Table of Session Oral and Poster Presentation (Red Written Papers Are Not Available)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table of Contents
CALPUFF Modeling System Version 6 User Instructions April 2011 Section 1: Introduction Table of Contents Page 1. OVERVIEW ...................................................................................................................... 1-1 1.1 CALPUFF Version 6 Modeling System............................................................... 1-1 1.2 Historical Background .......................................................................................... 1-2 1.3 Overview of the Modeling System ....................................................................... 1-7 1.4 Major Model Algorithms and Options................................................................. 1-19 1.4.1 CALMET................................................................................................ 1-19 1.4.2 CALPUFF............................................................................................... 1-23 1.5 Summary of Data and Computer Requirements .................................................. 1-28 2. GEOPHYSICAL DATA PROCESSORS.......................................................................... 2-1 2.1 TERREL Terrain Preprocessor............................................................................. 2-3 2.2 Land Use Data Preprocessors (CTGCOMP and CTGPROC) ............................. 2-27 2.2.1 Obtaining the Data.................................................................................. 2-27 2.2.2 CTGCOMP - the CTG land use data compression program .................. 2-29 2.2.3 CTGPROC - the land use preprocessor -
Progetto Modivaset - Relazione Finale – Scenario 0 - - 31/12/2005
Università degli Studi di Firenze - Dipartimento di Energetica - Sergio Stecco Convenzione tra Regione Toscana e DE per lo sviluppo e l’applicazione di modelli diffusionali nell’ambito dei piani di risanamento della qualità dell’aria, con particolare attenzione all’area metropolitana di Firenze – Prato – Pistoia Progetto MoDiVaSET - Relazione finale – scenario 0 - - 31/12/2005 - Ing. Matteo Carpentieri Prof. Ing. Andrea Corti Ing. Paolo Giambini Dott. Silvia Maltagliati Progetto MoDiVaSET Relazione finale Università degli Studi di Firenze - 31-12-2005 Dipartimento di Energetica - Sergio Stecco 1 Introduzione 1.1 Il progetto MoDiVaSET Lo scopo di questo lavoro consiste nello sviluppare metodologie modellistiche finalizzate a simulare la dispersione in atmosfera di PM10, NOX e SOX nell’area metropolitana di Firenze – Prato – Pistoia. L’obiettivo ultimo del progetto risulta la valutazione di diversi scenari emissivi nell’area di riferimento. 1.2 L’area di studio L’area di studio prescelta è quella riportata qui di seguito in figura 1.1, comprendente la zona che si estende da Incisa a Montecatini in direzione est-ovest e da Barberino del Mugello a Castelfiorentino in direzione nord-sud, per un’estensione totale di 40x49 km2. Figura 1.1: Zona di indagine prescelta Le sorgenti emissive presenti nell’area di studio sono state caratterizzate, per lo scenario base, a partire dai dati presenti nell’Inventario Regionale delle Sorgenti Emissive (IRSE). Tali sorgenti sono state suddivise in tre tipologie: le principali sorgenti puntuali (selezionate in base ai criteri definiti nell’IRSE), le principali sorgenti lineari (le autostrade A1 ed A11), e le altre sorgenti emissive (simulate come sorgenti areali diffuse). -
Fire Management Today
Volume 66 • No. 3 • Summer 2006 Smoke Issues and Air Quality Also: Our Response to Hurricane Katrina Coming Next… The next issue of Fire Management Today (Fall 2006) will feature a series of articles that describe and probe the challenges and opportunities associ ated with both elements of “fire use”—prescribed fire and wildland fire use. The issue’s special coordinator is Tim Sexton, fire use program manager for the USDA Forest Service, Fire and Aviation Management, Washington Office, National Interagency Fire Center, Boise, ID. Fire Management Today is published by the Forest Service of the U.S. Department of Agriculture, Washington, DC. The Secretary of Agriculture has determined that the publication of this periodical is necessary in the transaction of the public business required by law of this Department. Fire Management Today is for sale by the Superintendent of Documents, U.S. Government Printing Office, at: Internet: bookstore.gpo.gov Phone: 202-512-1800 Fax: 202-512-2250 Mail: Stop SSOP, Washington, DC 20402-0001 Fire Management Today is available on the World Wide Web at http://www.fs.fed.us/fire/fmt/index.html. Mike Johanns, Secretary Melissa Frey U.S. Department of Agriculture General Manager Dale Bosworth, Chief Paul Keller Forest Service Managing Editor Tom Harbour, Director Madelyn Dillon Fire and Aviation Management Editor Pete Lahm Issue Coordinator The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and, where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. -
Technical Assistance for Improving Emissions Control the Role Of
This Project is Co-Financed by the European Union and the Republic of Turkey This Project is c This project is co-financed by the European Union and the Republic of Turkey Technical Assistance for Improving Emissions Control Service Contract No: TR0802.03-02/001 Identification No: EuropeAid/128897/D/SER/TR The Role of Emissions Dispersion Modelling in Cost Benefit Analysis Applied to Urban Air Quality Management: Part 1-the Approach (Version 2: 18 May 2012) This publication has been produced with the assistance of the European Union. The content of this publication is the sole responsibility of the Consortium led by PM Group and can in no way be taken to reflect the views of the European Union. Contracting Authority: Central Finance and Contracting Unit, Turkey Implementing Authority / Beneficiary: Ministry of Environment and Urbanisation Project Title: Improving Emissions Control Service Contract Number: TR0802.03-02/001 Identification Number: EuropeAid/128897/D/SER/TR PM Project Number: 300424 This project is co-financed by the European Union and the Republic of Turkey The Role of Emissions Dispersion Modelling in Cost Benefit Analysis Applied to Urban Air Quality Management: Part 1 – the Approach Version 2: 18 May 2012 PM File Number: 300424-06-RP-200 PM Document Number: 300424-06-205(2) CURRENT ISSUE Issue No.: 2 Date: 18/05/2012 Reason for Issue: Final Version for Client Approval Customer Approval Sign-Off Originator Reviewer Approver (if required) Scott Hamilton, Peter Print Name Russell Frost Jim McNelis Faircloth, Chris Dore Signature Date PREVIOUS ISSUES (Type Names) Issue No. Date Originator Reviewer Approver Customer Reason for Issue 1 14/03/2012 Scott Hamilton, Peter Russell Frost Jim McNelis For client review / comment Faircloth, Chris Dore CFCU / MoEU 300424-06-RP-205 (2) TA for Improving Emissions Control 18 May 2012 CONTENTS GLOSSARY OF ACRONYMS ...................................................................................... -
ARCOPOL the Atlantic Regions' Coastal Pollution Response
Airborne Pollution Propagation from water incidents: State of the art of air pollution models Activity 4 Task 4.2.1 ARCOPOL The Atlantic Regions’ Coastal Pollution Response Version: Version 2 Last updated on: 05/11/2010 Author: Meteogalicia Responsible partner: IST Involved partners: CETMAR, Meteogalicia, INTECMAR, IST, CIIMAR, EGMASA, Irish Marine Institute, Bretagne Region, Aquitaine Region Table of contents 1. Executive Summary .............................................................................................................. 3 2. Context and aims of the task ............................................................................................... 3 2.1. Summary of the 2008 Air Quality Directive ..................................................... 4 2.1.1. Concepts and definitions..................................................................................... 4 2.2. Where does the Air Quality Directive apply? .................................................. 6 2.2.1. Limits and target values for the protection of human health......................... 7 2.2.2. Limits and target values for the protection of vegetation............................... 9 2.2.3. Air quality web portals in Europe .................................................................... 9 3. Methodology........................................................................................................................ 12 3.1. When can models be used for the assessment of existing air quality? ....... 12 3.2. Combined use of measurements -
Climate Change
TRANSPORTATION RESEARCH Number E-C271 May 2021 Critical Issues in Aviation and the Environment 2021 TRANSPORTATION RESEARCH BOARD 2020 EXECUTIVE COMMITTEE OFFICERS Chair: Carlos M. Braceras, Executive Director, Utah Department of Transportation, Salt Lake City Vice Chair: Susan A. Shaheen, Adjunct Professor, Co-Director, Transportation Sustainability Research Center, University of California, Berkeley Division Chair for NRC Oversight: Chris Hendrickson, Hamerschlag University Professor Emeritus, Carnegie Mellon University, Pittsburgh, Pennsylvania Executive Director: Neil J. Pedersen, Transportation Research Board TRANSPORTATION RESEARCH BOARD 2020–2021 TECHNICAL ACTIVITIES COUNCIL Chair: Hyun-A C. Park, President, Spy Pond Partners, LLC, Arlington, Massachusetts Technical Activities Director: Ann M. Brach, Transportation Research Board Richard Bornhorst, Principal, FACTOR, Inc., Silver Spring, Maryland, Freight Systems Group Chair Michael Griffith, Director, Office of Safety Technologies, Federal Highway Administration, Washington, D.C., Safety and Operations Group Chair George Avery Grimes, CEO Advisor, Patriot Rail Company, Denver, Colorado, Rail Group Chair Brendon Hemily, Principal, Hemily and Associates, Toronto, Ontario, Public Transportation Group Chair Nikola Ivanov, Deputy Director, Center for Advanced Transportation Technology Laboratory, University of Maryland, College Park, Young Members Council Chair Pamela Keidel-Adams, Regional Vice President, Kimley-Horn and Associates, Inc., Mesa, Arizona, Aviation Group Chair C. James -
Predicting Air Quality Near Roadway Intersections Through the Applicat
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2004 Predicting Air Quality Near Roadway Intersections Through The Applicat Brian Kim University of Central Florida Part of the Environmental Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Kim, Brian, "Predicting Air Quality Near Roadway Intersections Through The Applicat" (2004). Electronic Theses and Dissertations, 2004-2019. 200. https://stars.library.ucf.edu/etd/200 PREDICTING AIR QUALITY NEAR ROADWAY INTERSECTIONS THROUGH THE APPLICATION OF A GAUSSIAN PUFF MODEL TO MOVING SOURCES by BRIAN Y. KIM B.S. University of California at Irvine, 1990 M.S. California Polytechnic State University at San Luis Obispo, 1996 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Civil and Environmental Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Fall Term 2004 ABSTRACT With substantial health and economic impacts attached to many highway-related projects, it has become imperative that the models used to assess air quality be as accurate as possible. The United States (US) Environmental Protection Agency (EPA) currently promulgates the use of CAL3QHC to model concentrations of carbon monoxide (CO) near roadway intersections. -
MARK R THEOBALD.Pdf
TESIS DOCTORAL / Ph.D THESIS An Intercomparison of Modelling Approaches for Simulating the Atmospheric Dispersion of Ammonia Emitted by Agricultural Sources Mark R. Theobald Madrid 2012 E.T.S.I. Agrónomos Universidad Politécnica de Madrid Departamento de Química y Análisis Agrícola Escuela Técnica Superior de Ingenieros Agrónomos An Intercomparison of Modelling Approaches for Simulating the Atmospheric Dispersion of Ammonia Emitted by Agricultural Sources Autor: Mark R. Theobald Licenciado en Ciencias Físicas (MPhys hons) Directores: Dr. Antonio Vallejo Garcia Doctor en Ciencias Químicas Dr. Mark A. Sutton Doctor en Ciencias Físicas Madrid 2012 Acknowledgements ACKNOWLEDGEMENTS This work was funded by the European Commission through the NitroEurope Integrated Project (Contract No. 017841 of the EU Sixth Framework Programme for Research and Technological Development). The European Science Foundation also provided additional funding through COST Action 729 for the attendance of conferences and workshops and for the collaboration with the University of Lisbon (COST-STSM-729-5799). Firstly I would like to thank my two supervisors Dr. Mark A. Sutton and Prof. Antonio Vallejo for their support and guidance throughout this work. I am grateful to Mark not only for his willingness to discuss and direct this work no matter where he was in the world or whatever time of day it was, but also for the support and encouragement I received when I was at CEH Edinburgh. I am also grateful to Antonio for guiding me through the labyrinths of University bureaucracy. I would also like to thank the other research groups with whom I have collaborated throughout this work. Thanks to all my colleagues at CEH Edinburgh with a special mention to Bill Bealey for his help developing the SCAIL model and to Sim Tang for providing the ALPHA samplers and technical support. -
Evaluation of Chemical Dispersion Models Using Atmospheric Plume Measurements from Field Experiments EPA Contract No
September 2012 FINAL REPORT FINAL REPORT Evaluation of Chemical Dispersion Models using Atmospheric Plume Measurements from Field Experiments EPA Contract No: EP‐D‐07‐102 Work Assignment No: 4‐06 and 5‐08 Prepared for: Office of Air Quality Planning and Standards U.S. Environmental Protection Agency 109 T.W. Alexander Drive Mail Code: C439‐1 Research Triangle Park, NC 27709 Prepared by: ENVIRON International Corporation 773 San Marin Drive, Suite 2115 Novato, California, 94998 Under Subcontract to the University of North Carolina at Chapel Hill September 2012 06‐20443M6 UNC–EMAQ 4‐06.018.v4 September 2012 FINAL REPORT UNC–EMAQ 4‐06.016.v4 i September 2012 FINAL REPORT Contents Page 1.0 INTRODUCTION ..................................................................................................... 1 1.1 BACKGROUND ..................................................................................................... 1 1.2 PURPOSE ............................................................................................................. 2 1.3 OVERVIEW OF APPROACH .................................................................................. 2 1.3.1 Field Experiments used in the Evaluation ............................................. 2 1.3.2 Models Evaluated .................................................................................. 2 1.4 ORGANIZATION OF THE REPORT ........................................................................ 2 2.0 TECHNICAL APPROACH ......................................................................................... -
Development of the Next Generation Air Quality Models for Outer Continental Shelf (OCS) Applications
Development of the Next Generation Air Quality Models for Outer Continental Shelf (OCS) Applications Final Report: Volume 2 - CALPUFF Users Guide (CALMET and Preprocessors) March 2006 Prepared For: U.S. Department of the Interior, Minerals Management Service, Herndon, VA Contract No. 1435-01-01-CT-31071 Prepared By: Earth Tech, Inc. 196 Baker Avenue Concord, Massachusetts 01742 (978) 371-4000 Contents A. OVERVIEW A-1 A.1 Background A-1 A.2 Overview of the Modeling System A-4 A.3 Major Model Algorithms and Options A-14 A.4 Summary of Data and Computer Requirements A-23 B. GEOPHYSICAL DATA PROCESSORS B-1 B.1 TERREL Terrain Preprocessor B-3 B.2 Land Use Data Preprocessors (CTGCOMP and CTGPROC) B-17 B.3 MAKEGEO B-31 B.4 NIMA DATUM REFERENCE INFORMATION B-42 C. METEOROLOGICAL DATA PROCESSORS C-1 C.1 READ62 UPPER AIR PREPROCESSOR C-1 C.2 PXTRACT PRECIPITATION DATA EXTRACT PROGRAM C-12 C.3 PMERGE PRECIPITATION DATA PREPROCESSOR C-19 C.4 SMERGE SURFACE DATA METEOROLOGICAL PREPROCESSOR C-29 C.5 BUOY OVER-WATER DATA METEOROLOGICAL PREPROCESSOR C-39 D. PROGNOSTIC METEOROLOGICAL DATA PROCESSORS D-1 D.1 CALMM5 D-1 D.2 CALETA D-25 D.3 CALRUC D-40 D.4 CALRAMS D-48 D.5 3D.DAT OUTPUT FILE D-53 E. CALMET MODEL FILES E-1 E.1 User Control File (CALMET.INP) E-5 E.2 Geophysical Data File (GEO.DAT) E-49 E.3 Upper Air Data Files (UP1.DAT, UP2.DAT,...) E-61 E.4 Surface Meteorological Data File (SURF.DAT) E-66 E.5 Overwater Data Files (SEA1.DAT, SEA2.DAT, ...) E-70 E.6 Precipitation Data File (PRECIP.DAT) E-74 E.7 Preprocessed Diagnostic Model Data File (DIAG.DAT) E-78 E.8 Prognostic Model Data File (PROG.DAT) E-82 E.9 3D Model Data Files (3D.DAT) E-84 E.10 Terrain Weighting Factor Data File (WT.DAT) E-102 E.11 CALMET Output Files E-109 Volume II & III References A. -
Atmospheric Aerosol Properties and Climate Impacts
Atmospheric Aerosol Properties and Climate Impacts U.S. Climate Change Science Program Synthesis and Assessment Product 2.3 January 2009 FEDERAL EXECUTIVE TEAM Director, Climate Change Science Program: ................................William J. Brennan Director, Climate Change Science Program Office: .....................Peter A. Schultz Lead Agency Principal Representative to CCSP, Associate Director for Research, Earth Science Division, National Aeronautics and Space Administration: .........................Jack Kaye Lead Agency Point of Contact, Earth Science Division, National Aeronautics and Space Administration: ...........................Hal Maring Product Lead, Laboratory for Atmospheres, Earth Science Division, Goddard Space Flight Center, National Aeronautics and Space Administration: ..........................Mian Chin Chair, Synthesis and Assessment Product Advisory Group Associate Director, National Center for Environmental Assessment, U.S. Environmental Protection Agency: ....................Michael W. Slimak Synthesis and Assessment Product Coordinator, Climate Change Science Program Office: ......................................Fabien J.G. Laurier EDITORIAL AND PRODUCTION TEAM Editors: ..........................................................................................Mian Chin, NASA ..........................................................................................Ralph A. Kahn, NASA ..........................................................................................Stephen E. Schwartz, DOE Graphic Design: -
Evaluation of ISC3, AERMOD, and ADMS Dispersion Models with Observations from Five Field Sites
EVALUATION OF THE ADMS, AERMOD, AND ISC3 DISPERSION MODELS WITH THE OPTEX, DUKE FOREST, KINCAID, INDIANAPOLIS, AND LOVETT FIELD DATA SETS Steven R. Hanna*, Bruce A. Egan**, John Purdum***, and Jen Wagler**** *CSI MS 5C3, George Mason Univ., Fairfax, VA 22030-4444 USA **Egan Environmental, 75 Lothrop St., Beverly, MA 01915 USA ***17 Peters Way, North Attleboro, MA 02760 USA ****URS Greiner Woodward-Clyde, 38 Chauncy St., Boston, MA 02111 USA ABSTRACT The model evaluation exercise addresses the question whether the new models, ADMS and AERMOD, produce improvements over ISC3 when compared with a range of field observations. ADMS and AERMOD have similar state-of-the-art scientific components, whereas ISC3 contains 1960s technology. The five sets of field observations used in the statistical evaluation represent a cross-section of typical scenarios encountered by modelers. The OPTEX data base concerns non-buoyant tracer releases within an oil refinery complex, and the Duke Forest data base involves non-buoyant tracer releases from area and volume sources in an open field. The Kincaid, Indianapolis, and Lovett data bases all deal with buoyant plumes from tall stacks at power plants. However, the settings are quite different, since the Kincaid plant is surrounded by flat farmland, the Indianapolis plant is located in an urban environment, and the Lovett plant is sited in a valley surrounded by complex terrain with monitors at elevations higher than the stack. Analysis of the model performance measures suggest that ISC3 typically overpredicts, has a scatter of about a factor of three, and has about 33% of its predictions within a factor of two of observations.