2005 Appendix W

Total Page:16

File Type:pdf, Size:1020Kb

2005 Appendix W Wednesday, November 9, 2005 Part III Environmental Protection Agency 40 CFR Part 51 Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions; Final Rule VerDate Aug<31>2005 16:55 Nov 08, 2005 Jkt 205001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\09NOR3.SGM 09NOR3 68218 Federal Register / Vol. 70, No. 216 / Wednesday, November 9, 2005 / Rules and Regulations ENVIRONMENTAL PROTECTION telephone (919) 541–5562. SCRAM) at: www.epa.gov/scram001. AGENCY ([email protected]). You may find codes and documentation SUPPLEMENTARY INFORMATION: for models referenced in today’s action 40 CFR Part 51 on the SCRAM Web site. We have also Outline uploaded various support documents [AH–FRL–7990–9] I. General Information (e.g., evaluation reports). II. Background RIN 2060–AK60 III. Public Hearing on the April 2000 II. Background proposal The Guideline is used by EPA, States, Revision to the Guideline on Air IV. Discussion of Public Comments and Quality Models: Adoption of a and industry to prepare and review new Issues from our April 21, 2000 Proposal source permits and State Preferred General Purpose (Flat and A. AERMOD and PRIME Complex Terrain) Dispersion Model B. Appropriate for Proposed Use Implementation Plan revisions. The and Other Revisions C. Implementation Issues/Additional Guideline is intended to ensure Guidance consistent air quality analyses for AGENCY: Environmental Protection D. AERMOD revision and reanalyses in activities regulated at 40 CFR 51.112, Agency (EPA). 2003 51.117, 51.150, 51.160, 51.166, and ACTION: Final rule. 1. Performance analysis for AERMOD 52.21. We originally published the (02222) Guideline in April 1978 and it was SUMMARY: EPA’s Guideline on Air a. Non-downwash cases: AERMOD (99351) incorporated by reference in the Quality Models (‘‘Guideline’’) addresses vs. AERMOD (02222) b. Downwash cases regulations for the Prevention of the regulatory application of air quality 2. Analysis of regulatory design Significant Deterioration (PSD) of Air models for assessing criteria pollutants concentrations for AERMOD (02222) Quality in June 1978. We revised the under the Clean Air Act. In today’s a. Non-downwash cases Guideline in 1986, and updated it with action we promulgate several additions b. Downwash cases supplement A in 1987, supplement B in and changes to the Guideline. We c. Complex terrain July 1993, and supplement C in August recommend a new dispersion model— E. Emission and Dispersion Modeling 1995. We published the Guideline as AERMOD—for adoption in appendix A System (EDMS) appendix W to 40 CFR part 51 when we of the Guideline. AERMOD replaces the V. Discussion of Public Comments and Issues issued supplement B. We republished from our September 8, 2003 Notice of Industrial Source Complex (ISC3) Data Availability the Guideline in August 1996 (61 FR model, applies to complex terrain, and VI. Final action 41838) to adopt the CFR system for incorporates a new downwash VII. Final editorial changes to appendix W labeling paragraphs. On April 21, 2000 algorithm—PRIME. We remove an VIII. Statutory and Executive Order Reviews we issued a Notice of Proposed existing model—the Emissions Rulemaking (NPR) in the Federal I. General Information Dispersion Modeling System (EDMS)— Register (65 FR 21506), which was the from appendix A. We also make various A. How Can I Get Copies of Related original proposal for today’s editorial changes to update and Information? promulgation. reorganize information. EPA established an official public III. Public Hearing on the April 2000 DATES: This rule is effective December 9, docket for this action under Docket No. Proposal 2005. As proposed, beginning November A–99–05. The official public docket is We held the 7th Conference on Air 9, 2006, the new model—AERMOD— the collection of materials that is Quality Modeling (7th conference) in should be used for appropriate available for public viewing at the Air Washington, DC on June 28–29, 2000. application as replacement for ISC3. Docket in the EPA Docket Center, (EPA/ As required by Section 320 of the Clean During the one-year period following DC) EPA West (MC 6102T), 1301 Air Act, these conferences take place this promulgation, protocols for Constitution Ave., NW., Washington, approximately every three years to modeling analyses based on ISC3 which DC 20004. The EPA Docket Center standardize modeling procedures, with are submitted in a timely manner may Public Reading Room (B102) is open special attention given to appropriate be approved at the discretion of the from 8:30 a.m. to 4:30 p.m., Monday modeling practices for carrying out appropriate Reviewing Authority. through Friday, excluding legal programs PSD (42 U.S.C. 7620). This Applicants are therefore encouraged to holidays. The telephone number for the conference served as the forum for consult with the Reviewing Authority as Reading Room is (202) 566–1744, and receiving public comments on the soon as possible to assure acceptance the telephone number for the Air Docket Guideline revisions proposed in April during this period. is (202) 566–1742. An electronic image 2000. The 7th conference featured ADDRESSES: All documents relevant to of this docket may be accessed via presentations in several key modeling this rule have been placed in Docket No. Internet at www.epa.gov/eDocket, where areas that support the revisions A–99–05 at the following address: Air Docket No. A–99–05 is indexed as promulgated today. A presentation by Docket in the EPA Docket Center, (EPA/ OAR–2003–0201. Materials related to the American Meteorological Society DC) EPA West (MC 6102T), 1301 our Notice of Data Availability (AMS)/EPA Regulatory Model Constitution Ave., NW., Washington, (published September 8, 2003) and Improvement Committee (AERMIC) DC 20004. This docket is available for public comments received pursuant to covered the enhanced Gaussian public inspection and copying between the notice were placed in eDocket OAR– dispersion model with boundary layer 1 8 a.m. and 5:30 p.m., Monday through 2003–0201. parameterization: AERMOD.2 Also at Friday, at the address above. Our Air Quality Modeling Group the 7th conference, the Electric Power FOR FURTHER INFORMATION CONTACT: maintain an Internet website (Support Research Institute (EPRI) presented Tyler J. Fox, Air Quality Modeling Center for Regulatory Air Models— evaluation results from the recent Group (MD–D243–01), Office of Air research efforts to better define and 1 http://cascade.epa.gov/RightSite/ Quality Planning and Standards, U.S. dk_public_collection_detail.htm? characterize dispersion around Environmental Protection Agency, ObjectType=dk_docket_collection&cid=OAR-2003- Research Triangle Park, NC 27711; 0201&ShowList=items&Action=view. 2 AMS/EPA Regulatory MODel. VerDate Aug<31>2005 16:55 Nov 08, 2005 Jkt 205001 PO 00000 Frm 00002 Fmt 4701 Sfmt 4700 E:\FR\FM\09NOR3.SGM 09NOR3 Federal Register / Vol. 70, No. 216 / Wednesday, November 9, 2005 / Rules and Regulations 68219 buildings (downwash effects). These to public concerns, we believed that the considered and discussed all significant efforts were part of a program called the revised AERMOD merited another comments. Whenever the comments Plume RIse Model Enhancements public examination of performance revealed any new information or (PRIME). At the time, PRIME was results. Also, since the April 2000 NPR, suggested any alternative solutions, we integrated within ISC3ST (ISC–PRIME) the Federal Aviation Administration considered this prior to taking final and the results presented were within (FAA) decided to configure EDMS 3.1 to action. the ISC3 context. As discussed in incorporate the AERMOD dispersion The remainder of this preamble today’s rule, the PRIME algorithm has model. FAA presented this strategy at section discusses the primary issues now been fully integrated into the 7th conference and performance encountered by the Agency during the AERMOD. evaluations at two airports were to be public comment period associated with We proposed an update to the available before final promulgation. the April 2000 proposal. This overview Emissions and Dispersion Modeling This was in response to public concern also serves in part to explain the System (EDMS 3.1), which is used for over lack of EDMS evaluation. changes to the Guideline in today’s assessing air quality impacts from On April 15, 2003 we published a action, and the main technical and airports. A representative of the Federal Notice of Final Rulemaking (NFR; 68 FR policy concerns addressed by the Aviation Administration (FAA) 18440) that adopted CALPUFF in Agency. presented a further upgrade to EDMS appendix A of the Guideline. We also A. AERMOD and PRIME 4.0 that would include AERMOD and made various editorial changes to forthcoming performance evaluations update and reorganize information, and AERMOD is a best state-of-the- for two airports. removed obsolete models. We practice Gaussian plume dispersion The presentations were followed by a announced that action on AERMOD and model whose formulation is based on critical review/discussion of AERMOD the Emissions and Dispersion Model planetary boundary layer principles. and available performance evaluations, (EDMS) for assessing airport impacts AERMOD provides better facilitated jointly by the Air & Waste was being deferred, and would be characterization of plume dispersion Management Association’s AB–3 reconsidered in a separate action when than does ISC3. At the 7th conference, Committee and the American new information became available for AERMIC members presented Meteorological Society’s Committee of these models. developmental and evaluation results of Meteorological Aspects of Air Pollution. This deferred action took the form of AERMOD. Comprehensive comments For the new models and modeling a Notice of Data Availability (NDA), were submitted on the AERMOD code techniques proposed in April 2000, we which was published on September 8, and formulation document and on the asked the public to address the 2003 (68 FR 52934).
Recommended publications
  • Table of Contents
    CALPUFF Modeling System Version 6 User Instructions April 2011 Section 1: Introduction Table of Contents Page 1. OVERVIEW ...................................................................................................................... 1-1 1.1 CALPUFF Version 6 Modeling System............................................................... 1-1 1.2 Historical Background .......................................................................................... 1-2 1.3 Overview of the Modeling System ....................................................................... 1-7 1.4 Major Model Algorithms and Options................................................................. 1-19 1.4.1 CALMET................................................................................................ 1-19 1.4.2 CALPUFF............................................................................................... 1-23 1.5 Summary of Data and Computer Requirements .................................................. 1-28 2. GEOPHYSICAL DATA PROCESSORS.......................................................................... 2-1 2.1 TERREL Terrain Preprocessor............................................................................. 2-3 2.2 Land Use Data Preprocessors (CTGCOMP and CTGPROC) ............................. 2-27 2.2.1 Obtaining the Data.................................................................................. 2-27 2.2.2 CTGCOMP - the CTG land use data compression program .................. 2-29 2.2.3 CTGPROC - the land use preprocessor
    [Show full text]
  • Development of the Next Generation Air Quality Models for Outer Continental Shelf (OCS) Applications
    Development of the Next Generation Air Quality Models for Outer Continental Shelf (OCS) Applications Final Report: Volume 2 - CALPUFF Users Guide (CALMET and Preprocessors) March 2006 Prepared For: U.S. Department of the Interior, Minerals Management Service, Herndon, VA Contract No. 1435-01-01-CT-31071 Prepared By: Earth Tech, Inc. 196 Baker Avenue Concord, Massachusetts 01742 (978) 371-4000 Contents A. OVERVIEW A-1 A.1 Background A-1 A.2 Overview of the Modeling System A-4 A.3 Major Model Algorithms and Options A-14 A.4 Summary of Data and Computer Requirements A-23 B. GEOPHYSICAL DATA PROCESSORS B-1 B.1 TERREL Terrain Preprocessor B-3 B.2 Land Use Data Preprocessors (CTGCOMP and CTGPROC) B-17 B.3 MAKEGEO B-31 B.4 NIMA DATUM REFERENCE INFORMATION B-42 C. METEOROLOGICAL DATA PROCESSORS C-1 C.1 READ62 UPPER AIR PREPROCESSOR C-1 C.2 PXTRACT PRECIPITATION DATA EXTRACT PROGRAM C-12 C.3 PMERGE PRECIPITATION DATA PREPROCESSOR C-19 C.4 SMERGE SURFACE DATA METEOROLOGICAL PREPROCESSOR C-29 C.5 BUOY OVER-WATER DATA METEOROLOGICAL PREPROCESSOR C-39 D. PROGNOSTIC METEOROLOGICAL DATA PROCESSORS D-1 D.1 CALMM5 D-1 D.2 CALETA D-25 D.3 CALRUC D-40 D.4 CALRAMS D-48 D.5 3D.DAT OUTPUT FILE D-53 E. CALMET MODEL FILES E-1 E.1 User Control File (CALMET.INP) E-5 E.2 Geophysical Data File (GEO.DAT) E-49 E.3 Upper Air Data Files (UP1.DAT, UP2.DAT,...) E-61 E.4 Surface Meteorological Data File (SURF.DAT) E-66 E.5 Overwater Data Files (SEA1.DAT, SEA2.DAT, ...) E-70 E.6 Precipitation Data File (PRECIP.DAT) E-74 E.7 Preprocessed Diagnostic Model Data File (DIAG.DAT) E-78 E.8 Prognostic Model Data File (PROG.DAT) E-82 E.9 3D Model Data Files (3D.DAT) E-84 E.10 Terrain Weighting Factor Data File (WT.DAT) E-102 E.11 CALMET Output Files E-109 Volume II & III References A.
    [Show full text]
  • Evaluation of ISC3, AERMOD, and ADMS Dispersion Models with Observations from Five Field Sites
    EVALUATION OF THE ADMS, AERMOD, AND ISC3 DISPERSION MODELS WITH THE OPTEX, DUKE FOREST, KINCAID, INDIANAPOLIS, AND LOVETT FIELD DATA SETS Steven R. Hanna*, Bruce A. Egan**, John Purdum***, and Jen Wagler**** *CSI MS 5C3, George Mason Univ., Fairfax, VA 22030-4444 USA **Egan Environmental, 75 Lothrop St., Beverly, MA 01915 USA ***17 Peters Way, North Attleboro, MA 02760 USA ****URS Greiner Woodward-Clyde, 38 Chauncy St., Boston, MA 02111 USA ABSTRACT The model evaluation exercise addresses the question whether the new models, ADMS and AERMOD, produce improvements over ISC3 when compared with a range of field observations. ADMS and AERMOD have similar state-of-the-art scientific components, whereas ISC3 contains 1960s technology. The five sets of field observations used in the statistical evaluation represent a cross-section of typical scenarios encountered by modelers. The OPTEX data base concerns non-buoyant tracer releases within an oil refinery complex, and the Duke Forest data base involves non-buoyant tracer releases from area and volume sources in an open field. The Kincaid, Indianapolis, and Lovett data bases all deal with buoyant plumes from tall stacks at power plants. However, the settings are quite different, since the Kincaid plant is surrounded by flat farmland, the Indianapolis plant is located in an urban environment, and the Lovett plant is sited in a valley surrounded by complex terrain with monitors at elevations higher than the stack. Analysis of the model performance measures suggest that ISC3 typically overpredicts, has a scatter of about a factor of three, and has about 33% of its predictions within a factor of two of observations.
    [Show full text]
  • Environmental Protection Agency
    Wednesday, November 9, 2005 Part III Environmental Protection Agency 40 CFR Part 51 Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions; Final Rule VerDate Aug<31>2005 16:55 Nov 08, 2005 Jkt 205001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\09NOR3.SGM 09NOR3 68218 Federal Register / Vol. 70, No. 216 / Wednesday, November 9, 2005 / Rules and Regulations ENVIRONMENTAL PROTECTION telephone (919) 541–5562. SCRAM) at: www.epa.gov/scram001. AGENCY ([email protected]). You may find codes and documentation SUPPLEMENTARY INFORMATION: for models referenced in today’s action 40 CFR Part 51 on the SCRAM Web site. We have also Outline uploaded various support documents [AH–FRL–7990–9] I. General Information (e.g., evaluation reports). II. Background RIN 2060–AK60 III. Public Hearing on the April 2000 II. Background proposal The Guideline is used by EPA, States, Revision to the Guideline on Air IV. Discussion of Public Comments and Quality Models: Adoption of a and industry to prepare and review new Issues from our April 21, 2000 Proposal source permits and State Preferred General Purpose (Flat and A. AERMOD and PRIME Complex Terrain) Dispersion Model B. Appropriate for Proposed Use Implementation Plan revisions. The and Other Revisions C. Implementation Issues/Additional Guideline is intended to ensure Guidance consistent air quality analyses for AGENCY: Environmental Protection D. AERMOD revision and reanalyses in activities regulated at 40 CFR 51.112, Agency (EPA). 2003 51.117, 51.150, 51.160, 51.166, and ACTION: Final rule.
    [Show full text]
  • Algorithms and Analytical Solutions for Rapidly Approximating Long-Term Dispersion from Line and Area Sources
    This paper might be a pre-copy-editing or a post-print author-produced .pdf of an article accepted for publication. For the definitive publisher-authenticated version, please refer directly to publishing house’s archive system. Atmospheric Environment 43 (2009) 3249–3258 Contents lists available at ScienceDirect Atmospheric Environment journal homepage: www.elsevier.com/locate/atmosenv Algorithms and analytical solutions for rapidly approximating long-term dispersion from line and area sources Steven R.H. Barrett*, Rex E. Britter University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ, UK article info abstract Article history: Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial Received 15 July 2008 sources are frequently of concern in regulatory and public health contexts. Many emissions are repre- Received in revised form sented geometrically as ground-level line or area sources. Well developed modelling tools such as 11 March 2009 AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable Accepted 13 March 2009 accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration Keywords: schemes have been developed. For example, some models decompose area sources into a large number Dispersion modelling Long-term average concentrations of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Area sources Models also employ a time-series approach, which involves computing mean pollutant concentrations Line sources for every hour over one or more years of meteorological data.
    [Show full text]
  • WHO. Guidance for Identifying Populations at Risk from Mercury Exposure. Issued by UNEP DTIE Chemicals Branch
    UNITED NATIONS ENVIRONMENT PROGRAMME DTIE CHEMICALS BRANCH GUIDANCE FOR IDENTIFYING POPULATIONS AT RISK FROM MERCURY EXPOSURE August 2008 Issued by UNEP DTIE Chemicals Branch and WHO Department of Food Safety, Zoonoses and Foodborne Diseases Geneva, Switzerland ii Disclaimer: This publication is intended to serve as a guide. While the information provided is believed to be accurate, UNEP and WHO disclaim any responsibility for possible inaccuracies or omissions and consequences that may flow from them. UNEP, WHO, or any individual involved in the preparation of this publication shall not be liable for any injury, loss, damage or prejudice of any kind that may be caused by persons who have acted based on their understanding of the information contained in this publication. The designation employed and the presentation of material in this publication do not imply any expression of any opinion whatsoever on the part of the United Nations, UNEP, or WHO concerning the legal status of any country, territory, city or area or any of its authorities, or concerning any definition of frontiers or boundaries. This publication is produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC). This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen co-operation and increase international co-ordination in the field of chemical safety. The participating organisations are FAO, ILO, OECD, UNEP, UNIDO, UNITAR and WHO.
    [Show full text]
  • Table of Session Oral and Poster Presentation (Red Written Papers Are Not Available)
    Table of Session Oral and Poster presentation (red written papers are not available) Session 1 Model Evaluation Session 2 : Air Quality Management ; the EU air quality directive Session 3 Urban Air Quality Modelling Session 4 Model Intercomparison Session 5 Street Canyon Models Session 6 Decision Support System Session 7 Meteorological Pre-Processing CORIA – UMR 6614. CNRS – UNIVERSITE & INSA DE ROUEN – France. Tel: 33 (0)2 32 95 97 82 - Fax: 33 (0)2 32 95 97 80 - E-mail: [email protected] - Http://www.coria.fr Session 1 Model Evaluation CORIA – UMR 6614. CNRS – UNIVERSITE & INSA DE ROUEN – France. Tel: 33 (0)2 32 95 97 82 - Fax: 33 (0)2 32 95 97 80 - E-mail: [email protected] - Http://www.coria.fr Table of contents Session 1 Model Evaluation Oral Presentation. Paper 1 QUALITY ASSURANCE OF URBAN DISPERSION MODELS M. Schatzmann & B. Leitl,Germany Paper 8 INTERCOMPARISON OF THE LAGRANGIAN AND EULERIEAN MODEL PREDICTIONS AT LOCAL SCALE WITH MEASURED CONCENTRATIONS V.Sandu, Romania Paper 13 SIMULATIONS OF ATMOSPHERIC DISPERSION IN URBAN STABLE BOUNDARY LAYER E. Ferrero, D. Anfonssi, G Tinarelli, Italy Paper 20 EVALUATION OF A NON-GAUSSIAN PUFF MODEL T. Tirabassi, C. Mangia and U. Rizza, Italy Paper 24 STUDY OF TURBULENCE AND POLLUTANT DISPERSION UNDER NEUTRALLY AND UNSTABLY STRATIFIED ATMOSHERE UNSING A SECOND- ORDER EULERIAN MODEL C.H. Liu and D. Y. C. Leung, China. Paper 31 A LAGRANGIAN-PUFF DISPERSION MODEL: EVALUATION AGAINST TRACER DATA C. Mangia, U. Rizza, Italy Paper 38 EFFECTS OF CONCENTRATION FLUCTUATIONS ON STATISTICAL EVALUATIONS OF CENTERLINE CONCENTRATION ESTIMATES BY ATMOSPHERIC DISPERSION MODELS J.
    [Show full text]
  • A User's Guide for the CALPUFF Dispersion Model
    A User’s Guide for the CALPUFF Dispersion Model (Version 5) Prepared by: Joseph S. Scire David G. Strimaitis Robert J. Yamartino Earth Tech, Inc. 196 Baker Avenue Concord, MA 01742 January 2000 Copyright © 1998, 1999,2000 by Earth Tech, Inc. All Rights Reserved Table of Contents 1. OVERVIEW ...................................................................1-1 1.1 Background ..........................................................1-1 1.2 Overview of the CALPUFF Modeling System ...............................1-3 1.3 CALPUFF Features and Options.........................................1-11 1.4 Summary of CALPUFF Data and Computer Requirements....................1-15 2. TECHNICAL DISCUSSION ......................................................2-1 2.1 Solution of the Puff Equations............................................2-1 2.1.1 Integrated Puff Sampling Function Formulation .......................2-4 2.1.2 Slug Formulation and Sampling Functions ...........................2-7 2.1.3 Sampling Function Testing .......................................2-15 2.2 Dispersion ..........................................................2-23 2.2.1 Atmospheric Turbulence Components ..............................2-24 2.2.2 Buoyancy - Induced Dispersion ...................................2-36 2.2.3 Initial Plume Size ..............................................2-37 2.2.4 Puff Splitting (Vertical Wind Shear) ...............................2-37 2.2.5 The P.D.F. Option for the Convective Boundary Layer .................2-39 2.2.6 Vertical Puff Stretching
    [Show full text]
  • A User's Guide for the CALMET Meteorological Model
    A User’s Guide for the CALMET Meteorological Model (Version 5) Prepared by: Joseph S. Scire Francoise R. Robe Mark E. Fernau Robert J. Yamartino Earth Tech, Inc. 196 Baker Avenue Concord, MA 01742 January 2000 Copyright © 1998, 1999,2000 by Earth Tech, Inc. All Rights Reserved TABLE OF CONTENTS PAGE NO. 1. OVERVIEW....................................................................1-1 1.1 Background ..........................................................1-1 1.2 Overview of the CALPUFF Modeling System ...............................1-3 1.3 Major Model Algorithms and Options....................................1-12 1.4 Summary of Data and Computer Requirements .............................1-15 2. TECHNICAL DESCRIPTION......................................................2-1 2.1 Grid System..........................................................2-1 2.2 Wind Field Module ....................................................2-3 2.2.1 Step 1 Formulation ..............................................2-3 2.2.2 Step 2 Formulation ..............................................2-8 2.2.3 Incorporation of Prognostic Model Output ...................... 2-17 2.2.3.1 Terrain Weighting Factor ............................... 2-19 2.3 Micrometeorological Model ............................................2-22 2.3.1 Surface Heat and Momentum Flux Parameters .......................2-22 2.3.2 Three-dimensional Temperature Field ..............................2-31 2.3.2.1 Overwater Temperatures ..................................2-33 2.3.3 Precipitation Interpolation
    [Show full text]
  • Atmospheric Conditions Which Affect Air Pollution
    ATMOSPHERIC CONDITIONS WHICH AFFECT AIR POLLUTION • Wind direction and speed • Cloud cover radiation reaching earth temperature profile turbulence • Precipitation Neutral Stability Unstable Stable Inversion in Los Angeles, CA Inversion at Four Corners power plant Fig 7-17: Land Breeze during night Fig 7-18: Land Breeze during day Fig 7-19: Effect of lake breeze on plume dispersion Fig 7-21: Plume dispersion coordinate system Fig 7-22: Horizontal dispersion coefficient Fig 7-23: Vertical dispersion coefficient Building Downwash Building Downwash Building Downwash Building Downwash Plume Rise • H is the sum of the physical stack height and plume rise. H = Δhplume rise + hactual stack http://www.air-dispersion.com/briggs.html -1 Rural Terrain Urban Terrain Stability Exponent n Stability Exponent n A 0.10 A 0.15 B 0.15 B 0.15 C 0.20 C 0.20 D 0.25 D 0.25 E 0.25 E 0.40 F 0.30 F 0.60 Example: A given windspeed of 5 m/s measured at 10 meters above the ground and a stability class of B in rural terrain, calculate the windspeed at 500 meters above ground: 0.15 uz = (5)(500/10) = 9 m/s Table 1 Table 2 For Use In Rural Terrain For Use In Urban Terrain Stability Exponent n Stability Exponent n A 0.10 A 0.15 B 0.15 B 0.15 C 0.20 C 0.20 D 0.25 D 0.25 E 0.25 E 0.40 F 0.30 F 0.60 Gaussian Dispersion Models • Most widely used • Based on the assumption – plume spread results primarily by molecular diffusion – horizontal and vertical pollutant concentrations in the plume are normally distributed (double Gaussian distribution) • Plume spread and shape vary in response to meteorological X conditions Z Q u Y H Fig 7.11 Model Assumptions • Gaussian dispersion modeling based on a number of assumptions including – Steady-state conditions (constant source emission strength) – Wind speed, direction and diffusion characteristics of the plume are constant – Mass transfer due to bulk motion in the x-direction far outshadows the contribution due to mass diffusion – Conservation of mass, i.e.
    [Show full text]
  • Urban Air Pollution Modeling
    2 Urban Air Pollution Modeling Anjali Srivastava and B. Padma S. Rao National Environmental Engineering Research Institute, Kolkata Zonal Centre India 1. Introduction All life form on this planet depends on clean air. Air quality not only affects human health but also components of environment such as water, soil, and forests, which are the vital resources for human development. Urbanization is a process of relative growth in a country’s urban population accompanied by an even faster increase in the economic, political, and cultural importance of cities relative to rural areas. Urbanization is the integral part of economic development. It brings in its wake number of challenges like increase in population of urban settlement, high population density, increase in industrial activities (medium and small scale within the urban limits and large scale in the vicinity), high rise buildings and increased vehicular movement. All these activities contribute to air pollution. The shape of a city and the land use distribution determine the location of emission sources and the pattern of urban traffic, affecting urban air quality (World Bank Reports 2002). The dispersion and distribution of air pollutants and thus the major factor affecting urban air quality are geographical setting, climatological and meteorological factors, city planning and design and human activities. Cities in the developing countries are characterized by old city and new development. The old cities have higher population density, narrow lanes and fortified structures. In order to ensure clean air in urban settlements urban planning and urban air quality management play an important role. New legislations, public awareness, growth of urban areas, increases in power consumption and traffic pose continuous challenges to urban air quality management.
    [Show full text]
  • Contribution of Inert Waste in Deteriorating Urban Ambient Air Quality
    CONTRIBUTION OF INERT WASTE IN DETERIORATING URBAN AMBIENT AIR QUALITY by Khalid Iqbal (2010-NUST-TfrPhD-ENV-58) Institute of Environmental Sciences & Engineering (IESE) School of Civil and Environmental Engineering (SCEE) National University of Sciences & Technology (NUST) Islamabad, Pakistan (44000) (2016) i CONTRIBUTION OF INERT WASTE IN DETERIORATING URBAN AMBIENT AIR QUALITY by Khalid Iqbal (2010-NUST-TfrPhD-ENV-58) A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Engineering Institute of Environmental Sciences & Engineering (IESE) School of Civil and Environmental Engineering (SCEE) National University of Sciences & Technology (NUST) Islamabad, Pakistan (44000) (2016) ii APPROVAL SHEET Certified that the contents and form of thesis titled “Contribution of Construction Inert Waste in Deteriorating Urban Ambient Air Quality” submitted by Mr. Khalid Iqbal have been found satisfactory for the requirement of the degree. Supervisor: _______________ Professor (Dr. Muhammad Anwar Baig) Member: _______________ Associate Professor (Dr. Sher Jamal Khan) Member: _______________ Associate Professor (Dr. Muhammad Arshad) External Examiner: _______________ Name: Dr Nawazish Ali Designation: Principal Engineer Department: DD&CE-in C’sB & GHQ, Rawalpindi iii DEDICATION This work is dedicated to my beloved parents and rest of the members of my family and friends! It is their support and love that enabled to complete this task. iv DECLARATION I hereby declare that this dissertation is the outcome of my own efforts and has not been published anywhere else before. The matter quoted in the text has been properly referred and acknowledged. ______________ Khalid Iqbal (2010-NUST-TfrPhD-ENV-58) v ACKNOWLEDGEMENTS Islam prohibits all sorts of mischief in the land.
    [Show full text]