ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M. cardinalis. In both species, the nuclear ribosomal (5S-NTS, partial 26S) loci were used. In separate adaxial filaments curve adaxially as they elongate. In M. lewisii, the analyses, 26S and rbcL character sets each yielded cladograms that abaxial stamens curve away from the median while those of M. car- were equally or more fully resolved than those from analyses of the dinalis are directed adaxially. Allometric analyses reveal that differ- more rapidly-evolving 5S-NTS and trnL-F loci. Analysis of the ences in corolla length dimensions between species are controlled molecular character sets, in combination with morphological char- by alterations in rate of growth, while differences in stamen and pis- acters, has provided a framework for the study of life form and mor- til dimensions are controlled by alterations in timing of termination phological character evolution. Our studies indicate that the of growth relative to corolla growth. unusual spirally-coiled anthers and other apparent autapomorphies in the flowers of Cochliostema are elaborations of developmental synapomorphies shared by Cochliostema with Geogenanthus and 469 HEARN, DAVID JOHN an undescribed genus. The adaptations associated with the epi- University of Arizona, Dept. of Ecology and Evolutionary Biology, phytic habit of Cochliostema are best understood in light of their BSW Room 310, Tucson, AZ 85721-0088 similarity to homologous features in the undescribed genus. Our Growth form evolution in Adenia and correlations inclusion in this study of two undescribed plesiomorphic species of with phytochemistry Geogenanthus has revealed an evolutionary trend towards reduc- tion in the inflorescence in this genus. he genus Adenia (Passifloraceae) provides a model system with which to investigate the relationship between growth 467 HAYNES, ROBERT R.*, CHARLOTTE LINDQVIST, Tform and phytochemistry. With ca. 90 species the genus has AND VICTOR A. ALBERT a diverse and varied pharmacopoeia and at least seven distinct Biodiversity and Systematics, Dept. of Biological Sciences, The growth forms. An association between growth form and chemistry University of Alabama, Tuscaloosa, AL 35487-0345 is expected based on theoretical predictions. I mapped cyanogen- esis on the phylogeny of Adenia to reveal that 4 of the 5 putative Molecular systematics of Potamogeton shifts from ancestral tendrillate vines to growth forms without ten- (Potamogetonaceae) drils are in association with low cyanogenesis as expected. The phylogeny based on ITS sequence data and an extensive sampling he pondweeds, Potamogeton (Potamogetonaceae), display of African and Madagascan species of Adenia supports 5 main lin- heterophylly, both within and among species. In addition, eages. Extrafloral nectary superstructure in large part supports the some species display seasonal heterophylly. Consequently, T molecular characterization. Individuals in the most basal lineage of the genus has long been considered to be taxonomically difficult. Adenia all possess spatulate glands at the leaf blade base. The next Potamogeton, sensu stricto, has conveniently been divided into two most ancient lineage has members that are tuberous vines and groups, broad-leaved species and narrow-leaved species. herbs. Members of this lineage share paired and upturned glands Phylogenetic analysis of 5S nuclear ribosomal non-transcribed at the petiole-blade junction. A more recent lineage contains a wet- spacer (5S-NTS) sequences supports the monophyly of two major tropical African lineage and a dry-habitat African and Madagascan clades, one essentially those previously considered to be broad- lineage. The wet-tropical lineage has lianas and vines with paired leaved species and the other those previously considered to be nar- auriculate glands at the blade-petiole junction. The dry-habitat row-leaved species. Within each main clade, species groups are African and Malagasy lineage possesses species with succulence recognized, mostly along the lines of previously accepted subsec- and often slightly recessed glands at the base of the leaf (although tions. For example, Potamogeton epihydrus and P. tennesseensis some Madagascan species are autopomorphic). The lineage that is form a clade sister to the P. spirillus, P. bicupulatus, and P. diversi- sister to this more recent branch is least characterized by gland folius clade. These two subclades are in turn sister to the species structure, but possesses a diversity of gland structures and growth previously recognized as the narrow-leaved pondweeds. forms. Research is underway to relate anatomical features with phy- tochemistry to rigorously test whether changes in anatomy (hence 468 HAZLE, THOMAS* AND JUDITH M. CANNE-HILIKER changes in growth form) are correlated with changes in phyto- Dept. of Botany, University of Guelph, Guelph, ON. N1G 2W1 chemistry. Ontogenetic floral evolution of Mimulus lewisii and M. cardinalis (formerly Scrophulariaceae, s.l.): allometry and morphology peciation in the bee-pollinated Mimulus lewisii and bird-polli- nated M. cardinalis group is hypothesized to have occured Sthrough divergence in floral form that led to a change in ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB 470 HELFGOTT, D. MEGAN1* AND BERYL B. SIMPSON2 bootstrap). A clade of asterids and Caryophyllales appears as sister 1Dept. of Biological Sciences, University of Idaho, P.O. Box 443051, to Berberidopsidales. Asterids consist of a well- supported clade Moscow, ID, 83844; 2Section of Integrative Biology and the Plant composed of Ericales, Cornales, and euasterids. Within rosids most Resources Center, The University of Texas, Austin, TX, 78712 of the currently recognized orders gain good support. Moreover, matK sequences provide good resolution within many of the orders Phylogenetics of Nemophila using molecular and of angiosperms. morphological data 1 1 he North American endemic genus Nemophila 472 HOGGARD, RON *, PAUL KORES , MIA 1 1 (Hydrophyllaceae) consists of 11 species and six varieties of MOLVRAY , GLORIA HOGGARD , AND DAVID 2 annual herbs found primarily in California. Nine species BROUGHTON T 1Dept. of Botany and Microbiology, University of Oklahoma, occur in the western United States as far south as Baja California, while two species (N. phacelioides and N. aphylla) are disjunct in Norman, OK 73019; 2Dept. of Applied Plant Science, The Queen's the southeastern United States. The evolutionary relationships University of Belfast, Belfast, BT9 5PX within Nemophila remain unclear despite eight previous taxonomic Molecular systematics and biogeography of the treatments and exploration of a variety of potentially useful kinds amphibious genus Littorella (Plantaginaceae) of characters (morphology, cytology, and development). We pres- ent a phylogenetic analysis of Nemophila and relevant taxa in the ittorella is a small, amphibious genus within the tribe Hydrophylleae using DNA sequence data from both the Plantaginaceae and is represented by three closely related, nuclear ribosomal DNA internal transcribed spacer, and from the Ldisjunct species, L. uniflora (L.) Ascherson in Europe includ- chloroplast 3’ trnK intron. The molecular phylogenetic analyses co- ing Iceland and the Azores, L. americana Fernald in North America, ncur with infratribal relationships previously inferred from seed coat and L. australis Griseb. ex Bentham & Hooker in southern South characters. On our phylogeny Nemophila and Pholistoma form an America. A recent phylogeny (Rahn, 1996) based on morphologi- unresolved polytomy, but seed coat morphology suggests that cal, embryological, and chemical data has resulted in the reduction Pholistoma is sister to Nemophila as a whole. Within Nemophila of Littorella to Plantago subgenus Littorella (P.J. Bergius) Rahn and seven of
Recommended publications
  • Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 3 2009 Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J. Hearn University of Arizona, Tucson Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hearn, David J. (2009) "Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/3 Aliso, 27, pp. 13–38 ’ 2009, Rancho Santa Ana Botanic Garden DESCRIPTIVE ANATOMY AND EVOLUTIONARY PATTERNS OF ANATOMICAL DIVERSIFICATION IN ADENIA (PASSIFLORACEAE) DAVID J. HEARN Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA ([email protected]) ABSTRACT To understand evolutionary patterns and processes that account for anatomical diversity in relation to ecology and life form diversity, anatomy of storage roots and stems of the genus Adenia (Passifloraceae) were analyzed using an explicit phylogenetic context. Over 65,000 measurements are reported for 47 quantitative and qualitative traits from 58 species in the genus. Vestiges of lianous ancestry were apparent throughout the group, as treelets and lianous taxa alike share relatively short, often wide, vessel elements with simple, transverse perforation plates, and alternate lateral wall pitting; fibriform vessel elements, tracheids associated with vessels, and libriform fibers as additional tracheary elements; and well-developed axial parenchyma. Multiple cambial variants were observed, including anomalous parenchyma proliferation, anomalous vascular strands, successive cambia, and a novel type of intraxylary phloem.
    [Show full text]
  • Volume 73, Number
    New Zealand Science Review Vol 73 (3–4) 2016 Symposium on Systematics and Biodiversity in honour of Dr Dennis P. Gordon Official Journal of the New Zealand Association of Scientists ISSN 0028-8667 New Zealand Science Review Vol 73 (3–4) 2016 Official Journal of the New Zealand Association of Scientists P O Box 1874, Wellington www.scientists.org.nz A forum for the exchange of views on science and science policy Managing Editor: Allen Petrey Contents Guest Editor: Daniel Leduc Production Editor: Geoff Gregory Editorial .....................................................................................................................................................61 Proceedings of a Symposium on Systematics and Biodiversity: Past, Present and Future, National Institute of Water & Atmospheric Research, Wellington, April 2016 Bryozoa—not a minor phylum – Dennis P. Gordon and Mark J. Costello ..................................................63 The contribution of Dennis P. Gordon to the understanding of New Zealand Bryozoa – Abigail M Smith, Philip Bock and Peter Batson ................................................................................67 The study of taxonomy and systematics enhances ecological and conservation science – Ashley A. Rowden ............................................................................................................................72 Taxonomic research, collections and associated databases – and the changing science scene in New Zealand – Wendy Nelson .............................................................................79
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Arthur Monrad Johnson Colletion of Botanical Drawings
    http://oac.cdlib.org/findaid/ark:/13030/kt7489r5rb No online items Arthur Monrad Johnson colletion of botanical drawings 1914-1941 Processed by Pat L. Walter. Louise M. Darling Biomedical Library History and Special Collections Division History and Special Collections Division UCLA 12-077 Center for Health Sciences Box 951798 Los Angeles, CA 90095-1798 Phone: 310/825-6940 Fax: 310/825-0465 Email: [email protected] URL: http://www.library.ucla.edu/libraries/biomed/his/ ©2008 The Regents of the University of California. All rights reserved. Arthur Monrad Johnson colletion 48 1 of botanical drawings 1914-1941 Descriptive Summary Title: Arthur Monrad Johnson colletion of botanical drawings, Date (inclusive): 1914-1941 Collection number: 48 Creator: Johnson, Arthur Monrad 1878-1943 Extent: 3 boxes (2.5 linear feet) Repository: University of California, Los Angeles. Library. Louise M. Darling Biomedical Library History and Special Collections Division Los Angeles, California 90095-1490 Abstract: Approximately 1000 botanical drawings, most in pen and black ink on paper, of the structural parts of angiosperms and some gymnosperms, by Arthur Monrad Johnson. Many of the illustrations have been published in the author's scientific publications, such as his "Taxonomy of the Flowering Plants" and articles on the genus Saxifraga. Dr. Johnson was both a respected botanist and an accomplished artist beyond his botanical subjects. Physical location: Collection stored off-site (Southern Regional Library Facility): Advance notice required for access. Language of Material: Collection materials in English Preferred Citation [Identification of item], Arthur Monrad Johnson colletion of botanical drawings (Manuscript collection 48). Louise M. Darling Biomedical Library History and Special Collections Division, University of California, Los Angeles.
    [Show full text]
  • A Note on Host Diversity of Criconemaspp
    280 Pantnagar Journal of Research [Vol. 17(3), September-December, 2019] Short Communication A note on host diversity of Criconema spp. Y.S. RATHORE ICAR- Indian Institute of Pulses Research, Kanpur- 208 024 (U.P.) Key words: Criconema, host diversity, host range, Nematode Nematode species of the genus Criconema (Tylenchida: showed preference over monocots. Superrosids and Criconemitidae) are widely distributed and parasitize Superasterids were represented by a few host plants only. many plant species from very primitive orders to However, Magnoliids and Gymnosperms substantially advanced ones. They are migratory ectoparasites and feed contributed in the host range of this nematode species. on root tips or along more mature roots. Reports like Though Rosids revealed greater preference over Asterids, Rathore and Ali (2014) and Rathore (2017) reveal that the percent host families and orders were similar in number most nematode species prefer feeding on plants of certain as reflected by similar SAI values. The SAI value was taxonomic group (s). In the present study an attempt has slightly higher for monocots that indicate stronger affinity. been made to precisely trace the host plant affinity of The same was higher for gymnosperms (0.467) in twenty-five Criconema species feeding on diverse plant comparison to Magnolids (0.413) (Table 1). species. Host species of various Criconema species Perusal of taxonomic position of host species in Table 2 reported by Nemaplex (2018) and others in literature were revealed that 68 % of Criconema spp. were monophagous aligned with families and orders following the modern and strictly fed on one host species. Of these, 20 % from system of classification, i.e., APG IV system (2016).
    [Show full text]
  • Complete Chloroplast Genomes Shed Light on Phylogenetic
    www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya.
    [Show full text]
  • Major Lineages Within Apiaceae Subfamily Apioideae: a Comparison of Chloroplast Restriction Site and Dna Sequence Data1
    American Journal of Botany 86(7): 1014±1026. 1999. MAJOR LINEAGES WITHIN APIACEAE SUBFAMILY APIOIDEAE: A COMPARISON OF CHLOROPLAST RESTRICTION SITE AND DNA SEQUENCE DATA1 GREGORY M. PLUNKETT2 AND STEPHEN R. DOWNIE Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 Traditional sources of taxonomic characters in the large and taxonomically complex subfamily Apioideae (Apiaceae) have been confounding and no classi®cation system of the subfamily has been widely accepted. A restriction site analysis of the chloroplast genome from 78 representatives of Apioideae and related groups provided a data matrix of 990 variable characters (750 of which were potentially parsimony-informative). A comparison of these data to that of three recent DNA sequencing studies of Apioideae (based on ITS, rpoCl intron, and matK sequences) shows that the restriction site analysis provides 2.6± 3.6 times more variable characters for a comparable group of taxa. Moreover, levels of divergence appear to be well suited to studies at the subfamilial and tribal levels of Apiaceae. Cladistic and phenetic analyses of the restriction site data yielded trees that are visually congruent to those derived from the other recent molecular studies. On the basis of these comparisons, six lineages and one paraphyletic grade are provisionally recognized as informal groups. These groups can serve as the starting point for future, more intensive studies of the subfamily. Key words: Apiaceae; Apioideae; chloroplast genome; restriction site analysis; Umbelliferae. Apioideae are the largest and best-known subfamily of tem, and biochemical characters exhibit similarly con- Apiaceae (5 Umbelliferae) and include many familiar ed- founding parallelisms (e.g., Bell, 1971; Harborne, 1971; ible plants (e.g., carrot, parsnips, parsley, celery, fennel, Nielsen, 1971).
    [Show full text]
  • Oral Allergy Syndrome: a Confuence of Immunology and Phylogeny by Merle K
    NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Oral Allergy Syndrome: A Confuence of Immunology and Phylogeny by Merle K. Heidemann, Mike S. Taylor, Amanda Storm, Cassie Dresser-Briggs, Alexa Warwick, and Peter J.T. White Objectives Upon completion of this case study, you should be able to: • Explain the symptoms of allergic reactions in terms of cell biology (immune system cells). • Describe the molecular features of cross reactivity. • Build phylogenetic trees using morphological data. • Build phylogenetic trees using molecular data and interpret two kinds of phylogenetic trees. Part I – Immunology Sam had a history of allergic reactions, including reactions to various plant pollens. Birch pollen elicited a particularly strong reaction, causing him annoying sneezing fts and a sore throat. As he grew to adulthood, he discovered that he was also variably allergic to common foods, including some raw fruits and vegetables, as well as most nuts. Sam was puzzled by his recent food allergies. Also puzzling was the variability in his reactions. He reacted strongly to some foods; others resulted in only a mild itchy throat. He wondered, What exactly causes allergic reactions? Sam was determined to fgure out how and why he reacted to birch pollen and later became allergic to other plant- based food. He also hoped this information might help him avoid other foods that might cause him allergies. First, Sam decided he needed to know something about the cellular bases of allergic reactions. He knew it had some- thing to do with the immune system. He did some basic research on the Internet and here’s what he found: Allergens are bits of protein from an innocuous foreign substance, such as pollen or food.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Full of Beans: a Study on the Alignment of Two Flowering Plants Classification Systems
    Full of beans: a study on the alignment of two flowering plants classification systems Yi-Yun Cheng and Bertram Ludäscher School of Information Sciences, University of Illinois at Urbana-Champaign, USA {yiyunyc2,ludaesch}@illinois.edu Abstract. Advancements in technologies such as DNA analysis have given rise to new ways in organizing organisms in biodiversity classification systems. In this paper, we examine the feasibility of aligning two classification systems for flowering plants using a logic-based, Region Connection Calculus (RCC-5) ap- proach. The older “Cronquist system” (1981) classifies plants using their mor- phological features, while the more recent Angiosperm Phylogeny Group IV (APG IV) (2016) system classifies based on many new methods including ge- nome-level analysis. In our approach, we align pairwise concepts X and Y from two taxonomies using five basic set relations: congruence (X=Y), inclusion (X>Y), inverse inclusion (X<Y), overlap (X><Y), and disjointness (X!Y). With some of the RCC-5 relationships among the Fabaceae family (beans family) and the Sapindaceae family (maple family) uncertain, we anticipate that the merging of the two classification systems will lead to numerous merged solutions, so- called possible worlds. Our research demonstrates how logic-based alignment with ambiguities can lead to multiple merged solutions, which would not have been feasible when aligning taxonomies, classifications, or other knowledge or- ganization systems (KOS) manually. We believe that this work can introduce a novel approach for aligning KOS, where merged possible worlds can serve as a minimum viable product for engaging domain experts in the loop. Keywords: taxonomy alignment, KOS alignment, interoperability 1 Introduction With the advent of large-scale technologies and datasets, it has become increasingly difficult to organize information using a stable unitary classification scheme over time.
    [Show full text]
  • Flowering Plants; They Were Too Numerous and Too Varied, and There Were Too Few Fos- Sils to Sort out Which Were More Primitive
    NEWSFOCUS embryo that serves as its food supply. Darwin was perplexed by the diversity of On the Origin of flowering plants; they were too numerous and too varied, and there were too few fos- sils to sort out which were more primitive. Flowering Plants Throughout much of the 20th century, mag- nolia relatives with relatively large flowers were leading candidates for the most primi- how flowers got started—and from which tive living flowers, although a few ancestor. Today, researchers have analytical researchers looked to small herbs instead. tools, fossils, genomic data, and insights that In the late 1990s, molecular systematics Darwin could never have imagined, all of came to the rescue, with several reports pre- which make these mysteries less abom- senting a fairly consistent picture of the inable. Over the past 40 years, techniques lower branches of the angiosperm tree. An for assessing the relationships between obscure shrub found only in New Caledonia organisms have greatly improved, and gene emerged as a crucial window to the past. sequences, as well as morphology, now help Amborella trichopoda, with its 6-millimeter researchers sort out which angiosperms greenish-yellow flowers, lives deep in the arose early and which arose late. New fossil cloud forests there. In multiple gene-based finds and new ways to study them—with assessments, including an analysis in 2007 synchrotron radiation, for example—pro- of 81 genes from chloroplast genomes vide a clearer view of the detailed anatomy belonging to 64 species, Amborella sits of ancient plants. And researchers from var- at the base of the angiosperm family tree, ious fields are figuring out genomic changes the sister group of all the rest of the that might explain the amazing success of angiosperms.
    [Show full text]
  • Recommendation of Native Species for the Reforestation of Degraded Land Using Live Staking in Antioquia and Caldas’ Departments (Colombia)
    UNIVERSITÀ DEGLI STUDI DI PADOVA Department of Land, Environment Agriculture and Forestry Second Cycle Degree (MSc) in Forest Science Recommendation of native species for the reforestation of degraded land using live staking in Antioquia and Caldas’ Departments (Colombia) Supervisor Prof. Lorenzo Marini Co-supervisor Prof. Jaime Polanía Vorenberg Submitted by Alicia Pardo Moy Student N. 1218558 2019/2020 Summary Although Colombia is one of the countries with the greatest biodiversity in the world, it has many degraded areas due to agricultural and mining practices that have been carried out in recent decades. The high Andean forests are especially vulnerable to this type of soil erosion. The corporate purpose of ‘Reforestadora El Guásimo S.A.S.’ is to use wood from its plantations, but it also follows the parameters of the Forest Stewardship Council (FSC). For this reason, it carries out reforestation activities and programs and, very particularly, it is interested in carrying out ecological restoration processes in some critical sites. The study area is located between 2000 and 2750 masl and is considered a low Andean humid forest (bmh-MB). The average annual precipitation rate is 2057 mm and the average temperature is around 11 ºC. The soil has a sandy loam texture with low pH, which limits the amount of nutrients it can absorb. FAO (2014) suggests that around 10 genera are enough for a proper restoration. After a bibliographic revision, the genera chosen were Alchornea, Billia, Ficus, Inga, Meriania, Miconia, Ocotea, Protium, Prunus, Psidium, Symplocos, Tibouchina, and Weinmannia. Two inventories from 2013 and 2019, helped to determine different biodiversity indexes to check the survival of different species and to suggest the adequate characteristics of the individuals for a successful vegetative stakes reforestation.
    [Show full text]