Predicting Air Quality Near Roadway Intersections Through the Applicat

Total Page:16

File Type:pdf, Size:1020Kb

Predicting Air Quality Near Roadway Intersections Through the Applicat University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2004 Predicting Air Quality Near Roadway Intersections Through The Applicat Brian Kim University of Central Florida Part of the Environmental Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Kim, Brian, "Predicting Air Quality Near Roadway Intersections Through The Applicat" (2004). Electronic Theses and Dissertations, 2004-2019. 200. https://stars.library.ucf.edu/etd/200 PREDICTING AIR QUALITY NEAR ROADWAY INTERSECTIONS THROUGH THE APPLICATION OF A GAUSSIAN PUFF MODEL TO MOVING SOURCES by BRIAN Y. KIM B.S. University of California at Irvine, 1990 M.S. California Polytechnic State University at San Luis Obispo, 1996 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Civil and Environmental Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Fall Term 2004 ABSTRACT With substantial health and economic impacts attached to many highway-related projects, it has become imperative that the models used to assess air quality be as accurate as possible. The United States (US) Environmental Protection Agency (EPA) currently promulgates the use of CAL3QHC to model concentrations of carbon monoxide (CO) near roadway intersections. This model uses steady-state and macroscopic methods to model the physical phenomena (e.g., emission rates, atmospheric dispersion, etc.) occurring at intersections. These methods are not straightforward and unintuitive for the users. Therefore, this project investigated the possibility of developing a model that is theoretically more realistic and flexible than CAL3QHC. The new model entitled, Traffic Air Quality Simulation Model (TRAQSIM), uses a microscopic approach by modeling vehicle movements and dispersion in a simulation environment. Instead of steady-state plume equations used in the CAL3QHC model, TRAQSIM uses a discrete puff methodology that can be used to model time-based dispersion of pollutants. Most of the components incorporated into TRAQSIM have been drawn from existing methodologies and therefore, are not new. However, the combination of these different methods into a single integrated model is new and presents a novel approach to such a model. Initial verification and sensitivity/trend studies of the model indicate that TRAQSIM uses reasonable/realistic traffic parameters and behaves intuitively correct. A validation study showed that TRAQSIM produces good results when compared to actual measured data with an overall R2 value of 0.605 for 11 scenarios comprising 264 data points. Although most statistical parameters showed CAL3QHC agrees better overall with measured data (R2 value of 0.721), the comparisons were mixed on a scenario-by-scenario basis; that is, CAL3QHC showed better ii results for 6 scenarios and TRAQSIM showed better results for 5 scenarios. Additional tests with larger datasets, which were beyond the scope of this work, could be conducted to obtain more definitive conclusions and allow further development of TRAQSIM. While CAL3QHC is a mature model that has been developed over many years, TRAQSIM is new and has much more potential for improvement. The physical parameters used in TRAQSIM allow it to be more directly (more logically) improved than the approximations used in CAL3QHC. In addition, although the fundamental-level modeling in TRAQSIM make it a more complex model internally, it is much more intuitive for the user to understand and use. iii To my parents and brother, Who have supported me in all the things I have done in my life To my wife’s parents, Who have given me my soul mate To my daughter, Rachel Who has given me such joy To my wife, Linda Whom I fall in love with each day iv ACKNOWLEDGMENTS I would like to express my gratitude to my advisor, Dr. Roger L. Wayson, without who’s guidance I could not have completed this degree. I am forever grateful for all of the financial and moral support that he has provide over the years. And I can truly say that I would not be where I am today without him. I would also like to thank the other members of my committee: Dr. C. David Cooper for the best air quality book ever published and for setting an example of quality work; Dr. Linda C. Malone for the best statistics course I ever took; Dr. Essam Radwan for his great departmental advice and encouragement; and Mr. Gregg G. Fleming for his generosity in the workplace and who’s work ethic I try to emulate. I also need to officially acknowledge my parents and brother. Without their support and nurturing through the years, this degree would not have been achievable. They have earned the right to call the degree theirs. And finally, my wife Linda has to be acknowledged. Her support and endurance have given me the strength and inspiration to complete this dissertation. She has definitely been my better half. v TABLE OF CONTENTS ABSTRACT.................................................................................................................................... ii ACKNOWLEDGMENTS .............................................................................................................. v TABLE OF CONTENTS...............................................................................................................vi LIST OF FIGURES ....................................................................................................................... xi LIST OF TABLES....................................................................................................................... xiv LIST OF TABLES....................................................................................................................... xiv LIST OF ACRONYMS/ABBREVIATIONS.............................................................................. xvi LIST OF ACRONYMS/ABBREVIATIONS.............................................................................. xvi CHAPTER ONE: INTRODUCTION............................................................................................. 1 1.1 Problem Statement................................................................................................................ 1 1.2 Objective............................................................................................................................... 3 1.3 Overview of New Model ...................................................................................................... 4 1.4 Organization.......................................................................................................................... 5 CHAPTER TWO: LITERATURE REVIEW................................................................................. 6 2.1 Comparable Intersection Air Quality Models....................................................................... 6 2.1.1 CAL3QHC ..................................................................................................................... 6 2.1.2 CALINE4....................................................................................................................... 8 2.1.3 TEXIN2-4 ...................................................................................................................... 9 2.1.4 FLINT ............................................................................................................................ 9 2.1.5 HYROAD 1.1 .............................................................................................................. 10 2.2 Emission Factor Models ..................................................................................................... 11 vi 2.2.1 MOBILE ...................................................................................................................... 11 2.2.2 EMFAC........................................................................................................................ 14 2.2.3 Colorado Department of Highways (CDOH) Method................................................. 14 2.2.4 CALINE4’s Modal Emissions Model.......................................................................... 16 2.2.5 Virginia Tech’s Microscopic Emissions Model .......................................................... 17 2.2.6 Georgia Tech’s MEASURE model.............................................................................. 18 2.2.7 University of California at Riverside’s (UCR’s) Comprehensive Modal Emissions Model (CMEM) .................................................................................................................... 19 2.3 Traffic Simulation Models.................................................................................................. 20 2.3.1 Urban Street Network Simulation: NETSIM.............................................................. 20 2.3.2 Freeway Network Simulation: FRESIM..................................................................... 21 2.4 Atmospheric Dispersion Models......................................................................................... 22 2.4.1 AERMOD ...................................................................................................................
Recommended publications
  • Table of Contents
    CALPUFF Modeling System Version 6 User Instructions April 2011 Section 1: Introduction Table of Contents Page 1. OVERVIEW ...................................................................................................................... 1-1 1.1 CALPUFF Version 6 Modeling System............................................................... 1-1 1.2 Historical Background .......................................................................................... 1-2 1.3 Overview of the Modeling System ....................................................................... 1-7 1.4 Major Model Algorithms and Options................................................................. 1-19 1.4.1 CALMET................................................................................................ 1-19 1.4.2 CALPUFF............................................................................................... 1-23 1.5 Summary of Data and Computer Requirements .................................................. 1-28 2. GEOPHYSICAL DATA PROCESSORS.......................................................................... 2-1 2.1 TERREL Terrain Preprocessor............................................................................. 2-3 2.2 Land Use Data Preprocessors (CTGCOMP and CTGPROC) ............................. 2-27 2.2.1 Obtaining the Data.................................................................................. 2-27 2.2.2 CTGCOMP - the CTG land use data compression program .................. 2-29 2.2.3 CTGPROC - the land use preprocessor
    [Show full text]
  • Technical Assistance for Improving Emissions Control the Role Of
    This Project is Co-Financed by the European Union and the Republic of Turkey This Project is c This project is co-financed by the European Union and the Republic of Turkey Technical Assistance for Improving Emissions Control Service Contract No: TR0802.03-02/001 Identification No: EuropeAid/128897/D/SER/TR The Role of Emissions Dispersion Modelling in Cost Benefit Analysis Applied to Urban Air Quality Management: Part 1-the Approach (Version 2: 18 May 2012) This publication has been produced with the assistance of the European Union. The content of this publication is the sole responsibility of the Consortium led by PM Group and can in no way be taken to reflect the views of the European Union. Contracting Authority: Central Finance and Contracting Unit, Turkey Implementing Authority / Beneficiary: Ministry of Environment and Urbanisation Project Title: Improving Emissions Control Service Contract Number: TR0802.03-02/001 Identification Number: EuropeAid/128897/D/SER/TR PM Project Number: 300424 This project is co-financed by the European Union and the Republic of Turkey The Role of Emissions Dispersion Modelling in Cost Benefit Analysis Applied to Urban Air Quality Management: Part 1 – the Approach Version 2: 18 May 2012 PM File Number: 300424-06-RP-200 PM Document Number: 300424-06-205(2) CURRENT ISSUE Issue No.: 2 Date: 18/05/2012 Reason for Issue: Final Version for Client Approval Customer Approval Sign-Off Originator Reviewer Approver (if required) Scott Hamilton, Peter Print Name Russell Frost Jim McNelis Faircloth, Chris Dore Signature Date PREVIOUS ISSUES (Type Names) Issue No. Date Originator Reviewer Approver Customer Reason for Issue 1 14/03/2012 Scott Hamilton, Peter Russell Frost Jim McNelis For client review / comment Faircloth, Chris Dore CFCU / MoEU 300424-06-RP-205 (2) TA for Improving Emissions Control 18 May 2012 CONTENTS GLOSSARY OF ACRONYMS ......................................................................................
    [Show full text]
  • MARK R THEOBALD.Pdf
    TESIS DOCTORAL / Ph.D THESIS An Intercomparison of Modelling Approaches for Simulating the Atmospheric Dispersion of Ammonia Emitted by Agricultural Sources Mark R. Theobald Madrid 2012 E.T.S.I. Agrónomos Universidad Politécnica de Madrid Departamento de Química y Análisis Agrícola Escuela Técnica Superior de Ingenieros Agrónomos An Intercomparison of Modelling Approaches for Simulating the Atmospheric Dispersion of Ammonia Emitted by Agricultural Sources Autor: Mark R. Theobald Licenciado en Ciencias Físicas (MPhys hons) Directores: Dr. Antonio Vallejo Garcia Doctor en Ciencias Químicas Dr. Mark A. Sutton Doctor en Ciencias Físicas Madrid 2012 Acknowledgements ACKNOWLEDGEMENTS This work was funded by the European Commission through the NitroEurope Integrated Project (Contract No. 017841 of the EU Sixth Framework Programme for Research and Technological Development). The European Science Foundation also provided additional funding through COST Action 729 for the attendance of conferences and workshops and for the collaboration with the University of Lisbon (COST-STSM-729-5799). Firstly I would like to thank my two supervisors Dr. Mark A. Sutton and Prof. Antonio Vallejo for their support and guidance throughout this work. I am grateful to Mark not only for his willingness to discuss and direct this work no matter where he was in the world or whatever time of day it was, but also for the support and encouragement I received when I was at CEH Edinburgh. I am also grateful to Antonio for guiding me through the labyrinths of University bureaucracy. I would also like to thank the other research groups with whom I have collaborated throughout this work. Thanks to all my colleagues at CEH Edinburgh with a special mention to Bill Bealey for his help developing the SCAIL model and to Sim Tang for providing the ALPHA samplers and technical support.
    [Show full text]
  • Evaluation of Chemical Dispersion Models Using Atmospheric Plume Measurements from Field Experiments EPA Contract No
    September 2012 FINAL REPORT FINAL REPORT Evaluation of Chemical Dispersion Models using Atmospheric Plume Measurements from Field Experiments EPA Contract No: EP‐D‐07‐102 Work Assignment No: 4‐06 and 5‐08 Prepared for: Office of Air Quality Planning and Standards U.S. Environmental Protection Agency 109 T.W. Alexander Drive Mail Code: C439‐1 Research Triangle Park, NC 27709 Prepared by: ENVIRON International Corporation 773 San Marin Drive, Suite 2115 Novato, California, 94998 Under Subcontract to the University of North Carolina at Chapel Hill September 2012 06‐20443M6 UNC–EMAQ 4‐06.018.v4 September 2012 FINAL REPORT UNC–EMAQ 4‐06.016.v4 i September 2012 FINAL REPORT Contents Page 1.0 INTRODUCTION ..................................................................................................... 1 1.1 BACKGROUND ..................................................................................................... 1 1.2 PURPOSE ............................................................................................................. 2 1.3 OVERVIEW OF APPROACH .................................................................................. 2 1.3.1 Field Experiments used in the Evaluation ............................................. 2 1.3.2 Models Evaluated .................................................................................. 2 1.4 ORGANIZATION OF THE REPORT ........................................................................ 2 2.0 TECHNICAL APPROACH .........................................................................................
    [Show full text]
  • Development of the Next Generation Air Quality Models for Outer Continental Shelf (OCS) Applications
    Development of the Next Generation Air Quality Models for Outer Continental Shelf (OCS) Applications Final Report: Volume 2 - CALPUFF Users Guide (CALMET and Preprocessors) March 2006 Prepared For: U.S. Department of the Interior, Minerals Management Service, Herndon, VA Contract No. 1435-01-01-CT-31071 Prepared By: Earth Tech, Inc. 196 Baker Avenue Concord, Massachusetts 01742 (978) 371-4000 Contents A. OVERVIEW A-1 A.1 Background A-1 A.2 Overview of the Modeling System A-4 A.3 Major Model Algorithms and Options A-14 A.4 Summary of Data and Computer Requirements A-23 B. GEOPHYSICAL DATA PROCESSORS B-1 B.1 TERREL Terrain Preprocessor B-3 B.2 Land Use Data Preprocessors (CTGCOMP and CTGPROC) B-17 B.3 MAKEGEO B-31 B.4 NIMA DATUM REFERENCE INFORMATION B-42 C. METEOROLOGICAL DATA PROCESSORS C-1 C.1 READ62 UPPER AIR PREPROCESSOR C-1 C.2 PXTRACT PRECIPITATION DATA EXTRACT PROGRAM C-12 C.3 PMERGE PRECIPITATION DATA PREPROCESSOR C-19 C.4 SMERGE SURFACE DATA METEOROLOGICAL PREPROCESSOR C-29 C.5 BUOY OVER-WATER DATA METEOROLOGICAL PREPROCESSOR C-39 D. PROGNOSTIC METEOROLOGICAL DATA PROCESSORS D-1 D.1 CALMM5 D-1 D.2 CALETA D-25 D.3 CALRUC D-40 D.4 CALRAMS D-48 D.5 3D.DAT OUTPUT FILE D-53 E. CALMET MODEL FILES E-1 E.1 User Control File (CALMET.INP) E-5 E.2 Geophysical Data File (GEO.DAT) E-49 E.3 Upper Air Data Files (UP1.DAT, UP2.DAT,...) E-61 E.4 Surface Meteorological Data File (SURF.DAT) E-66 E.5 Overwater Data Files (SEA1.DAT, SEA2.DAT, ...) E-70 E.6 Precipitation Data File (PRECIP.DAT) E-74 E.7 Preprocessed Diagnostic Model Data File (DIAG.DAT) E-78 E.8 Prognostic Model Data File (PROG.DAT) E-82 E.9 3D Model Data Files (3D.DAT) E-84 E.10 Terrain Weighting Factor Data File (WT.DAT) E-102 E.11 CALMET Output Files E-109 Volume II & III References A.
    [Show full text]
  • Calpuff Real Case Studies
    Modelling exercise with Calpuff. Real case studies. Activity 4. Tools for response management Action 4.2. Airborne Pollution Propagation from water incidents ARCOPOL The Atlantic Regions’ Coastal Pollution Response Version: 1.0 Last updated on: 30/12/201 1 Author: Patricia Simal Campos, Vicente Pérez-Muñuzuri, Breogán Gómez Hombre Responsible partner: MeteoGalicia. Consellería de Medio Ambiente, Territorio e Infraestructuras. Involved partners: CETMAR, MeteoGalicia- Consellería de Medio Ambiente, Territorio e Infraestructuras, INTECMAR, IST, CIIMAR, Agencia de Medio Ambiente y Agua de Andalucía, Irish Marine Institute, C.R. de Bretagne, C.R. d’Aquitaine Table of contents Page 1. Introduction ............................................................................................................ 7 2. The CALPUFF Modelling System .......................................................................... 7 3. Model Selection ...................................................................................................... 9 4. Emergency episodes ........................................................................................... 10 4.1. Kerosene spill in O Burgo estuary - A Coruña (September 2nd 2011) ....... 10 4.1.1. Description of the emergency ............................................................... 10 4.1.2. Meteorological conditions ..................................................................... 12 4.1.3. Surface weather station near the incident ............................................ 14 4.1.4. Air
    [Show full text]
  • WHO. Guidance for Identifying Populations at Risk from Mercury Exposure. Issued by UNEP DTIE Chemicals Branch
    UNITED NATIONS ENVIRONMENT PROGRAMME DTIE CHEMICALS BRANCH GUIDANCE FOR IDENTIFYING POPULATIONS AT RISK FROM MERCURY EXPOSURE August 2008 Issued by UNEP DTIE Chemicals Branch and WHO Department of Food Safety, Zoonoses and Foodborne Diseases Geneva, Switzerland ii Disclaimer: This publication is intended to serve as a guide. While the information provided is believed to be accurate, UNEP and WHO disclaim any responsibility for possible inaccuracies or omissions and consequences that may flow from them. UNEP, WHO, or any individual involved in the preparation of this publication shall not be liable for any injury, loss, damage or prejudice of any kind that may be caused by persons who have acted based on their understanding of the information contained in this publication. The designation employed and the presentation of material in this publication do not imply any expression of any opinion whatsoever on the part of the United Nations, UNEP, or WHO concerning the legal status of any country, territory, city or area or any of its authorities, or concerning any definition of frontiers or boundaries. This publication is produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC). This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen co-operation and increase international co-ordination in the field of chemical safety. The participating organisations are FAO, ILO, OECD, UNEP, UNIDO, UNITAR and WHO.
    [Show full text]
  • Dear Dr. Garrett, We Have Addressed the Comments from Reviewers 1 and 2 and Incorporated Changes Into a Revised Manuscript. Plea
    Dear Dr. Garrett, We have addressed the comments from Reviewers 1 and 2 and incorporated changes into a revised manuscript. Please find the referees’ comments, our point-by-point responses, and a marked up version of the manuscript below. The text in black are the replies uploaded to ACPD. During incorporation of the revisions, we change our minds on a few points. These changes are noted in red text, as are indications for where to find the related changes in the manuscript. Thank you for considering this manuscript for publication in ACP. Thanks, Natalie Wagenbrenner Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2015-761-RC1, 2016 ACPD © Author(s) 2016. CC-BY 3.0 License. Interactive comment Interactive comment on “Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja” by N. S. Wagenbrenner et al. Anonymous Referee #1 Received and published: 21 February 2016 Review This is very well-written and well-constructed, scientifically sound paper that is of ben- efit to the scientific community. I don’t have any major issues with the paper as-is. However, some discussion of the following issues would strengthen the paper in my opinion: 1. For Figures 1, and 6-8 it would be really helpful to have the Big Southern Butte area Printer-friendly version zoomed in more. I have a hard time seeing what is going on in that region and then the rest of the plots are mostly empty with a few observations scattered downstream. Discussion paper What I would recommend would be to have a zoomed-in plot of the Big Southern Butte area.
    [Show full text]
  • Performance Evaluation of CALPUFF and AERMOD Dispersion Models for Air Quality Assessment of an Industrial Complex
    Journal of Scientific & Industrial Research Vol. 74, May 2015, pp. 302-307 Performance evaluation of CALPUFF and AERMOD dispersion models for air quality assessment of an industrial complex S Gulia1, A Kumar2 and M Khare3* 1,2 & *3Civil Engineering Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India Received 18 December 2013; revised 7 October 2014; accepted 23 April 2015 Air quality model (AQM) is an essential tool for management of air quality in near field region of an industrial complex. Model validation study using site specific input data can boost the consistency on accuracy of model’s performance for air quality management. This study describes the validation of CALPUFF and AERMOD for assessment of NOx concentrations in near field region of a steel industry in Bellary district of Karnataka state in India. Relative model performances are evaluated by comparing monitored and predicted pollutants using well referred statistical descriptors. Further, the performance of CALPUFF has evaluated with different dispersion options (i.e., PGT-ISC dispersion curve and similarity theory) and vertical layers option (i.e., two and ten vertical layers) in CALMET, meteorological pre-processor of CALUFF. Both models performed satisfactorily for predicting NOx concentrations. Further, CALPUFF with different dispersion options performed more satisfactorily than AERMOD. CALPUFF with PGT- ISC dispersion curve option performed more satisfactorily than similarity theory based dispersion option for the selected pollutant. In addition to this, CALPUFF with two vertical layers option performed better than ten vertical layers option. The satisfactory performance of CALPUFF over AERMOD might be due to its predicting capability in calm condition, in which all plume dispersion models failed.
    [Show full text]
  • Table of Session Oral and Poster Presentation (Red Written Papers Are Not Available)
    Table of Session Oral and Poster presentation (red written papers are not available) Session 1 Model Evaluation Session 2 : Air Quality Management ; the EU air quality directive Session 3 Urban Air Quality Modelling Session 4 Model Intercomparison Session 5 Street Canyon Models Session 6 Decision Support System Session 7 Meteorological Pre-Processing CORIA – UMR 6614. CNRS – UNIVERSITE & INSA DE ROUEN – France. Tel: 33 (0)2 32 95 97 82 - Fax: 33 (0)2 32 95 97 80 - E-mail: [email protected] - Http://www.coria.fr Session 1 Model Evaluation CORIA – UMR 6614. CNRS – UNIVERSITE & INSA DE ROUEN – France. Tel: 33 (0)2 32 95 97 82 - Fax: 33 (0)2 32 95 97 80 - E-mail: [email protected] - Http://www.coria.fr Table of contents Session 1 Model Evaluation Oral Presentation. Paper 1 QUALITY ASSURANCE OF URBAN DISPERSION MODELS M. Schatzmann & B. Leitl,Germany Paper 8 INTERCOMPARISON OF THE LAGRANGIAN AND EULERIEAN MODEL PREDICTIONS AT LOCAL SCALE WITH MEASURED CONCENTRATIONS V.Sandu, Romania Paper 13 SIMULATIONS OF ATMOSPHERIC DISPERSION IN URBAN STABLE BOUNDARY LAYER E. Ferrero, D. Anfonssi, G Tinarelli, Italy Paper 20 EVALUATION OF A NON-GAUSSIAN PUFF MODEL T. Tirabassi, C. Mangia and U. Rizza, Italy Paper 24 STUDY OF TURBULENCE AND POLLUTANT DISPERSION UNDER NEUTRALLY AND UNSTABLY STRATIFIED ATMOSHERE UNSING A SECOND- ORDER EULERIAN MODEL C.H. Liu and D. Y. C. Leung, China. Paper 31 A LAGRANGIAN-PUFF DISPERSION MODEL: EVALUATION AGAINST TRACER DATA C. Mangia, U. Rizza, Italy Paper 38 EFFECTS OF CONCENTRATION FLUCTUATIONS ON STATISTICAL EVALUATIONS OF CENTERLINE CONCENTRATION ESTIMATES BY ATMOSPHERIC DISPERSION MODELS J.
    [Show full text]
  • DUSTRAN 2.0 User's Guide
    PNNL-24049 DUSTRAN 2.0 User’s Guide: A GIS-Based Atmospheric Dust Dispersion Modeling System March 2015 WJ Shaw FC Rutz JP Rishel EG Chapman Prepared for the U.S. Department of Defense Strategic Environmental Research and Development Program under a Related Services Agreement with the U.S. Department of Energy under contract DE-AC05-76RL01830 PNNL-24049 DUSTRAN 2.0 User’s Guide: A GIS-Based Atmospheric Dust Dispersion Modeling System WJ Shaw FC Rutz JP Rishel EG Chapman March 2015 Prepared for the U.S. Department of Defense Strategic Environmental Research and Development Program under a Related Services Agreement with the U.S. Department of Energy under contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Summary The U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) completed a multi-year project to update the DUSTRAN atmospheric dispersion modeling system, which is being used to assist the U.S. Department of Defense (DoD) in addressing particulate air quality issues at military training and testing ranges. This version—DUSTRAN V2.0—includes (1) a complete replacement of the geographic information system (GIS) platform to include the utilization of open-source GIS software (MapWindow) (2) user profiles to allow multiple users to run individual simulations using separate sites (3) integration of the Environmental Protection Agency’s (EPA’s) AERMOD air-dispersion model for modeling near- field (less than 50 km) releases, including an option to use a formulation for near-field deposition derived from new work by the Desert Research Institute; and (4) updates to the dust source-term module for military vehicles to include additional vehicle and soil types, as well as enhanced formulations for particle deposition.
    [Show full text]
  • A User's Guide for the CALPUFF Dispersion Model
    A User’s Guide for the CALPUFF Dispersion Model (Version 5) Prepared by: Joseph S. Scire David G. Strimaitis Robert J. Yamartino Earth Tech, Inc. 196 Baker Avenue Concord, MA 01742 January 2000 Copyright © 1998, 1999,2000 by Earth Tech, Inc. All Rights Reserved Table of Contents 1. OVERVIEW ...................................................................1-1 1.1 Background ..........................................................1-1 1.2 Overview of the CALPUFF Modeling System ...............................1-3 1.3 CALPUFF Features and Options.........................................1-11 1.4 Summary of CALPUFF Data and Computer Requirements....................1-15 2. TECHNICAL DISCUSSION ......................................................2-1 2.1 Solution of the Puff Equations............................................2-1 2.1.1 Integrated Puff Sampling Function Formulation .......................2-4 2.1.2 Slug Formulation and Sampling Functions ...........................2-7 2.1.3 Sampling Function Testing .......................................2-15 2.2 Dispersion ..........................................................2-23 2.2.1 Atmospheric Turbulence Components ..............................2-24 2.2.2 Buoyancy - Induced Dispersion ...................................2-36 2.2.3 Initial Plume Size ..............................................2-37 2.2.4 Puff Splitting (Vertical Wind Shear) ...............................2-37 2.2.5 The P.D.F. Option for the Convective Boundary Layer .................2-39 2.2.6 Vertical Puff Stretching
    [Show full text]