Evaluation of Air Quality Models with Near-Road Monitoring Data: Technical Report

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Air Quality Models with Near-Road Monitoring Data: Technical Report TTI: 0-6943 Evaluation of Air Quality Models with Near-Road Monitoring Data: Technical Report Technical Report 0-6943-R1 Cooperative Research Program TEXAS A&M TRANSPORTATION INSTITUTE COLLEGE STATION, TEXAS in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/documents/0-6943-R1.pdf Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/TX-20/0-6943-R1 4. Title and Subtitle 5. Report Date EVALUATION OF AIR QUALITY MODELS WITH NEAR-ROAD Published: October 2020 MONITORING DATA: TECHNICAL REPORT 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Reza Farzaneh, Suriya Vallamsundar, Rohit Jaikumar, Madhu Venugopal, Report 0-6943-R1 Mohammad Askariyeh, Jeremy Johnson, Wen-Whai Li, Mayra C. Chavez, and Ivan M. Ramirez 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Texas A&M Transportation Institute The Texas A&M University System 11. Contract or Grant No. College Station, Texas 77843-3135 Project 0-6943 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Technical Report: Research and Technology Implementation Office November 2016–August 2019 125 E. 11th Street 14. Sponsoring Agency Code Austin, Texas 78701-2483 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Evaluation of Air Quality Models with Near-Road Monitoring Data URL: http://tti.tamu.edu/documents/0-6943-R1.pdf 16. Abstract Air dispersion models (air quality models) are used in evaluation of transportation projects to ensure their compliance with federal regulations including the National Environmental Policy Act and transportation conformity quantitative hot-spot analysis requirements. The literature indicates a wide range of variabilities involved in the modeling process for the particulate matter (PM) hot-spot analysis. Sparse real-world data have limited the ability to evaluate the variabilities involved in the PM hot-spot analysis process. Availability of near-road monitoring data has provided a new source of data to address this gap. The objective of this study was to perform a modeling evaluation of the regulatory hot spot analysis and conduct a data research of the near-road monitoring observations to evaluate the potential association between the near-road PM2.5 concentrations and the key parameters. The study was performed for two case study sites in Texas, namely Houston and Fort Worth. The modeling process evaluation consisted of investigating the model behavior and variabilities involved in the PM2.5 hot-spot process through a series of sensitivity analyses. The results of the modeling variability analysis highlighted significant variations of the estimated near-road concentrations as a result of typical modeling options and data sources used in conducting a PM2.5 hot-spot analysis. The range of variability was highest for the model options, followed by model choice, and data source. In addition to sensitivity analysis, the data exploration indicated that the background concentration is the dominating factor in estimating the near-road PM2.5 concentrations. Traffic volume and speed were found to have a relatively weak association with the near-road concentrations of PM2.5 for the two case study sites. Wind direction and speed were found to have a stronger association with the concentrations; however, the lack of hourly near-road concentration data at the time of this study prevented a detailed analysis of this potential correlation at an hourly resolution. 17. Key Words 18. Distribution Statement Near-road, Monitoring, Air Dispersion, AERMOD, No restrictions. This document is available to the public CAL3QHCR, Data Research, Particulate Matter, Hot- through NTIS: Spot Analysis, Model Evaluation, and Sensitivity National Technical Information Service Analysis, Transportation Conformity, NEPA Alexandria, Virginia http://www.ntis.gov 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 170 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized EVALUATION OF AIR QUALITY MODELS WITH NEAR-ROAD MONITORING DATA: TECHNICAL REPORT by Reza Farzaneh Associate Research Engineer Suriya Vallamsundar Assistant Research Scientist Rohit Jaikumar Associate Transportation Researcher Madhu Venugopal Associate Research Scientist Mohammad Askariyeh Graduate Assistant in Research Jeremy Johnson Research Specialist II Texas A&M Transportation Institute and Wen-Whai Li Professor Mayra C. Chavez Graduate Research Associate Ivan M. Ramirez Graduate Research Assistant The University of Texas at El Paso Report 0-6943-R1 Project 0-6943 Project Title: Evaluation of Air Quality Models with Near-Road Monitoring Data Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration Published: October 2020 TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135 DISCLAIMER This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation. The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the object of this report. v ACKNOWLEDGMENTS This project was conducted in cooperation with TxDOT and FHWA. The authors thank the Project Manager, Wade Odell, and the Project Committee, Jackie Ploch and Tim Wood from TxDOT, and Michael Claggett from FHWA for their guidance and oversight during the course of this project. Authors also thank their TTI colleagues Bob Huch and Bahar Dadashova for their help on the data exploration tasks, and Tara Ramani, Jolanda Prozzi, and Joe Zietsman for their support throughout the study. Authors also thank the North Central Texas Council of Governments (NCTCOG), and Houston-Galveston Area Council (HGAC) for their help with the travel demand model inputs. vi TABLE OF CONTENTS Page List of Figures ................................................................................................................................ x List of Tables ............................................................................................................................... xii Chapter 1: Introduction ............................................................................................................... 1 Background and Research Goal .................................................................................................. 1 Project Scope and Context .......................................................................................................... 3 Research Plan .............................................................................................................................. 4 Organization of Report ............................................................................................................... 5 Chapter 2: Literature Review and State-of-Practice ................................................................. 7 Introduction ................................................................................................................................. 7 Air Quality Models and Regulatory Context .............................................................................. 7 Air Dispersion Models ............................................................................................................ 7 Regulatory Context of Dispersion Models.............................................................................. 8 CALINE3 Series and AERMOD Model Description and Evolution ..................................... 9 Review of Studies on Model Evaluation............................................................................... 10 Key Components of PM Hot-Spot Analysis ............................................................................. 16 Overall Framework ............................................................................................................... 17 Traffic Data Characterization ............................................................................................... 18 Emission Modeling ............................................................................................................... 20 Near-Road Air Quality .............................................................................................................. 25 Near-Road Pollutant Concentrations .................................................................................... 26 Near-Road Monitoring Stations and Regulatory Processes .................................................. 27 Review of Studies Focusing on Near-Road Data.................................................................. 29 Summary ................................................................................................................................... 32 Chapter 3: Study Design and Case Study Protocols ...............................................................
Recommended publications
  • Table of Contents
    CALPUFF Modeling System Version 6 User Instructions April 2011 Section 1: Introduction Table of Contents Page 1. OVERVIEW ...................................................................................................................... 1-1 1.1 CALPUFF Version 6 Modeling System............................................................... 1-1 1.2 Historical Background .......................................................................................... 1-2 1.3 Overview of the Modeling System ....................................................................... 1-7 1.4 Major Model Algorithms and Options................................................................. 1-19 1.4.1 CALMET................................................................................................ 1-19 1.4.2 CALPUFF............................................................................................... 1-23 1.5 Summary of Data and Computer Requirements .................................................. 1-28 2. GEOPHYSICAL DATA PROCESSORS.......................................................................... 2-1 2.1 TERREL Terrain Preprocessor............................................................................. 2-3 2.2 Land Use Data Preprocessors (CTGCOMP and CTGPROC) ............................. 2-27 2.2.1 Obtaining the Data.................................................................................. 2-27 2.2.2 CTGCOMP - the CTG land use data compression program .................. 2-29 2.2.3 CTGPROC - the land use preprocessor
    [Show full text]
  • Development of the Next Generation Air Quality Models for Outer Continental Shelf (OCS) Applications
    Development of the Next Generation Air Quality Models for Outer Continental Shelf (OCS) Applications Final Report: Volume 2 - CALPUFF Users Guide (CALMET and Preprocessors) March 2006 Prepared For: U.S. Department of the Interior, Minerals Management Service, Herndon, VA Contract No. 1435-01-01-CT-31071 Prepared By: Earth Tech, Inc. 196 Baker Avenue Concord, Massachusetts 01742 (978) 371-4000 Contents A. OVERVIEW A-1 A.1 Background A-1 A.2 Overview of the Modeling System A-4 A.3 Major Model Algorithms and Options A-14 A.4 Summary of Data and Computer Requirements A-23 B. GEOPHYSICAL DATA PROCESSORS B-1 B.1 TERREL Terrain Preprocessor B-3 B.2 Land Use Data Preprocessors (CTGCOMP and CTGPROC) B-17 B.3 MAKEGEO B-31 B.4 NIMA DATUM REFERENCE INFORMATION B-42 C. METEOROLOGICAL DATA PROCESSORS C-1 C.1 READ62 UPPER AIR PREPROCESSOR C-1 C.2 PXTRACT PRECIPITATION DATA EXTRACT PROGRAM C-12 C.3 PMERGE PRECIPITATION DATA PREPROCESSOR C-19 C.4 SMERGE SURFACE DATA METEOROLOGICAL PREPROCESSOR C-29 C.5 BUOY OVER-WATER DATA METEOROLOGICAL PREPROCESSOR C-39 D. PROGNOSTIC METEOROLOGICAL DATA PROCESSORS D-1 D.1 CALMM5 D-1 D.2 CALETA D-25 D.3 CALRUC D-40 D.4 CALRAMS D-48 D.5 3D.DAT OUTPUT FILE D-53 E. CALMET MODEL FILES E-1 E.1 User Control File (CALMET.INP) E-5 E.2 Geophysical Data File (GEO.DAT) E-49 E.3 Upper Air Data Files (UP1.DAT, UP2.DAT,...) E-61 E.4 Surface Meteorological Data File (SURF.DAT) E-66 E.5 Overwater Data Files (SEA1.DAT, SEA2.DAT, ...) E-70 E.6 Precipitation Data File (PRECIP.DAT) E-74 E.7 Preprocessed Diagnostic Model Data File (DIAG.DAT) E-78 E.8 Prognostic Model Data File (PROG.DAT) E-82 E.9 3D Model Data Files (3D.DAT) E-84 E.10 Terrain Weighting Factor Data File (WT.DAT) E-102 E.11 CALMET Output Files E-109 Volume II & III References A.
    [Show full text]
  • Evaluation of ISC3, AERMOD, and ADMS Dispersion Models with Observations from Five Field Sites
    EVALUATION OF THE ADMS, AERMOD, AND ISC3 DISPERSION MODELS WITH THE OPTEX, DUKE FOREST, KINCAID, INDIANAPOLIS, AND LOVETT FIELD DATA SETS Steven R. Hanna*, Bruce A. Egan**, John Purdum***, and Jen Wagler**** *CSI MS 5C3, George Mason Univ., Fairfax, VA 22030-4444 USA **Egan Environmental, 75 Lothrop St., Beverly, MA 01915 USA ***17 Peters Way, North Attleboro, MA 02760 USA ****URS Greiner Woodward-Clyde, 38 Chauncy St., Boston, MA 02111 USA ABSTRACT The model evaluation exercise addresses the question whether the new models, ADMS and AERMOD, produce improvements over ISC3 when compared with a range of field observations. ADMS and AERMOD have similar state-of-the-art scientific components, whereas ISC3 contains 1960s technology. The five sets of field observations used in the statistical evaluation represent a cross-section of typical scenarios encountered by modelers. The OPTEX data base concerns non-buoyant tracer releases within an oil refinery complex, and the Duke Forest data base involves non-buoyant tracer releases from area and volume sources in an open field. The Kincaid, Indianapolis, and Lovett data bases all deal with buoyant plumes from tall stacks at power plants. However, the settings are quite different, since the Kincaid plant is surrounded by flat farmland, the Indianapolis plant is located in an urban environment, and the Lovett plant is sited in a valley surrounded by complex terrain with monitors at elevations higher than the stack. Analysis of the model performance measures suggest that ISC3 typically overpredicts, has a scatter of about a factor of three, and has about 33% of its predictions within a factor of two of observations.
    [Show full text]
  • Environmental Protection Agency
    Wednesday, November 9, 2005 Part III Environmental Protection Agency 40 CFR Part 51 Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions; Final Rule VerDate Aug<31>2005 16:55 Nov 08, 2005 Jkt 205001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\09NOR3.SGM 09NOR3 68218 Federal Register / Vol. 70, No. 216 / Wednesday, November 9, 2005 / Rules and Regulations ENVIRONMENTAL PROTECTION telephone (919) 541–5562. SCRAM) at: www.epa.gov/scram001. AGENCY ([email protected]). You may find codes and documentation SUPPLEMENTARY INFORMATION: for models referenced in today’s action 40 CFR Part 51 on the SCRAM Web site. We have also Outline uploaded various support documents [AH–FRL–7990–9] I. General Information (e.g., evaluation reports). II. Background RIN 2060–AK60 III. Public Hearing on the April 2000 II. Background proposal The Guideline is used by EPA, States, Revision to the Guideline on Air IV. Discussion of Public Comments and Quality Models: Adoption of a and industry to prepare and review new Issues from our April 21, 2000 Proposal source permits and State Preferred General Purpose (Flat and A. AERMOD and PRIME Complex Terrain) Dispersion Model B. Appropriate for Proposed Use Implementation Plan revisions. The and Other Revisions C. Implementation Issues/Additional Guideline is intended to ensure Guidance consistent air quality analyses for AGENCY: Environmental Protection D. AERMOD revision and reanalyses in activities regulated at 40 CFR 51.112, Agency (EPA). 2003 51.117, 51.150, 51.160, 51.166, and ACTION: Final rule.
    [Show full text]
  • 2005 Appendix W
    Wednesday, November 9, 2005 Part III Environmental Protection Agency 40 CFR Part 51 Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions; Final Rule VerDate Aug<31>2005 16:55 Nov 08, 2005 Jkt 205001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\09NOR3.SGM 09NOR3 68218 Federal Register / Vol. 70, No. 216 / Wednesday, November 9, 2005 / Rules and Regulations ENVIRONMENTAL PROTECTION telephone (919) 541–5562. SCRAM) at: www.epa.gov/scram001. AGENCY ([email protected]). You may find codes and documentation SUPPLEMENTARY INFORMATION: for models referenced in today’s action 40 CFR Part 51 on the SCRAM Web site. We have also Outline uploaded various support documents [AH–FRL–7990–9] I. General Information (e.g., evaluation reports). II. Background RIN 2060–AK60 III. Public Hearing on the April 2000 II. Background proposal The Guideline is used by EPA, States, Revision to the Guideline on Air IV. Discussion of Public Comments and Quality Models: Adoption of a and industry to prepare and review new Issues from our April 21, 2000 Proposal source permits and State Preferred General Purpose (Flat and A. AERMOD and PRIME Complex Terrain) Dispersion Model B. Appropriate for Proposed Use Implementation Plan revisions. The and Other Revisions C. Implementation Issues/Additional Guideline is intended to ensure Guidance consistent air quality analyses for AGENCY: Environmental Protection D. AERMOD revision and reanalyses in activities regulated at 40 CFR 51.112, Agency (EPA). 2003 51.117, 51.150, 51.160, 51.166, and ACTION: Final rule.
    [Show full text]
  • Algorithms and Analytical Solutions for Rapidly Approximating Long-Term Dispersion from Line and Area Sources
    This paper might be a pre-copy-editing or a post-print author-produced .pdf of an article accepted for publication. For the definitive publisher-authenticated version, please refer directly to publishing house’s archive system. Atmospheric Environment 43 (2009) 3249–3258 Contents lists available at ScienceDirect Atmospheric Environment journal homepage: www.elsevier.com/locate/atmosenv Algorithms and analytical solutions for rapidly approximating long-term dispersion from line and area sources Steven R.H. Barrett*, Rex E. Britter University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ, UK article info abstract Article history: Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial Received 15 July 2008 sources are frequently of concern in regulatory and public health contexts. Many emissions are repre- Received in revised form sented geometrically as ground-level line or area sources. Well developed modelling tools such as 11 March 2009 AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable Accepted 13 March 2009 accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration Keywords: schemes have been developed. For example, some models decompose area sources into a large number Dispersion modelling Long-term average concentrations of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Area sources Models also employ a time-series approach, which involves computing mean pollutant concentrations Line sources for every hour over one or more years of meteorological data.
    [Show full text]
  • WHO. Guidance for Identifying Populations at Risk from Mercury Exposure. Issued by UNEP DTIE Chemicals Branch
    UNITED NATIONS ENVIRONMENT PROGRAMME DTIE CHEMICALS BRANCH GUIDANCE FOR IDENTIFYING POPULATIONS AT RISK FROM MERCURY EXPOSURE August 2008 Issued by UNEP DTIE Chemicals Branch and WHO Department of Food Safety, Zoonoses and Foodborne Diseases Geneva, Switzerland ii Disclaimer: This publication is intended to serve as a guide. While the information provided is believed to be accurate, UNEP and WHO disclaim any responsibility for possible inaccuracies or omissions and consequences that may flow from them. UNEP, WHO, or any individual involved in the preparation of this publication shall not be liable for any injury, loss, damage or prejudice of any kind that may be caused by persons who have acted based on their understanding of the information contained in this publication. The designation employed and the presentation of material in this publication do not imply any expression of any opinion whatsoever on the part of the United Nations, UNEP, or WHO concerning the legal status of any country, territory, city or area or any of its authorities, or concerning any definition of frontiers or boundaries. This publication is produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC). This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen co-operation and increase international co-ordination in the field of chemical safety. The participating organisations are FAO, ILO, OECD, UNEP, UNIDO, UNITAR and WHO.
    [Show full text]
  • Table of Session Oral and Poster Presentation (Red Written Papers Are Not Available)
    Table of Session Oral and Poster presentation (red written papers are not available) Session 1 Model Evaluation Session 2 : Air Quality Management ; the EU air quality directive Session 3 Urban Air Quality Modelling Session 4 Model Intercomparison Session 5 Street Canyon Models Session 6 Decision Support System Session 7 Meteorological Pre-Processing CORIA – UMR 6614. CNRS – UNIVERSITE & INSA DE ROUEN – France. Tel: 33 (0)2 32 95 97 82 - Fax: 33 (0)2 32 95 97 80 - E-mail: [email protected] - Http://www.coria.fr Session 1 Model Evaluation CORIA – UMR 6614. CNRS – UNIVERSITE & INSA DE ROUEN – France. Tel: 33 (0)2 32 95 97 82 - Fax: 33 (0)2 32 95 97 80 - E-mail: [email protected] - Http://www.coria.fr Table of contents Session 1 Model Evaluation Oral Presentation. Paper 1 QUALITY ASSURANCE OF URBAN DISPERSION MODELS M. Schatzmann & B. Leitl,Germany Paper 8 INTERCOMPARISON OF THE LAGRANGIAN AND EULERIEAN MODEL PREDICTIONS AT LOCAL SCALE WITH MEASURED CONCENTRATIONS V.Sandu, Romania Paper 13 SIMULATIONS OF ATMOSPHERIC DISPERSION IN URBAN STABLE BOUNDARY LAYER E. Ferrero, D. Anfonssi, G Tinarelli, Italy Paper 20 EVALUATION OF A NON-GAUSSIAN PUFF MODEL T. Tirabassi, C. Mangia and U. Rizza, Italy Paper 24 STUDY OF TURBULENCE AND POLLUTANT DISPERSION UNDER NEUTRALLY AND UNSTABLY STRATIFIED ATMOSHERE UNSING A SECOND- ORDER EULERIAN MODEL C.H. Liu and D. Y. C. Leung, China. Paper 31 A LAGRANGIAN-PUFF DISPERSION MODEL: EVALUATION AGAINST TRACER DATA C. Mangia, U. Rizza, Italy Paper 38 EFFECTS OF CONCENTRATION FLUCTUATIONS ON STATISTICAL EVALUATIONS OF CENTERLINE CONCENTRATION ESTIMATES BY ATMOSPHERIC DISPERSION MODELS J.
    [Show full text]
  • A User's Guide for the CALPUFF Dispersion Model
    A User’s Guide for the CALPUFF Dispersion Model (Version 5) Prepared by: Joseph S. Scire David G. Strimaitis Robert J. Yamartino Earth Tech, Inc. 196 Baker Avenue Concord, MA 01742 January 2000 Copyright © 1998, 1999,2000 by Earth Tech, Inc. All Rights Reserved Table of Contents 1. OVERVIEW ...................................................................1-1 1.1 Background ..........................................................1-1 1.2 Overview of the CALPUFF Modeling System ...............................1-3 1.3 CALPUFF Features and Options.........................................1-11 1.4 Summary of CALPUFF Data and Computer Requirements....................1-15 2. TECHNICAL DISCUSSION ......................................................2-1 2.1 Solution of the Puff Equations............................................2-1 2.1.1 Integrated Puff Sampling Function Formulation .......................2-4 2.1.2 Slug Formulation and Sampling Functions ...........................2-7 2.1.3 Sampling Function Testing .......................................2-15 2.2 Dispersion ..........................................................2-23 2.2.1 Atmospheric Turbulence Components ..............................2-24 2.2.2 Buoyancy - Induced Dispersion ...................................2-36 2.2.3 Initial Plume Size ..............................................2-37 2.2.4 Puff Splitting (Vertical Wind Shear) ...............................2-37 2.2.5 The P.D.F. Option for the Convective Boundary Layer .................2-39 2.2.6 Vertical Puff Stretching
    [Show full text]
  • A User's Guide for the CALMET Meteorological Model
    A User’s Guide for the CALMET Meteorological Model (Version 5) Prepared by: Joseph S. Scire Francoise R. Robe Mark E. Fernau Robert J. Yamartino Earth Tech, Inc. 196 Baker Avenue Concord, MA 01742 January 2000 Copyright © 1998, 1999,2000 by Earth Tech, Inc. All Rights Reserved TABLE OF CONTENTS PAGE NO. 1. OVERVIEW....................................................................1-1 1.1 Background ..........................................................1-1 1.2 Overview of the CALPUFF Modeling System ...............................1-3 1.3 Major Model Algorithms and Options....................................1-12 1.4 Summary of Data and Computer Requirements .............................1-15 2. TECHNICAL DESCRIPTION......................................................2-1 2.1 Grid System..........................................................2-1 2.2 Wind Field Module ....................................................2-3 2.2.1 Step 1 Formulation ..............................................2-3 2.2.2 Step 2 Formulation ..............................................2-8 2.2.3 Incorporation of Prognostic Model Output ...................... 2-17 2.2.3.1 Terrain Weighting Factor ............................... 2-19 2.3 Micrometeorological Model ............................................2-22 2.3.1 Surface Heat and Momentum Flux Parameters .......................2-22 2.3.2 Three-dimensional Temperature Field ..............................2-31 2.3.2.1 Overwater Temperatures ..................................2-33 2.3.3 Precipitation Interpolation
    [Show full text]
  • Atmospheric Conditions Which Affect Air Pollution
    ATMOSPHERIC CONDITIONS WHICH AFFECT AIR POLLUTION • Wind direction and speed • Cloud cover radiation reaching earth temperature profile turbulence • Precipitation Neutral Stability Unstable Stable Inversion in Los Angeles, CA Inversion at Four Corners power plant Fig 7-17: Land Breeze during night Fig 7-18: Land Breeze during day Fig 7-19: Effect of lake breeze on plume dispersion Fig 7-21: Plume dispersion coordinate system Fig 7-22: Horizontal dispersion coefficient Fig 7-23: Vertical dispersion coefficient Building Downwash Building Downwash Building Downwash Building Downwash Plume Rise • H is the sum of the physical stack height and plume rise. H = Δhplume rise + hactual stack http://www.air-dispersion.com/briggs.html -1 Rural Terrain Urban Terrain Stability Exponent n Stability Exponent n A 0.10 A 0.15 B 0.15 B 0.15 C 0.20 C 0.20 D 0.25 D 0.25 E 0.25 E 0.40 F 0.30 F 0.60 Example: A given windspeed of 5 m/s measured at 10 meters above the ground and a stability class of B in rural terrain, calculate the windspeed at 500 meters above ground: 0.15 uz = (5)(500/10) = 9 m/s Table 1 Table 2 For Use In Rural Terrain For Use In Urban Terrain Stability Exponent n Stability Exponent n A 0.10 A 0.15 B 0.15 B 0.15 C 0.20 C 0.20 D 0.25 D 0.25 E 0.25 E 0.40 F 0.30 F 0.60 Gaussian Dispersion Models • Most widely used • Based on the assumption – plume spread results primarily by molecular diffusion – horizontal and vertical pollutant concentrations in the plume are normally distributed (double Gaussian distribution) • Plume spread and shape vary in response to meteorological X conditions Z Q u Y H Fig 7.11 Model Assumptions • Gaussian dispersion modeling based on a number of assumptions including – Steady-state conditions (constant source emission strength) – Wind speed, direction and diffusion characteristics of the plume are constant – Mass transfer due to bulk motion in the x-direction far outshadows the contribution due to mass diffusion – Conservation of mass, i.e.
    [Show full text]
  • Urban Air Pollution Modeling
    2 Urban Air Pollution Modeling Anjali Srivastava and B. Padma S. Rao National Environmental Engineering Research Institute, Kolkata Zonal Centre India 1. Introduction All life form on this planet depends on clean air. Air quality not only affects human health but also components of environment such as water, soil, and forests, which are the vital resources for human development. Urbanization is a process of relative growth in a country’s urban population accompanied by an even faster increase in the economic, political, and cultural importance of cities relative to rural areas. Urbanization is the integral part of economic development. It brings in its wake number of challenges like increase in population of urban settlement, high population density, increase in industrial activities (medium and small scale within the urban limits and large scale in the vicinity), high rise buildings and increased vehicular movement. All these activities contribute to air pollution. The shape of a city and the land use distribution determine the location of emission sources and the pattern of urban traffic, affecting urban air quality (World Bank Reports 2002). The dispersion and distribution of air pollutants and thus the major factor affecting urban air quality are geographical setting, climatological and meteorological factors, city planning and design and human activities. Cities in the developing countries are characterized by old city and new development. The old cities have higher population density, narrow lanes and fortified structures. In order to ensure clean air in urban settlements urban planning and urban air quality management play an important role. New legislations, public awareness, growth of urban areas, increases in power consumption and traffic pose continuous challenges to urban air quality management.
    [Show full text]