A Phylogeny of the Flowering Plant

Total Page:16

File Type:pdf, Size:1020Kb

A Phylogeny of the Flowering Plant American Journal of Botany 87(2): 273±292. 2000. A PHYLOGENY OF THE FLOWERING PLANT FAMILY APIACEAE BASED ON CHLOROPLAST DNA RPL16 AND RPOC1 INTRON SEQUENCES: TOWARDS A SUPRAGENERIC CLASSIFICATION OF SUBFAMILY APIOIDEAE1 STEPHEN R. DOWNIE,2,4 DEBORAH S. KATZ-DOWNIE,2 AND MARK F. W ATSON3 2Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 USA; and 3Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK The higher level relationships within Apiaceae (Umbelliferae) subfamily Apioideae are controversial, with no widely acceptable modern classi®cation available. Comparative sequencing of the intron in chloroplast ribosomal protein gene rpl16 was carried out in order to examine evolutionary relationships among 119 species (99 genera) of subfamily Apioideae and 28 species from Apiaceae subfamilies Saniculoideae and Hydrocotyloideae, and putatively allied families Araliaceae and Pittosporaceae. Phylogenetic analyses of these intron sequences alone, or in conjunction with plastid rpoC1 intron sequences for a subset of the taxa, using maximum parsimony and neighbor-joining methods, reveal a pattern of relationships within Apioideae consistent with previously published chloroplast DNA and nuclear ribosomal DNA ITS based phylogenies. Based on consensus of relationship, seven major lineages within the subfamily are recognized at the tribal level. These are referred to as tribes Heteromorpheae M. F. Watson & S. R. Downie Trib. Nov., Bupleureae Spreng. (1820), Oenantheae Dumort. (1827), Pleurospermeae M. F. Watson & S. R. Downie Trib. Nov., Smyrnieae Spreng. (1820), Aciphylleae M. F. Watson & S. R. Downie Trib. Nov., and Scandiceae Spreng. (1820). Scandiceae comprises subtribes Daucinae Dumort. (1827), Scan- dicinae Tausch (1834), and Torilidinae Dumort. (1827). Rpl16 intron sequences provide valuable characters for inferring high-level relationships within Apiaceae but, like the rpoC1 intron, are insuf®cient to resolve relationships among closely related taxa. Key words: Apiaceae; Apioideae; Hydrocotyloideae; molecular phylogeny; rpl16 intron; rpoC1 intron; Saniculoideae; Umbelliferae. The ¯owering plant family Apiaceae Lindl. (Umbellif- despite their large size, widespread distribution, and eco- erae Juss.) comprises 300±455 genera and some 3000± nomic importance, no widely acceptable modern classi- 3750 species (Constance, 1971; Pimenov and Leonov, ®cation is available. 1993). It is cosmopolitan, being particularly abundant in The most recent treatment of the family (Pimenov and the northern hemisphere. Daucus carota subsp. sativus Leonov, 1993) is but an adaptation of the century-old (Hoffm.) Arcang., the common cultivated carrot, is by far system of Drude (1898), highly criticized for using subtle its most economically important member. Other familiar or poorly de®ned diagnostic characters (Heywood, vegetables, ¯avorings, or garnishes include angelica, an- 1982a). Radically different classi®cations exist (such as ise (aniseed), caraway, celeriac, celery, chervil, coriander those of Koso-Poljansky, 1916, and Cerceau-Larrival, (cilantro), cumin, dill, fennel, lovage, parsley, and pars- 1962), but have proved unworkable in practice and are nip. Deadly poisonous plants include water hemlock, poi- rarely used. Drude recognized three subfamilies of Api- son hemlock, hemlock water-dropwort, and fool's pars- aceae (Apioideae, Saniculoideae, and Hydrocotyloideae), ley. The obvious distinctive characters of many of these dividing each into a series of tribes and subtribes. Mo- plants, such as herbs with hollow or pith-®lled stems, lecular systematic investigations have con®rmed the pinnately divided leaves with sheathing bases, small un- monophyly of Apioideae and demonstrated its sister- specialized ¯owers in compound umbel in¯orescences, group status to subfamily Saniculoideae, but have also and specialized fruits, make them easily identi®able to shown that all of Drude's tribes (and other reclassi®ca- family (likely making them one of the ®rst families of tions of the family) are largely unsound (Downie and ¯owering plants to be generally recognized). However, Katz-Downie, 1996; Downie, Katz-Downie, and Cho, 1996; Kondo et al., 1996; Plunkett, Soltis, and Soltis, 1 Manuscript received 5 January 1999; revision accepted 3 June 1999. 1996a, b, 1997; Downie et al., 1998; Valiejo-Roman et The authors thank L. Constance, R. Hartman, J. Lahham, B.-Y. Lee, M. Pimenov, A. Troitsky, C. Valiejo-Roman, and the many botanic gar- al., 1998; Katz-Downie et al., 1999; Plunkett and Down- dens cited in the text for generously providing leaf, seed, or DNA ma- ie, 1999). Umbellifers display a remarkable array of mor- terial; K.-J. Cho, B.-Y. Lee, E. Llanas, and J. Luttrell for laboratory phological and anatomical modi®cations of their fruits, assistance; R. Mill for the Latin translations; and K. Spalik and two many of which are adaptations for various modes of seed anonymous reviewers for comments on the manuscript. This work was dispersal. Not surprisingly, these characters are prone to supported by grants to S. Downie from the National Science Foundation convergence, and their almost exclusive use to delimit (DEB-9407712) and the Campus Research Board of the University of Illinois. suprageneric groups has confounded estimates of rela- 4 Author for correspondence (e-mail: [email protected]; FAX: tionship. 217-244-7246). Our goal over the past few years, and that of our col- 273 274 AMERICAN JOURNAL OF BOTANY [Vol. 87 laborators, has been to resolve the ``higher level'' rela- acters, such as nuclear ribosomal DNA ITS (Downie et tionships within subfamily Apioideae. This is necessary al., 1998; Katz-Downie et al., 1999) and chloroplast matK in order to provide the framework for ``lower level'' re- (Plunkett, Soltis, and Soltis, 1996b) sequences, and chlo- visions of particular tribes and complexes of genera, so roplast restriction sites (Plunkett and Downie, 1999). important in such a group of plants where suprageneric Based on consensus of relationship, we take the ®rst steps relationships have been largely speculative and ever towards a ``new Drude'' by formally recognizing seven changing. Eventually, this will lead to the production of groups of apioids at the tribal level and, in so doing, a modern classi®cation (i.e., a ``new Drude''). To achieve provide the requisite framework for ``lower level'' sys- this goal, a variety of molecular characters have been tematic study. used, such as chloroplast gene (rbcL, matK) and intron (rpoC1, rps16), and nuclear ribosomal DNA internal MATERIALS AND METHODS transcribed spacer (ITS) sequences. A recent study ex- amined restriction site variation of chloroplast DNA Plant accessionsÐOne hundred and nineteen species from 99 genera (cpDNA; Plunkett and Downie, 1999); further examina- of Apiaceae subfamily Apioideae, ®ve species (®ve genera) each from tion of chloroplast genomic structure is in progress (G. Apiaceae subfamilies Hydrocotyloideae and Saniculoideae, 11 species (ten genera) of Araliaceae, and seven species (®ve genera) of Pitto- Plunkett and S. Downie, unpublished data). While these sporaceae were examined for rpl16 intron sequence variation (Table 1). characters have been important in providing insight into In total, 147 species representing 124 genera were considered, with 84 evolutionary relationships, not all have been useful at the of these species included in a previous phylogenetic analysis of rpoC1 same hierarchical level. Moreover, because many existing introns (Downie et al., 1998). RpoC1 intron sequences for Billardiera data sets are not parallel in construction, opportunities to scandens and Bursaria spinosa (Pittosporaceae) were procured as part combine data have been few. of this study, for a total of 86 matching rpl16 and rpoC1 intron se- Noncoding regions of cpDNA, such as introns and in- quences (Table 1). With the exception of Anethum graveolens and Crith- tergenic spacers, tend to evolve more rapidly than coding mum maritimum, where different accessions of the same species were loci, both in nucleotide substitutions and in the accumu- examined, both rpl16 and rpoC1 intron data for these 86 species were lation of insertion and deletion events (indels), presum- obtained from precisely the same specimens. ably because they are less functionally constrained (Cur- tis and Clegg, 1984; Palmer, 1991; Clegg et al., 1994). Experimental strategyÐLeaf material for DNA extraction was ob- Because these noncoding regions can potentially supply tained either directly from the ®eld, from plants cultivated from seed in more informative characters than coding regions of com- the greenhouse, or from accessioned plants cultivated at several botanic parable size, they have become popular for phylogenetic gardens (Table 1). For some species, DNAs were extracted from her- studies among taxa that are recently diverged. The chlo- barium specimens or supplied to us directly. All plants cultivated at the roplast gene rpl16, encoding the ribosomal protein L16 University of Illinois at Urbana-Champaign (UIUC), Moscow State (Posno, Van Vliet, and Groot, 1986), is interrupted by an University, and the Royal Botanic Garden Edinburgh (RBGE) are intron in many, but not all, land plants (Campagna and vouchered at ILL, MW, and E, respectively (herbarium acronyms ac- cording to Holmgren, Holmgren, and Barnett, 1990). Details of the Downie, 1998). In most ¯owering plants, this intron is DNA extraction procedures have been presented in Downie and Katz- ;1 kilobase
Recommended publications
  • Botanical Survey of Bussey Brook Meadow Jamaica Plain, Massachusetts
    Botanical Survey of Bussey Brook Meadow Jamaica Plain, Massachusetts Botanical Survey of Bussey Brook Meadow Jamaica Plain, Massachusetts New England Wildflower Society 180 Hemenway Road Framingham, MA 01701 508-877-7630 www.newfs.org Report by Joy VanDervort-Sneed, Atkinson Conservation Fellow and Ailene Kane, Plant Conservation Volunteer Coordinator Prepared for the Arboretum Park Conservancy Funded by the Arnold Arboretum Committee 2 Conducted 2005 TABLE OF CONTENTS INTRODUCTION........................................................................................................................4 METHODS....................................................................................................................................6 RESULTS .......................................................................................................................................8 Plant Species ........................................................................................................................8 Natural Communities...........................................................................................................9 DISCUSSION .............................................................................................................................15 Recommendations for Management ..................................................................................15 Recommendations for Education and Interpretation .........................................................17 Acknowledgments..............................................................................................................19
    [Show full text]
  • Apiaceae) - Beds, Old Cambs, Hunts, Northants and Peterborough
    CHECKLIST OF UMBELLIFERS (APIACEAE) - BEDS, OLD CAMBS, HUNTS, NORTHANTS AND PETERBOROUGH Scientific name Common Name Beds old Cambs Hunts Northants and P'boro Aegopodium podagraria Ground-elder common common common common Aethusa cynapium Fool's Parsley common common common common Ammi majus Bullwort very rare rare very rare very rare Ammi visnaga Toothpick-plant very rare very rare Anethum graveolens Dill very rare rare very rare Angelica archangelica Garden Angelica very rare very rare Angelica sylvestris Wild Angelica common frequent frequent common Anthriscus caucalis Bur Chervil occasional frequent occasional occasional Anthriscus cerefolium Garden Chervil extinct extinct extinct very rare Anthriscus sylvestris Cow Parsley common common common common Apium graveolens Wild Celery rare occasional very rare native ssp. Apium inundatum Lesser Marshwort very rare or extinct very rare extinct very rare Apium nodiflorum Fool's Water-cress common common common common Astrantia major Astrantia extinct very rare Berula erecta Lesser Water-parsnip occasional frequent occasional occasional x Beruladium procurrens Fool's Water-cress x Lesser very rare Water-parsnip Bunium bulbocastanum Great Pignut occasional very rare Bupleurum rotundifolium Thorow-wax extinct extinct extinct extinct Bupleurum subovatum False Thorow-wax very rare very rare very rare Bupleurum tenuissimum Slender Hare's-ear very rare extinct very rare or extinct Carum carvi Caraway very rare very rare very rare extinct Chaerophyllum temulum Rough Chervil common common common common Cicuta virosa Cowbane extinct extinct Conium maculatum Hemlock common common common common Conopodium majus Pignut frequent occasional occasional frequent Coriandrum sativum Coriander rare occasional very rare very rare Daucus carota Wild Carrot common common common common Eryngium campestre Field Eryngo very rare, prob.
    [Show full text]
  • Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
    Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Cally Plant List a ACIPHYLLA Horrida
    Cally Plant List A ACIPHYLLA horrida ACONITUM albo-violaceum albiflorum ABELIOPHYLLUM distichum ACONITUM cultivar ABUTILON vitifolium ‘Album’ ACONITUM pubiceps ‘Blue Form’ ACAENA magellanica ACONITUM pubiceps ‘White Form’ ACAENA species ACONITUM ‘Spark’s Variety’ ACAENA microphylla ‘Kupferteppich’ ACONITUM cammarum ‘Bicolor’ ACANTHUS mollis Latifolius ACONITUM cammarum ‘Franz Marc’ ACANTHUS spinosus Spinosissimus ACONITUM lycoctonum vulparia ACANTHUS ‘Summer Beauty’ ACONITUM variegatum ACANTHUS dioscoridis perringii ACONITUM alboviolaceum ACANTHUS dioscoridis ACONITUM lycoctonum neapolitanum ACANTHUS spinosus ACONITUM paniculatum ACANTHUS hungaricus ACONITUM species ex. China (Ron 291) ACANTHUS mollis ‘Long Spike’ ACONITUM japonicum ACANTHUS mollis free-flowering ACONITUM species Ex. Japan ACANTHUS mollis ‘Turkish Form’ ACONITUM episcopale ACANTHUS mollis ‘Hollard’s Gold’ ACONITUM ex. Russia ACANTHUS syriacus ACONITUM carmichaelii ‘Spätlese’ ACER japonicum ‘Aconitifolium’ ACONITUM yezoense ACER palmatum ‘Filigree’ ACONITUM carmichaelii ‘Barker’s Variety’ ACHILLEA grandifolia ACONITUM ‘Newry Blue’ ACHILLEA ptarmica ‘Perry’s White’ ACONITUM napellus ‘Bergfürst’ ACHILLEA clypeolata ACONITUM unciniatum ACIPHYLLA monroi ACONITUM napellus ‘Blue Valley’ ACIPHYLLA squarrosa ACONITUM lycoctonum ‘Russian Yellow’ ACIPHYLLA subflabellata ACONITUM japonicum subcuneatum ACONITUM meta-japonicum ADENOPHORA aurita ACONITUM napellus ‘Carneum’ ADIANTUM aleuticum ‘Japonicum’ ACONITUM arcuatum B&SWJ 774 ADIANTUM aleuticum ‘Miss Sharples’ ACORUS calamus ‘Argenteostriatus’
    [Show full text]
  • Proceedings Amurga Co
    PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 Coordination: Juli Caujapé-Castells Funded and edited by: Fundación Canaria Amurga Maspalomas Colaboration: Faro Media Cover design & layout: Estudio Creativo Javier Ojeda © Fundación Canaria Amurga Maspalomas Gran Canaria, December 2013 ISBN: 978-84-616-7394-0 How to cite this volume: Caujapé-Castells J, Nieto Feliner G, Fernández Palacios JM (eds.) (2013) Proceedings of the Amurga international conferences on island biodiversity 2011. Fundación Canaria Amurga-Maspalomas, Las Palmas de Gran Canaria, Spain. All rights reserved. Any unauthorized reprint or use of this material is prohibited. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author / publisher. SCIENTIFIC EDITORS Juli Caujapé-Castells Jardín Botánico Canario “Viera y Clavijo” - Unidad Asociada CSIC Consejería de Medio Ambiente y Emergencias, Cabildo de Gran Canaria Gonzalo Nieto Feliner Real Jardín Botánico de Madrid-CSIC José María Fernández Palacios Universidad de La Laguna SCIENTIFIC COMMITTEE Juli Caujapé-Castells, Gonzalo Nieto Feliner, David Bramwell, Águedo Marrero Rodríguez, Julia Pérez de Paz, Bernardo Navarro-Valdivielso, Ruth Jaén-Molina, Rosa Febles Hernández, Pablo Vargas. Isabel Sanmartín. ORGANIZING COMMITTEE Pedro
    [Show full text]
  • Annex 3: List of "Vegetables" According to Article 1.1 (The English Names Are Decisive)
    Annex 3: List of "Vegetables" according to Article 1.1 (The English names are decisive) Family Genus species English name Malvaceae Abelmoschus caillei (A. Chev.) Stevels West African okra Malvaceae Abelmoschus esculentus (L.) Moench common okra Lamiaceae Agastache foeniculum anise Alliaceae Allium ampeloprasum L. leek, elephant garlic Alliaceae Allium cepa L. onion, shallot Alliaceae Allium chinense Maxim. rakkyo Alliaceae Allium fistulosum L. scallions, japanese bunching onion Alliaceae Allium sativum L. garlic Alliaceae Allium schoenoprasum L. chives Alliaceae Allium tuberosum Rottler ex Spreng garlic chives Amaranthaceae Amaranthus cruentus L. Amaranth, African spinach, Indian spinach Amaranthaceae Amaranthus dubius Mart. ex Thell. Amaranth, pigweed Apiaceae Anethum graveolens L. dill Apiaceae Anthriscus cerefolium (L.) Hoffm. chervil Fabaceae Apios americana Moench American ground nut Apiaceae Apium graveolens L. celery, celeriac Fabaceae Arachis hypogea L. peanut Compositae Arctium lappa burdock Brassicaceae Armoracia rusticana G . Gaertn., B. Mey & Scherb. horseradish Asteraceae Artemisia dracunculus var. sativa tarragon Asteraceae Artemisia absinthium wormwood Asparagaceae Asparagus officinalis L. asparagus Asteraceae Aster tripolium sea lavender Amaranthaceae Atriplex hortenis L. mountain spinach, orache Amaranthaceae Atriplex hortensis orache Brassicaceae Barbarea vulgaris R. Br. winter cress Basellaceae Basella alba L. Malabar spinach Cucurbitaceae Benincasa hispida Thunb. wax gourd Amaranthaceae Beta vulgaris L. chard, vegetable (red) beetroot Boraginaceae Borago officinalis borage, starflower Brassicaceae Brassica juncea (L.) Czern. mustard Brassicaceae Brassica napus var. napobrassica rutabaga Brassicaceae Brassica oleracea L. broccoli, Brussels sprouts, cabbage, cauliflower, collards, kale, kohlrabi, curly kale, romanesco, savoy cabbage Brassicaceae Brassica rapa L. turnip, Chinese broccoli, Chinese cabbage, pak choi, tatsoi, Kumutsuna, Japanese mustard spinach Brassicaceae Brassica rapa japonica mustard, mitzuna Solanaceae Capsicum annuum L.
    [Show full text]
  • Seedling Establishment, Bud Movement, and Subterranean Diversity of Geophilous Systems in Apiaceae
    Flora (2002) 197, 385–393 http://www.urbanfischer.de/journals/flora Seedling establishment, bud movement, and subterranean diversity of geophilous systems in Apiaceae Norbert Pütz1* & Ina Sukkau2 1 Institute of Nature Conservation and Environmental Education, University of Vechta, Driverstr. 22, D-49377 Vechta, Germany 2 Institute of Botany, RWTH Aachen, Germany * author for correspondence: e-mail: [email protected] Received: Nov 29, 2001 · Accepted: Jun 10, 2002 Summary Geophilous systems of plants are not only regarded as organs of underground storage. Such systems also undergo a large range of modifications in order to fulfill other ‚cryptical‘ functions, e.g. positioning of innovation buds, vegetative cloning, and vege- tative dispersal. Seedlings should always be the point of departure for any investigation into the structure of geophilous systems. This is because in the ability to survive of geophilous plants it is of primary importance that innovation buds can reach a safe position in the soil by the time the first period hostile to vegetation commences. Our analysis of such systems thus focused on examining the development of 34 species of the Apiaceae, beginning with their germination. Independent of life-form and life-span, all species exhibit noticeable terminal bud movement with the aid of contractile organs. Movement was found to be at least 5 mm, reaching a maximum of 45 mm. All species exhibit a noticeable contraction of the primary root. In most cases the contraction phenomenon also occurs in the hypocotyl, and some species show contraction of their lateral and / or adventitious roots. Analysis of movement shows the functional importance of pulling the inno- vation buds down into the soil.
    [Show full text]
  • Major Lineages Within Apiaceae Subfamily Apioideae: a Comparison of Chloroplast Restriction Site and Dna Sequence Data1
    American Journal of Botany 86(7): 1014±1026. 1999. MAJOR LINEAGES WITHIN APIACEAE SUBFAMILY APIOIDEAE: A COMPARISON OF CHLOROPLAST RESTRICTION SITE AND DNA SEQUENCE DATA1 GREGORY M. PLUNKETT2 AND STEPHEN R. DOWNIE Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 Traditional sources of taxonomic characters in the large and taxonomically complex subfamily Apioideae (Apiaceae) have been confounding and no classi®cation system of the subfamily has been widely accepted. A restriction site analysis of the chloroplast genome from 78 representatives of Apioideae and related groups provided a data matrix of 990 variable characters (750 of which were potentially parsimony-informative). A comparison of these data to that of three recent DNA sequencing studies of Apioideae (based on ITS, rpoCl intron, and matK sequences) shows that the restriction site analysis provides 2.6± 3.6 times more variable characters for a comparable group of taxa. Moreover, levels of divergence appear to be well suited to studies at the subfamilial and tribal levels of Apiaceae. Cladistic and phenetic analyses of the restriction site data yielded trees that are visually congruent to those derived from the other recent molecular studies. On the basis of these comparisons, six lineages and one paraphyletic grade are provisionally recognized as informal groups. These groups can serve as the starting point for future, more intensive studies of the subfamily. Key words: Apiaceae; Apioideae; chloroplast genome; restriction site analysis; Umbelliferae. Apioideae are the largest and best-known subfamily of tem, and biochemical characters exhibit similarly con- Apiaceae (5 Umbelliferae) and include many familiar ed- founding parallelisms (e.g., Bell, 1971; Harborne, 1971; ible plants (e.g., carrot, parsnips, parsley, celery, fennel, Nielsen, 1971).
    [Show full text]
  • A Study of Changing Garden Styles and Practices in Post War Suburban
    13' 1.qt I '; l- MITCHAM'S FRONT GARDENS I t- i' L I I I I I I A STUDY OF CHANGING GARDEN STYLES AND PRACTICES iI I IN POST WAR SUBURBAN ADEI,\IDE by Elizabeth Margaret Caldicott, B.A. A thesis submitted for the degree of Master of Arts in Geography University of Adelaide March 1994 TABLE OF CONTENTS Page TITLE PACE (i) TABLE OF CONTENTS (ii) LIST OF TABLES (ix) LIST OF MAPS (x) LIST OF FICURES (xi) LIST OF PIATES (xiii) ABSTRACT (xv) DECIARATION (xvii) ACKNOWLEDGMENTS (xviii) 1. INTRODUCTION 1 1.1 Background to and aims of the investigation 2 1.1.1 Part I - Ideas for garden studies 2 1.1.2 Part II - The detailed case study 7 1.2 lssues to be investigated 7 1.3 Mitcham City Council - the fieldwork case study area 8 PART I IDEAS FOR GARDEN STUDIES 2. Ideas for garden studies - a review of literature 11 2.1 Academic papers 11 2.2 Urban and environmental commentaries 18 2.3 Historians 19 2.4 Historical popular gardening literature 20 2.4.1 Early South Australian gardening guides 22 2.4.2 Specialist writers 24 2.4.3 Early works on Australian native flora 26 (i i) Page 2.5 Early Australian gardens 28 2.6 Towards an Australian garden ethos 30 2.7 Summary 36 3 A history of garden design to the present 37 3.1 Cardens in history 37 3.1.1 The ancient gardens 39 3.1.2 The Renaissance 40 3.1.3 The English garden tradition 41 3.1.4 Victoriana - the picturesque garden 42 3.1.5 North American gardens 43 3.1.6 Present day linl<s with the past 45 3.2 The Botanic Cardens of Adelaide 45 3.3 Modern Australian suburban gardens 47 3.3.1 Adelaide's early colonial gardens 49 3.3.2 1900-1945 gardens in Adelaide 50 3.3.3 Post World War ll gardens - 1945-1970 51 3.3.4 i 970s to the present 53 3.4 The cultivation of Australian native plants 54 3.5 The rise and demise of the 'all native' garden 56 3.6 Conclusions and Hypotheses 1 and 2 57 4.
    [Show full text]
  • 01 Innerfrontcover40 2.Indd 1 8/27/2010 2:27:58 PM BOTHALIA
    ISSN 0006 8241 = Bothalia Bothalia A JOURNAL OF BOTANICAL RESEARCH Vol. 40,2 Oct. 2010 TECHNICAL PUBLICATIONS OF THE SOUTH AFRICAN NATIONAL BIODIVERSITY INSTITUTE PRETORIA Obtainable from the South African National Biodiversity Institute (SANBI), Private Bag X101, Pretoria 0001, Republic of South Africa. A catalogue of all available publications will be issued on request. BOTHALIA Bothalia is named in honour of General Louis Botha, first Premier and Minister of Agriculture of the Union of South Africa. This house journal of the South African National Biodiversity Institute, Pretoria, is devoted to the furtherance of botanical science. The main fields covered are taxonomy, ecology, anatomy and cytology. Two parts of the journal and an index to contents, authors and subjects are published annually. Three booklets of the contents (a) to Vols 1–20, (b) to Vols 21–25, (c) to Vols 26–30, and (d) to Vols 31–37 (2001– 2007) are available. STRELITZIA A series of occasional publications on southern African flora and vegetation, replacing Memoirs of the Botanical Survey of South Africa and Annals of Kirstenbosch Botanic Gardens. MEMOIRS OF THE BOTANICAL SURVEY OF SOUTH AFRICA The memoirs are individual treatises usually of an ecological nature, but sometimes dealing with taxonomy or economic botany. Published: Nos 1–63 (many out of print). Discontinued after No. 63. ANNALS OF KIRSTENBOSCH BOTANIC GARDENS A series devoted to the publication of monographs and major works on southern African flora.Published: Vols 14–19 (earlier volumes published as supplementary volumes to the Journal of South African Botany). Discontinued after Vol. 19. FLOWERING PLANTS OF AFRICA (FPA) This serial presents colour plates of African plants with accompanying text.
    [Show full text]
  • Do Compositions of Lipid Fraction Correspond to Species Differentiation in Bupleurum L
    plants Article Do Compositions of Lipid Fraction Correspond to Species Differentiation in Bupleurum L. (Apiaceae)? Zhargal Alexandrovich Tykheev 1,2 , Oleg Arnoldovich Anenkhonov 3 , Svetlana Vasilievna Zhigzhitzhapova 1, Vasiliy Vladimirovich Taraskin 1 , Larisa Dorzhievna Radnaeva 1 and Faqi Zhang 4,* 1 Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; [email protected] (Z.A.T.); [email protected] (S.V.Z.); [email protected] (V.V.T.); [email protected] (L.D.R.) 2 Laboratory of the Chemistry of Natural Systems, Banzarov Buryat State University, 670000 Ulan-Ude, Russia 3 Institute of General and Experimental Biology, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; [email protected] 4 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining 810008, China * Correspondence: [email protected]; Tel.: +86-0971-6105845 Received: 31 August 2020; Accepted: 21 October 2020; Published: 22 October 2020 Abstract: Bupleurum L. has been widely used in various medical systems as an agent with a wide range of activities. The qualitative composition and content of lipid fraction components of the aerial parts of B. longifolium and B. chinense were elucidated in this work. The available data on the fatty acids (FAs) in Bupleurum plants were compiled and compared with species differentiation in the genus. As a result, the content of FAs in the studied Bupleurum plant species only partially corresponded to the species differentiation and, in some cases, contradicted it. The prognostic value of Bupleurum’s species differentiation for the identification of the potential composition of FAs was insignificant, and it was limited only by particular groups of species.
    [Show full text]
  • ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
    Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.
    [Show full text]