Dispersion Modeling Systems Relevant to Homeland Security Preparedness and Response

Total Page:16

File Type:pdf, Size:1020Kb

Dispersion Modeling Systems Relevant to Homeland Security Preparedness and Response EPA/600/R-20/338| October 2020 | www.epa.gov/research Dispersion Modeling Systems Relevant to Homeland Security Preparedness and Response photo Office of Research and Development CESER/HSMMD/DCB 1 EPA/600/R-20/338 October 2020 Dispersion Modeling Systems Relevant to Homeland Security Preparedness and Response by Michael Pirhalla Office of Research and Development (ORD) Research Triangle Park, NC 27711 HSRP RAP Product ID: HS19-01.01 – 4497 Project Officer Center for Environmental Solutions and Emergency Response (CESER) Homeland Security and Materials Management Division (HSMMD) Disaster Characterization Branch (DCB) Research Triangle Park, NC 27711 Disclaimer The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development funded and managed this project through intramural research. It has been subjected to the Agency’s review and has been approved for publication. Note that approval does not signify that the contents necessarily reflect the views of the Agency. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or EPA. The EPA does not endorse any commercial products, services, or enterprises. Questions concerning this document, or its application should be addressed to: Michael Pirhalla, M.S. U.S. Environmental Protection Agency (US EPA) Office of Research and Development (ORD) Center for Environmental Solutions and Emergency Response (CESER) Homeland Security and Materials Management Division (HSMMD) Disaster Characterization Branch (DCB) 109 T.W. Alexander Dr. (MD E343-06) Research Triangle Park, NC 27711 Phone: 919-541-0782 [email protected] ii Abstract As one of its core research focuses, the U.S. Environmental Protection Agency’s (EPA’s) Homeland Security Research Program (HSRP) is interested in refining its tools and methodologies to better characterize the fate and transport of hazardous contaminants during all phases of an emergency response. Atmospheric dispersion modeling is one tool that can be used for effective emergency preparation or response from hazardous chemical, biological, radiological, nuclear, and explosive (CBRNe) releases, especially in urban areas where population densities are high and wind flow becomes altered between buildings and street canyons. The goal of this report is to explain the fundamental concepts of atmospheric transport and dispersion and provide a comprehensive database of dispersion models that can be used for emergency preparation and response to facilitate discussion between public, private, academic, and/or government sectors. The abundance of available modeling options creates confusion and results in challenging decisions regarding the type of model to be used during different scenarios. A comprehensive dispersion model review of this magnitude has also not occurred recently. This report provides a literature review of previous model review efforts to lay the foundation for this updated database, provides introductory concepts on boundary layer meteorology and the types of dispersion models available (e.g. Gaussian Plume or Puff, Lagrangian, or CFD models), and outlines a comprehensive list of 96 dispersion models that could be considered for wide-area release risks. Sixteen of those models were selected for a more detailed two-page review due to their potential applicability and usefulness for emergency response. This model review is not meant to recommend or endorse a specific model, but to provide users with a resource of available modeling options. Even though no single model tends to have all the capabilities that are beneficial during the consequence management of a wide area release, this report is meant to identify the strengths and limitations so users can make informed decisions. This report covers a research period from September 2018 to June 2020 and work was completed as of July 2020 as part of the author’s Ph.D. dissertation. iii Foreword The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future. The Center for Environmental Solutions and Emergency Response (CESER) within the Office of Research and Development (ORD) conducts applied, stakeholder-driven research and provides responsive technical support to help solve the Nation’s environmental challenges. The Center’s research focuses on innovative approaches to address environmental challenges associated with the built environment. We develop technologies and decision-support tools to help safeguard public water systems and groundwater, guide sustainable materials management, remediate sites from traditional contamination sources and emerging environmental stressors, and address potential threats from terrorism and natural disasters. CESER collaborates with both public and private sector partners to foster technologies that improve the effectiveness and reduce the cost of compliance, while anticipating emerging problems. We provide technical support to EPA regions and programs, states, tribal nations, and federal partners, and serve as the interagency liaison for EPA in homeland security research and technology. The Center is a leader in providing scientific solutions to protect human health and the environment. Gregory Sayles, Director Center for Environmental Solutions and Emergency Response iv Table of Contents Disclaimer ................................................................................................................................................... ii Abstract ...................................................................................................................................................... iii Foreword .................................................................................................................................................... iv Table of Contents ........................................................................................................................................ v List of Figures .......................................................................................................................................... viii List of Tables ............................................................................................................................................. ix Acronyms and Abbreviations ..................................................................................................................... x Acknowledgments.................................................................................................................................... xvi 1.0 Introduction ...................................................................................................................................... 1 2.0 Project Background and Goals ......................................................................................................... 3 2.1 Project Motivation ........................................................................................................................ 3 2.2 Background and Previous Model Review Efforts ........................................................................ 4 2.3 Project Goals ................................................................................................................................ 5 2.4 Literature Quality Assurance ....................................................................................................... 6 3.0 Emergency Response and Dispersion Modeling ............................................................................. 7 3.1 Dispersion Modeling Definition................................................................................................... 7 3.2 CBRNe Terminology ................................................................................................................... 7 3.2.1 Chemical ............................................................................................................................... 7 3.2.2 Biological .............................................................................................................................. 8 3.2.3 Radiological .......................................................................................................................... 8 3.2.4 Nuclear .................................................................................................................................. 8 3.2.5 Explosive............................................................................................................................... 9 3.3 Stages of an Emergency Response ............................................................................................... 9 3.3.1 Prevention Framework .......................................................................................................... 9 3.3.2 Protection Framework ......................................................................................................... 10 3.3.3 Mitigation Framework
Recommended publications
  • Climate Models and Their Evaluation
    8 Climate Models and Their Evaluation Coordinating Lead Authors: David A. Randall (USA), Richard A. Wood (UK) Lead Authors: Sandrine Bony (France), Robert Colman (Australia), Thierry Fichefet (Belgium), John Fyfe (Canada), Vladimir Kattsov (Russian Federation), Andrew Pitman (Australia), Jagadish Shukla (USA), Jayaraman Srinivasan (India), Ronald J. Stouffer (USA), Akimasa Sumi (Japan), Karl E. Taylor (USA) Contributing Authors: K. AchutaRao (USA), R. Allan (UK), A. Berger (Belgium), H. Blatter (Switzerland), C. Bonfi ls (USA, France), A. Boone (France, USA), C. Bretherton (USA), A. Broccoli (USA), V. Brovkin (Germany, Russian Federation), W. Cai (Australia), M. Claussen (Germany), P. Dirmeyer (USA), C. Doutriaux (USA, France), H. Drange (Norway), J.-L. Dufresne (France), S. Emori (Japan), P. Forster (UK), A. Frei (USA), A. Ganopolski (Germany), P. Gent (USA), P. Gleckler (USA), H. Goosse (Belgium), R. Graham (UK), J.M. Gregory (UK), R. Gudgel (USA), A. Hall (USA), S. Hallegatte (USA, France), H. Hasumi (Japan), A. Henderson-Sellers (Switzerland), H. Hendon (Australia), K. Hodges (UK), M. Holland (USA), A.A.M. Holtslag (Netherlands), E. Hunke (USA), P. Huybrechts (Belgium), W. Ingram (UK), F. Joos (Switzerland), B. Kirtman (USA), S. Klein (USA), R. Koster (USA), P. Kushner (Canada), J. Lanzante (USA), M. Latif (Germany), N.-C. Lau (USA), M. Meinshausen (Germany), A. Monahan (Canada), J.M. Murphy (UK), T. Osborn (UK), T. Pavlova (Russian Federationi), V. Petoukhov (Germany), T. Phillips (USA), S. Power (Australia), S. Rahmstorf (Germany), S.C.B. Raper (UK), H. Renssen (Netherlands), D. Rind (USA), M. Roberts (UK), A. Rosati (USA), C. Schär (Switzerland), A. Schmittner (USA, Germany), J. Scinocca (Canada), D. Seidov (USA), A.G.
    [Show full text]
  • Evaluation of Fast Atmospheric Dispersion Models in a Regular
    Evaluation of fast atmospheric dispersion models in a regular street network Denise Hertwig, Lionel Soulhac, Vladimír Fuka, Torsten Auerswald, Matteo Carpentieri, Paul Hayden, Alan Robins, Zheng-Tong Xie, Omduth Coceal To cite this version: Denise Hertwig, Lionel Soulhac, Vladimír Fuka, Torsten Auerswald, Matteo Carpentieri, et al.. Eval- uation of fast atmospheric dispersion models in a regular street network. Environmental Fluid Me- chanics, Springer Verlag, 2018, 10.1007/s10652-018-9587-7. hal-01761232 HAL Id: hal-01761232 https://hal.archives-ouvertes.fr/hal-01761232 Submitted on 8 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Environ Fluid Mech manuscript No. (will be inserted by the editor) 1 Evaluation of fast atmospheric dispersion models in a regular 2 street network 3 Denise Hertwig · Lionel Soulhac · Vladim´ır 4 Fuka · Torsten Auerswald · Matteo Carpentieri · 5 Paul Hayden · Alan Robins · Zheng-Tong Xie · 6 Omduth Coceal 7 8 Received: date / Accepted: date 9 Abstract The need to balance computational speed and simulation accuracy is a key chal- 10 lenge in designing atmospheric dispersion models that can be used in scenarios where near 11 real-time hazard predictions are needed.
    [Show full text]
  • Part II: Practical Uses of Air Modeling in Litigation And
    Air Modeling as a Tool in Environmental Law and Policy: A Guide for Communities and Environmental Groups Part II: Practical Uses of Air Modeling in Litigation and Regulatory Contexts Clean Air Council 135 South 19th Street Suite 300 Philadelphia, PA 19103 (215) 567-4004 www.cleanair.org September 16, 2016 Authors and Purpose The authors are attorneys at the Clean Air Council at its headquarters in Philadelphia, Pennsylvania. The attorneys working on this White Paper were: Augusta Wilson, Esq., Aaron Jacobs-Smith, Esq., Benjamin Hartung, Esq., Christopher D. Ahlers, Esq., and Joseph Otis Minott, Esq., Executive Director and Chief Counsel. Clean Air Council is a non-profit, 501(c)(3) corporation with headquarters in Philadelphia, Pennsylvania. Acknowledgments The Clean Air Council thanks the Colcom Foundation. This paper would not have been possible without its generous funding and support. The authors would also like to thank Jini Chatterjee, Tessa Roberts and Paul Townsend, students at the University of Pennsylvania Law School’s Environmental Law Project, who conducted invaluable research for this paper, and Sonya Shea, who supervised their work at the Environmental Law Project. Disclaimer This paper is intended as a general introduction to the law and policy of air modeling under the Clean Air Act. Nothing in this paper is intended, nor shall it be construed as creating an attorney-client relationship or providing legal advice. © 2016 Clean Air Council 135 S. 19th Street Suite 300 Philadelphia, Pennsylvania 19103 Table of Contents Introduction .................................................................................................................................1 1. Use of Air Modeling to Support Tort Claims .....................................................................2 a. Challenges to the Use of Particular Modeling Software or to Underlying Assumptions .............................................................................................................2 b.
    [Show full text]
  • Documentation and Software User’S Manual, Version 4.1
    The Canadian Seasonal to Interannual Prediction System version 2 (CanSIPSv2) Canadian Meteorological Centre Technical Note H. Lin1, W. J. Merryfield2, R. Muncaster1, G. Smith1, M. Markovic3, A. Erfani3, S. Kharin2, W.-S. Lee2, M. Charron1 1-Meteorological Research Division 2-Canadian Centre for Climate Modelling and Analysis (CCCma) 3-Canadian Meteorological Centre (CMC) 7 May 2019 i Revisions Version Date Authors Remarks 1.0 2019/04/22 Hai Lin First draft 1.1 2019/04/26 Hai Lin Corrected the bias figures. Comments from Ryan Muncaster, Bill Merryfield 1.2 2019/05/01 Hai Lin Figures of CanSIPSv2 uses CanCM4i plus GEM-NEMO 1.3 2019/05/03 Bill Merrifield Added CanCM4i information, sea ice Hai Lin verification, 6.6 and 9 1.4 2019/05/06 Hai Lin All figures of CanSIPSv2 with CanCM4i and GEM-NEMO, made available by Slava Kharin ii © Environment and Climate Change Canada, 2019 Table of Contents 1 Introduction ............................................................................................................................. 4 2 Modifications to models .......................................................................................................... 6 2.1 CanCM4i .......................................................................................................................... 6 2.2 GEM-NEMO .................................................................................................................... 6 3 Forecast initialization .............................................................................................................
    [Show full text]
  • Results from the Implementation of the Elastic Viscous Plastic Sea Ice Rheology in Hadcm3 W
    Results from the implementation of the Elastic Viscous Plastic sea ice rheology in HadCM3 W. M. Connolley, A. B. Keen, A. J. Mclaren To cite this version: W. M. Connolley, A. B. Keen, A. J. Mclaren. Results from the implementation of the Elastic Viscous Plastic sea ice rheology in HadCM3. Ocean Science, European Geosciences Union, 2006, 2 (2), pp.201- 211. hal-00298295 HAL Id: hal-00298295 https://hal.archives-ouvertes.fr/hal-00298295 Submitted on 23 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ocean Sci., 2, 201–211, 2006 www.ocean-sci.net/2/201/2006/ Ocean Science © Author(s) 2006. This work is licensed under a Creative Commons License. Results from the implementation of the Elastic Viscous Plastic sea ice rheology in HadCM3 W. M. Connolley1, A. B. Keen2, and A. J. McLaren2 1British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 2Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, UK Received: 13 June 2006 – Published in Ocean Sci. Discuss.: 10 July 2006 Revised: 21 September 2006 – Accepted: 16 October 2006 – Published: 23 October 2006 Abstract. We present results of an implementation of the a full dynamical model incorporating wind stresses and in- Elastic Viscous Plastic (EVP) sea ice dynamics scheme into ternal ice stresses leads to errors in the detailed representa- the Hadley Centre coupled ocean-atmosphere climate model tion of sea ice and limits our confidence in its future predic- HadCM3.
    [Show full text]
  • Atmospheric Dispersion Modelling of Bioaerosols That Are Pathogenic to Humans and Livestock – a Review to Inform Risk Assessment Studies
    Microbial Risk Analysis 1 (2016) 19–39 Contents lists available at ScienceDirect Microbial Risk Analysis journal homepage: www.elsevier.com/locate/mran Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock – A review to inform risk assessment studies J.P.G. Van Leuken a,b,∗,A.N.Swarta, A.H. Havelaar a,b,c, A. Van Pul d, W. Van der Hoek a, D. Heederik b a Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands b Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands c Emerging Pathogens Institute and Animal Sciences Department, University of Florida, Gainesville, FL, United States of America d Environment & Safety (M&V), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands article info abstract Article history: In this review we discuss studies that applied atmospheric dispersion models (ADM) to bioaerosols that Received 19 May 2015 are pathogenic to humans and livestock in the context of risk assessment studies. Traditionally, ADMs have Revised 25 June 2015 been developed to describe the atmospheric transport of chemical pollutants, radioactive matter, dust, and Accepted 17 July 2015 particulate matter. However, they have also enabled researchers to simulate bioaerosol dispersion. Availableonline26July2015 To inform risk assessment, the aims of this review were fourfold, namely (1) to describe the most im- Keywords: portant physical processes related to ADMs and pathogen transport, (2) to discuss studies that focused on Airborne the application of ADMs to pathogenic bioaerosols, (3) to discuss emission and inactivation rate parameter- Pathogens isations, and (4) to discuss methods for conversion of concentrations to infection probabilities (concerning Respiratory infections quantitative microbial risk assessment).
    [Show full text]
  • Table of Contents
    CALPUFF Modeling System Version 6 User Instructions April 2011 Section 1: Introduction Table of Contents Page 1. OVERVIEW ...................................................................................................................... 1-1 1.1 CALPUFF Version 6 Modeling System............................................................... 1-1 1.2 Historical Background .......................................................................................... 1-2 1.3 Overview of the Modeling System ....................................................................... 1-7 1.4 Major Model Algorithms and Options................................................................. 1-19 1.4.1 CALMET................................................................................................ 1-19 1.4.2 CALPUFF............................................................................................... 1-23 1.5 Summary of Data and Computer Requirements .................................................. 1-28 2. GEOPHYSICAL DATA PROCESSORS.......................................................................... 2-1 2.1 TERREL Terrain Preprocessor............................................................................. 2-3 2.2 Land Use Data Preprocessors (CTGCOMP and CTGPROC) ............................. 2-27 2.2.1 Obtaining the Data.................................................................................. 2-27 2.2.2 CTGCOMP - the CTG land use data compression program .................. 2-29 2.2.3 CTGPROC - the land use preprocessor
    [Show full text]
  • Atmospheric Dispersion of Radioactive Material in Radiological Risk Assessment and Emergency Response
    Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 1, p.7-13 (2011) REVIEW Atmospheric Dispersion of Radioactive Material in Radiological Risk Assessment and Emergency Response YAO Rentai * China Institute for Radiation Protection, P.O.Box 120, Taiyuan, Shanxi 030006, China The purpose of a consequence assessment system is to assess the consequences of specific hazards on people and the environment. In this paper, the studies on technique and method of atmospheric dispersion modeling of radioactive material in radiological risk assessment and emergency response are reviewed in brief. Some current statuses of nuclear accident consequences assessment in China were introduced. In the future, extending the dispersion modeling scales such as urban building scale, establishing high quality experiment dataset and method of model evaluation, improved methods of real-time modeling using limited inputs, and so on, should be promoted with high priority of doing much more work. KEY WORDS: atmospheric model, risk assessment, emergency response, nuclear accident 11) I. Introduction from U.S. NOAA, and SPEEDI/WSPEEDI from The studies and developments of techniques and methods Japan/JAERI. However, the needs of emergency of atmospheric dispersion modeling of radioactive material management may not be well satisfied by existing models in radiological risk assessment and emergency response which are not well designed and confronted with difficulty have evolved over the past 50-60 years. The three marked in detailed constructions of local wind and turbulence
    [Show full text]
  • Coordination of Atmospheric Dispersion Activities for the Real-Time Decision Support System RODOS
    RODOS R-2-1997 RIS0-R-93O (EN) DK9700116 Coordination of Atmospheric Dispersion Activities for the Real-Time Decision Support System RODOS DECISION SUPPORT FOR NUCLEAR EMERGENCIES RODOS R-2-1997 RIS0-R-93O (EN) Coordination of Atmospheric Dispersion Activities for the Real-Time Decision Support System RODOS Torben Mikkelsen RIS0 National Laboratory Denmark July 1997 Secretariat of the RODOS Project: Forschungszentrum Karlsruhe Institut fur Neutronenphysik und Reaktortechnik P.O. Box 3640, 76021 Karlsruhe, Germany Phone: +49 7247 82 5507, Fax: +49 7247 82 5508 EMail: [email protected], Internet: http://rodos.fzk.de This work has been performed with the support of the European Commission Radiation Protection Research Action (DGXII-F-6) contract FI3P-CT92-0044 This report has been published as Report RIS0-R-93O (EN) (ISSN 0106-2840) (ISBN 87-550-2230-8) in May 1997 by RIS0 National Laboratory P.O. Box 49 DK-4000 Roskilde, Denmark Management Summary 1.1 Global Objectives: This projects task has been to coordinate activities among the RODOS Atmospheric Dispersion sub-group A participants (1) - (8), with the overall objective of developing and integrating an atmospheric transport and dispersion module for the joint European Real-time On- line DecisiOn Support system RODOS headed by FZK (formerly KfK), Germany. The projects final goal is the establishment of a fully operational, system-integrated atmospheric transport module for the RODOS system by year 2000, capable of consistent now- and forecasting of radioactive airborne spread over all types of terrain and on all scales of interest, including in particular complex terrain and the different scales of operation, such as the local, the national and the European scale.
    [Show full text]
  • Lecture 29. Introduction to Atmospheric Chemical Transport Models
    Lecture 29. Introduction to atmospheric chemical transport models. Part 1. Objectives: 1. Model types. 2. Box models. 3. One-dimensional models. 4. Two-dimensional models. 5. Three-dimensional models. Readings: Graedel T. and P.Crutzen. “Atmospheric change: an earth system perspective”. Chapter 15.”Bulding environmental chemical models”, 1992. 1. Model types. Mathematical models provide the necessary framework for integration of our understanding of individual atmospheric processes and study of their interactions. Note, that atmosphere is a complex reactive system in which numerous physical and chemical processes occur simultaneously. • Atmospheric chemical transport models are defined according to their spatial scale: Model Typical domain scale Typical resolution Microscale 200x200x100 m 5 m Mesoscale(urban) 100x100x5 km 2 km Regional 1000x1000x10 km 20 km Synoptic(continental) 3000x3000x20 km 80 km Global 65000x65000x20km 50x50 1 Figure 29.1 Components of a chemical transport model (Seinfeld and Pandis, 1998). 2 • Domain of the atmospheric model is the area that is simulated. The computation domain consists of an array of computational cells, each having uniform chemical composition. The size of cells determines the spatial resolution of the model. • Atmospheric chemical transport models are also characterized by their dimensionality: zero-dimensional (box) model; one-dimensional (column) model; two-dimensional model; and three-dimensional model. • Model time scale depends on a specific application varying from hours (e.g., air quality model) to hundreds of years (e.g., climate models) 3 Two principal approaches to simulate changes in the chemical composition of a given air parcel: 1) Lagrangian approach: air parcel moves with the local wind so that there is no mass exchange that is allowed to enter the air parcel and its surroundings (except of species emissions).
    [Show full text]
  • Air Dispersion Modeling Guidelines
    Air Quality Modeling Guidelines for Arizona Air Quality Permits PREPARED BY: FACILITIES EMISSIONS CONTROL SECTION AIR QUALITY DIVISION ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY November 1, 2019 TABLE OF CONTENTS 1 INTRODUCTION.......................................................................................................... 1 1.1 Overview of Regulatory Modeling ........................................................................... 1 1.2 Purpose of an Air Quality Modeling Analysis .......................................................... 2 1.3 Authority for Modeling ............................................................................................. 3 1.4 Acceptable Models.................................................................................................... 3 1.5 Overview of Modeling Protocols and Checklists ..................................................... 4 1.6 Overview of Modeling Reports ................................................................................ 5 2 LEVELS OF MODELING ANALYSIS SOPHISTICATION .................................. 5 2.1 Screening Models or Screening Techniques ............................................................. 6 2.1.1 Screening Models for Near-Field Assessments ................................................. 6 2.1.2 Screening Techniques for Long-Range Transport Assessments ....................... 7 2.2 Refined Modeling ..................................................................................................... 8 2.2.1 AERMOD .........................................................................................................
    [Show full text]
  • Technical Assistance for Improving Emissions Control the Role Of
    This Project is Co-Financed by the European Union and the Republic of Turkey This Project is c This project is co-financed by the European Union and the Republic of Turkey Technical Assistance for Improving Emissions Control Service Contract No: TR0802.03-02/001 Identification No: EuropeAid/128897/D/SER/TR The Role of Emissions Dispersion Modelling in Cost Benefit Analysis Applied to Urban Air Quality Management: Part 1-the Approach (Version 2: 18 May 2012) This publication has been produced with the assistance of the European Union. The content of this publication is the sole responsibility of the Consortium led by PM Group and can in no way be taken to reflect the views of the European Union. Contracting Authority: Central Finance and Contracting Unit, Turkey Implementing Authority / Beneficiary: Ministry of Environment and Urbanisation Project Title: Improving Emissions Control Service Contract Number: TR0802.03-02/001 Identification Number: EuropeAid/128897/D/SER/TR PM Project Number: 300424 This project is co-financed by the European Union and the Republic of Turkey The Role of Emissions Dispersion Modelling in Cost Benefit Analysis Applied to Urban Air Quality Management: Part 1 – the Approach Version 2: 18 May 2012 PM File Number: 300424-06-RP-200 PM Document Number: 300424-06-205(2) CURRENT ISSUE Issue No.: 2 Date: 18/05/2012 Reason for Issue: Final Version for Client Approval Customer Approval Sign-Off Originator Reviewer Approver (if required) Scott Hamilton, Peter Print Name Russell Frost Jim McNelis Faircloth, Chris Dore Signature Date PREVIOUS ISSUES (Type Names) Issue No. Date Originator Reviewer Approver Customer Reason for Issue 1 14/03/2012 Scott Hamilton, Peter Russell Frost Jim McNelis For client review / comment Faircloth, Chris Dore CFCU / MoEU 300424-06-RP-205 (2) TA for Improving Emissions Control 18 May 2012 CONTENTS GLOSSARY OF ACRONYMS ......................................................................................
    [Show full text]