the information was published originally under or orange dye (Pojar and MacKinnon 1994).
    [Show full text]
  • Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems
    Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Sims, L., Goheen, E., Kanaskie, A., & Hansen, E. (2015). Alder canopy dieback and damage in western Oregon riparian ecosystems. Northwest Science, 89(1), 34-46. doi:10.3955/046.089.0103 10.3955/046.089.0103 Northwest Scientific Association Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Laura Sims,1, 2 Department of Botany and Plant Pathology, Oregon State University, 1085 Cordley Hall, Corvallis, Oregon 97331 Ellen Goheen, USDA Forest Service, J. Herbert Stone Nursery, Central Point, Oregon 97502 Alan Kanaskie, Oregon Department of Forestry, 2600 State Street, Salem, Oregon 97310 and Everett Hansen, Department of Botany and Plant Pathology, 1085 Cordley Hall, Oregon State University, Corvallis, Oregon 97331 Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Abstract We gathered baseline data to assess alder tree damage in western Oregon riparian ecosystems. We sought to determine if Phytophthora-type cankers found in Europe or the pathogen Phytophthora alni subsp. alni, which represent a major threat to alder forests in the Pacific Northwest, were present in the study area. Damage was evaluated in 88 transects; information was recorded on damage type (pathogen, insect or wound) and damage location. We evaluated 1445 red alder (Alnus rubra), 682 white alder (Alnus rhombifolia) and 181 thinleaf alder (Alnus incana spp. tenuifolia) trees. We tested the correlation between canopy dieback and canker symptoms because canopy dieback is an important symptom of Phytophthora disease of alder in Europe. We calculated the odds that alder canopy dieback was associated with Phytophthora-type cankers or other biotic cankers.
    [Show full text]
  • RED ALDER Northwest Extracted a Red Dye from the Inner Bark, Which Was Used to Dye Fishnets
    Plant Guide and hair. The native Americans of the Pacific RED ALDER Northwest extracted a red dye from the inner bark, which was used to dye fishnets. Oregon tribes used Alnus rubra Bong. the innerbark to make a reddish-brown dye for basket Plant Symbol = ALRU2 decorations (Murphey 1959). Yellow dye made from red alder catkins was used to color quills. Contributed by: USDA NRCS National Plant Data Center A mixture of red alder sap and charcoal was used by the Cree and Woodland tribes for sealing seams in canoes and as a softener for bending boards for toboggans (Moerman 1998). Wood and fiber: Red alder wood is used in the production of wooden products such as food dishes, furniture, sashes, doors, millwork, cabinets, paneling and brush handles. It is also used in fiber-based products such as tissue and writing paper. In Washington and Oregon, it was largely used for smoking salmon. The Indians of Alaska used the hallowed trunks for canoes (Sargent 1933). Medicinal: The North American Indians used the bark to treat many complaints such a headaches, rheumatic pains, internal injuries, and diarrhea (Moerman 1998). The Salinan used an extract of the bark of alder trees to treat cholera, stomach cramps, and stomachaches (Heinsen 1972). The extract was made with 20 parts water to 1 part fresh or aged bark. The bark contains salicin, a chemical similar to aspirin (Uchytil 1989). Infusions made from the bark of red alders were taken to treat anemia, colds, congestion, and to © Tony Morosco relieve pain. Bark infusions were taken as a laxative @ CalFlora and to regulate menstruation.
    [Show full text]
  • Michigan Native Plants for Bird-Friendly Landscapes What Are Native Plants? Why Go Native? Native Plants Are Those That Occur Naturally in an Area
    Michigan Native Plants for Bird-Friendly Landscapes What are native plants? Why go native? Native plants are those that occur naturally in an area. They are well-adapted to the climate and birds, insects, and Help baby birds Nearly all landbirds feed their chicks insect wildlife depend on native plants to survive. larva, but insects have a hard time eating and reproducing on non-native plants. Plant native plants and stay away from Invasive plants are those that are not native to an area and the pesticides—baby birds need those little pests to survive! aggressively outcompete native flora. These species degrade Michigan’s natural ecosystems and should be removed or Pollinators love natives, too Did you know that many avoided when planting new gardens. pollinators don’t or can’t use ornamental and non-native plants? Attract hummingbirds, butterflies, and honeybees by adding native flowering plants or better yet—select “host How to use this guide plants” that each species of butterfly and moth requires to reproduce. When thinking about bird habitat, it’s important to think in layers: from canopy trees to ground cover. Different bird Go local Michigan’s native plants are unique and beautiful, species rely on different layers to forage and nest. So, by but many are rare or threatened with extirpation. Keep providing a greater variety of layers in your yard, you can Michigan unique by planting a Michigan Garden! Bonus: attract a greater variety of birds. Many natives are drought tolerant and low maintenance. This guide separates each habitat layer and suggests several Healthy habitat for birds = Healthy yard for you Mowed native plants for each layer that are known to benefit birds.
    [Show full text]