Differentiation of Aortic Adventitia Cells

Total Page:16

File Type:pdf, Size:1020Kb

Differentiation of Aortic Adventitia Cells DIFFERENTIATION OF AORTIC ADVENTITIA CELLS Bradley Ellis, Benjamin Green, MS, Thomas G. Gleason, MD, Julie A. Phillippi, PhD Department of Bioengineering University of Pittsburgh Department of Cardiothoracic Surgery UPMC INTRODUCTION pericytes that were untreated. A two-tailed student’s t-test was Aortic Aneurysms are a debilitating group of diseases that used in order to determine whether or not there was a are responsible for over 17,000 deaths a year in the United statistically significant difference between the cell lineages States alone [1]. Thoracic aortic aneurysms are a subset of (p < 0.05). aortic aneurysms that occur when there is a ballooning of the aorta as the artery passes through the chest. If left untreated METHODS this ballooning can lead to a tear in the aortic wall (dissection) The study was designed to differentiate pericyte cells into or a rupture, which lead to patient death [1]. Recent studies one of two blood vessel cell lineages, either endothelial cells or have shown that one of the major underlying causes of thoracic SMCs. The study was performed twice on two separate cell aortic aneurysms is tissue degeneration of the aorta caused by lines taken from bicuspid aneurysmal patients. The patients inefficient repair of the artery [2]. In order to better understand had undergone surgery to repair dissected thoracic aortic thoracic aortic aneurysms it is necessary to understand the aneurysms, and agreed to have their tissue harvested for study. underlying causes of this tissue degeneration. Upon reception, the harvested aortic tissue was separated and Progenitor cells have been shown to play an important role adventitia cells were grown in culture. Upon reaching in tissue repair throughout the human body including vessel confluency, the adventitia cells underwent FACS in order to repair [2]. Through progenitor cell’s ability to differentiate into isolate pericytes (CD146+) associated with the vasa vasorum. functionally relevant blood vessel lineages, tissue repair of The isolated pericyte cells were then subjected to one of three damaged aortas is possible. In previous studies, isolated possible differentiation treatments. All treatments lasted 14 pericyte cells, located in small blood vessels have been shown days and were run concurrently. to possess progenitor cell characteristics [3,4]. Through the In one treatment, the pericytes were grown in non-specific introduction of growth factors, recent studies have shown the basal growth media (Dulbecco’s Modified Eagle media, 10% ability of investigators to coax pericyte cells into specific Fetal Bovine Serum, 1% penicillin streptomycin) for 14 days linages of differentiation [5]. The vasa vasorum (vessel of with a change in growth media on days 0, 2, 4, 8, and 10. No vessels), the micro vessels located in the adventitia of larger growth factors were introduced to this population. The vessels, supplies blood and nutrients to larger vessels such as population was phase imaged at 0, 2, 4, 8, 10, and 14 days of the aorta and have been shown to be analogous to the small treatment. This population served as the negative control blood vessels previously described [3]. The vasa vasorum has group. been shown to possess pericyte cells and thus been The second treatment attempted to differentiate pericyte hypothesized as a progenitor cell niche, harboring cells that cells into aortic endothelial cells. The pericyte cells were display the potential to differentiate into functionally relevant grown in commericial endothelial cell basal growth media (Cell blood vessel cell types [6]. Applications Inc. San Diego, CA) for 14 days with a change in media on days 0, 2, 4, 8, and 10. At each change in media the OBJECTIVE cell population was also treated with vascular endothelial This study attempted to accomplish three objectives. First growth factor (VEGF 50 ng/mL) introduced into the media. was to determine if pericyte cells from aortic adventitia isolated The population was phase imaged at 0, 2, 4, 8, 10, and 14 days for progenitor cell markers (CD146+) through fluorescence of treatment. At the end of the 14 days of treatment, the phase activated cell sorting (FACS) had the ability to upregulate images of the cells pushed towards endothelial differentiation differentiation into endothelial cells and smooth muscle cells were qualitativealy compared to the negative control group. (SMCs) upon introduction to specific growth factors. Secondly The final treatment group attempted to differentiate the was to observe these changes qualitatively through imaging pericytes into aortic SMCs. The pericyte cells were grown in before and after differentiation treatment. The final objective commericial SMC basal growth media (Cell Applications Inc. was to quantify these changes in cell lineage through changes San Diego, CA) for 14 days with a change in media on days 0, in gene expression through the use of quantitative polymerase 2, 4, 8, and 10. At each change in media the pericyte cells were chain reaction (qPCR). also treated with transforming growth factor-beta 1 (TGF-B1 2 ng/mL) and platelet derived growth factor BB (PDGF-BB HYPOTHESIS AND STATISTICAL ANALYSIS 50 ng/mL) introduced into the media. The population was The study attempted to confirm the hypothesis that pericyte phase imaged at 0, 2, 4, 8, 10, and 14 days of treatment. At the cells isolated from aortic adventitia have the ability to end of the 14 days of treatment, the phase images of the cells differentiate into endothelial cells and SMCs. The study was pushed towards SMC differentiation were qualitativealy considered a success if gene expression levels of the pericytes compared to the negative control group. treated for differentiation were statistically different than the 1 After the 14 days of treatment, RNA isolation was performed on all cell populations. qPCR was then performed to compare the gene expression of the negative control to the endothelial differentiated population and the negative control to * the SMC population respectively. For gene expression comparison of the negative control to the endothelial differentiated cells the change in fold of endothelial specific markers was utilized. The markers that were used for the comparison were, Von Willabrand’s Factor (VWF), an adhesion protein found in endothelial cells, and CD31, a vessel growth protein found in endothelial cells. For gene expression Figure 2. Change in fold of CD31 expression of endothelial comparison of the negative control to the SMC differentiated treated cells compared to untreated pericytes. Standard error cells the change in fold of endothelial specific markers was bars are presented. Endothelial differentiated pericytes showed utilized. The markers that were used for the comparison were, a significant increase in CD31 expression (p < 0.01) actin, a contractile protein specific to SMC, and calponin, a calcium binding protein found in SMC. A two-tailed student t- DISCUSSION test was then performed to see if there was a statitcally The endothelial differentiated cells showed no significant significant difference in gene expression for each marker (p < phenotypic changes when compared to the untreated pericyte 0.05). cells, and did not look similar to confirmed endothelial cells. This can be explained to a large amount of variability in RESULTS endothelial cells appearance from cell line to cell line. The lack Figure 1 shows images of pericyte cells untreated, in change of expression of VWF can be explained as studies endothelial differentiation treated, and SMC differentiation suggest [7] that VWF is not universally strongly expressed in treated, along with confirmed SMC and endothelial cells for endothelial cells. The significant increase in CD31 expression comparison. Only the SMC differentiated cell lineage showed strongly supports the hypothesis that aortic pericyte cells any qualitative change towards the desired phenotype upon demonstrate the ability to differentiate into functionally completion of treatment. relevant blood vessel cell lineages. CD31 is universally expressed in endothelial cells and is considered the classic marker for whether a cell is considered endothelial or not. The SMC differentiated cells showed a more spindle like phenotypic appearance upon completion of treatment, similar to confirmed SMCs. The SMC differentiated cells also showed a trend of increase in actin and calponin expression. The phenotypic changes and trend change in gene expression support the hypothesis that aortic pericyte cells are capable of Figure 1. (top differentiating into functionally relevant blood vessel cell left) Untreated pericytes after 14 days of treatment, (top lineages such as SMCs. middle) Endothelial differentiation treated pericytes after 14 This study had several limitations. Only aneurysmal cell days of treatment, (top right) SMC differentiation treated lines, a small subset of the human population were tested. pericytes after 14 days of treatment, (bottom left) confirmed Additionally only two cell lines were tested. endothelial cells, (bottom right) confirmed SMCs. ACKNOWLEDGMENTS For endothelial gene comparison the treated pericytes The authors would like to acknowledge the patients for showed no change in VWF expression upon completion of their tissue donation, the UPMC Shadyside Cardiac Surgery treatment. However, as seen in Figure 2 the pericytes treated Department for tissue harvesting, Mary Kotlarczyk, Jen Hill, for endothelial differentiation showed an increase in CD31 and Marie Billaud for help in the lab, Vera Donnenberg for her expression upon completion of the 14 days of treatment assistance in FACS, and our funding sources, UPMC Health (p < 0.01). For SMC gene expression comparison the treated System and the National Heart, Lung, and Blood Institute who pericytes showed a non-significant trend of increase in both made this study possible. actin and calponin expression. REFERENCES 1. Center for Disease Control. (2013) 2. Shen (2012) doi: 10.1016/j.athoracsur2012.01.063 3. Corselli (2013) doi: 10.1002/cyto.a.22313 4. Chen (2012) doi: 10.1.1161/ATVBAHA.113.300902 5. Klein (2013) doi: 10.1038/srep02178 6. Phillippi (2014), ISACB 2014 Conference 7. Muller (2002) doi: 10.1006/exmp.2002.2424 2 .
Recommended publications
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Thoracic Aorta
    GUIDELINES AND STANDARDS Multimodality Imaging of Diseases of the Thoracic Aorta in Adults: From the American Society of Echocardiography and the European Association of Cardiovascular Imaging Endorsed by the Society of Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance Steven A. Goldstein, MD, Co-Chair, Arturo Evangelista, MD, FESC, Co-Chair, Suhny Abbara, MD, Andrew Arai, MD, Federico M. Asch, MD, FASE, Luigi P. Badano, MD, PhD, FESC, Michael A. Bolen, MD, Heidi M. Connolly, MD, Hug Cuellar-Calabria, MD, Martin Czerny, MD, Richard B. Devereux, MD, Raimund A. Erbel, MD, FASE, FESC, Rossella Fattori, MD, Eric M. Isselbacher, MD, Joseph M. Lindsay, MD, Marti McCulloch, MBA, RDCS, FASE, Hector I. Michelena, MD, FASE, Christoph A. Nienaber, MD, FESC, Jae K. Oh, MD, FASE, Mauro Pepi, MD, FESC, Allen J. Taylor, MD, Jonathan W. Weinsaft, MD, Jose Luis Zamorano, MD, FESC, FASE, Contributing Editors: Harry Dietz, MD, Kim Eagle, MD, John Elefteriades, MD, Guillaume Jondeau, MD, PhD, FESC, Herve Rousseau, MD, PhD, and Marc Schepens, MD, Washington, District of Columbia; Barcelona and Madrid, Spain; Dallas and Houston, Texas; Bethesda and Baltimore, Maryland; Padua, Pesaro, and Milan, Italy; Cleveland, Ohio; Rochester, Minnesota; Zurich, Switzerland; New York, New York; Essen and Rostock, Germany; Boston, Massachusetts; Ann Arbor, Michigan; New Haven, Connecticut; Paris and Toulouse, France; and Brugge, Belgium (J Am Soc Echocardiogr 2015;28:119-82.) TABLE OF CONTENTS Preamble 121 B. How to Measure the Aorta 124 I. Anatomy and Physiology of the Aorta 121 1. Interface, Definitions, and Timing of Aortic Measure- A. The Normal Aorta and Reference Values 121 ments 124 1.
    [Show full text]
  • Blood Vessels
    BLOOD VESSELS Blood vessels are how blood travels through the body. Whole blood is a fluid made up of red blood cells (erythrocytes), white blood cells (leukocytes), platelets (thrombocytes), and plasma. It supplies the body with oxygen. SUPERIOR AORTA (AORTIC ARCH) VEINS & VENA CAVA ARTERIES There are two basic types of blood vessels: veins and arteries. Veins carry blood back to the heart and arteries carry blood from the heart out to the rest of the body. Factoid! The smallest blood vessel is five micrometers wide. To put into perspective how small that is, a strand of hair is 17 micrometers wide! 2 BASIC (ARTERY) BLOOD VESSEL TUNICA EXTERNA TUNICA MEDIA (ELASTIC MEMBRANE) STRUCTURE TUNICA MEDIA (SMOOTH MUSCLE) Blood vessels have walls composed of TUNICA INTIMA three layers. (SUBENDOTHELIAL LAYER) The tunica externa is the outermost layer, primarily composed of stretchy collagen fibers. It also contains nerves. The tunica media is the middle layer. It contains smooth muscle and elastic fiber. TUNICA INTIMA (ELASTIC The tunica intima is the innermost layer. MEMBRANE) It contains endothelial cells, which TUNICA INTIMA manage substances passing in and out (ENDOTHELIUM) of the bloodstream. 3 VEINS Blood carries CO2 and waste into venules (super tiny veins). The venules empty into larger veins and these eventually empty into the heart. The walls of veins are not as thick as those of arteries. Some veins have flaps of tissue called valves in order to prevent backflow. Factoid! Valves are found mainly in veins of the limbs where gravity and blood pressure VALVE combine to make venous return more 4 difficult.
    [Show full text]
  • Gli1+ Pericyte Loss Induces Capillary Rarefaction and Proximal Tubular Injury
    BRIEF COMMUNICATION www.jasn.org Gli1+ Pericyte Loss Induces Capillary Rarefaction and Proximal Tubular Injury † ‡ ‡ ‡ Rafael Kramann,* Janewit Wongboonsin, § Monica Chang-Panesso, Flavia G. Machado, and ‡ Benjamin D. Humphreys *Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts; †Division of Nephrology and Clinical Immunology, RWTH Aachen University Medical Faculty, RWTH Aachen University, Aachen, Germany; ‡Division of Nephrology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri; and §Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand ABSTRACT Peritubular capillary rarefaction is hypothesized to contribute to the increased risk of after AKI, and whether pericyte loss is future CKD after AKI. Here, we directly tested the role of Gli1+ kidney pericytes in the sufficient to induce peritubular capillary maintenance of peritubular capillary health, and the consequences of pericyte loss loss and altered morphology. during injury. Using bigenic Gli1-CreERt2; R26tdTomato reporter mice, we observed We genetically labeled pericytes using increased distance between Gli1+ pericytes and endothelial cells after AKI (mean6 Gli1-CreERt2 mice crossed against SEM: 3.360.1 mm before injury versus 12.560.2 mm after injury; P,0.001). Using a the R26tdTomato reporter mouse (Gt genetic ablation model, we asked whether pericyte loss alone is sufficient for capillary (ROSA)26Sortm9(CAF-tdTomato)Hze/J; destabilization. Ten days after pericyte ablation, we observed endothelial cell damage Figure 1A). After tamoxifen injection, mice by electron microscopy. Furthermore, pericyte loss led to significantly reduced capil- were subjected to severe unilateral ische- lary number at later time points (mean6SEM capillaries/high-power field: 67.664.7 in mia reperfusion injury (IRI; 28-minute control versus 44.164.8 at 56 days; P,0.05) and increased cross-sectional area (mean6 clamp).
    [Show full text]
  • Fetal Descending Aorta/Umbilical Artery Flow Velocity Ratio in Normal Pregnancy at 36-40 Weeks of Gestational Age Riyadh W Alessawi1
    American Journal of BioMedicine AJBM 2015; 3(10):674 - 685 doi:10.18081/2333-5106/015-10/674-685 Fetal descending aorta/umbilical artery flow velocity ratio in normal pregnancy at 36-40 Weeks of gestational age Riyadh W Alessawi1 Abstract Doppler velocimetry studies of placental and aortic circulation have gained a wide popularity as it can provide important information regarding fetal well-being and could be used to identify fetuses at risk of morbidity and mortality, thus providing an opportunity to improve fetal outcomes. Prospective longitudinal study conducted through the period from September 2011–July 2012, 125 women with normal pregnancy and uncomplicated fetal outcomes were recruited and subjected to Doppler velocimetry at different gestational ages, from 36 to 40 weeks. Of those, 15 women did not fulfill the protocol inclusion criteria and were not included. In the remaining 110 participants a follow up study of Fetal Doppler velocimetry of Ao and UA was performed at 36 – 40 weeks of gestation. Ao/UA RI: 1.48±0.26, 1.33±0.25, 1.37± 0.20, 1.28±0.07 and 1.39±0.45 respectively and the 95% confidence interval of the mean for five weeks 1.13-1.63. Ao/UA PI: 2.83±2.6, 1.94±0.82, 2.08±0.53, 1.81± 0.12 and 3.28±2.24 respectively. Ao/UA S/D: 2.14±0.72, 2.15±1.14, 1.75±0.61, 2.52±0.18 and 2.26±0.95. The data concluded that a nomogram of descending aorto-placental ratio Ao/UA, S/D, PI and RI of Iraqi obstetric population was established.
    [Show full text]
  • The Dynamic Roles of Red Blood Cell in Microcirculation
    Rochester Institute of Technology RIT Scholar Works Theses 7-15-2019 The Dynamic Roles of Red Blood Cell in Microcirculation Sitong Zhou [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Zhou, Sitong, "The Dynamic Roles of Red Blood Cell in Microcirculation" (2019). Thesis. Rochester Institute of Technology. Accessed from This Dissertation is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. R.I.T The Dynamic Roles of Red Blood Cell in Microcirculation by Sitong Zhou A dissertation submitted in partial fulfillment of the requirements for the degree of Doctorate of Philosophy in Microsystems Engineering Microsystems Engineering Program Kate Gleason College of Engineering Rochester Institute of Technology Rochester, New York July 15th, 2019 1 The Dynamic Roles of Red Blood Cell in Microcirculation by Sitong Zhou Committee Approval: We, the undersigned committee members, certify that we have advised and/or supervised the candidate on the work described in this dissertation. We further certify that we have reviewed the dissertation manuscript and approve it in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Microsystems Engineering. ______________________________________________________________________________ Dr. Jiandi Wan Date Assistant Professor, Chemical Engineering ______________________________________________________________________________
    [Show full text]
  • Inferior Phrenic Artery, Variations in Origin and Clinical Implications – a Case Study
    IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) E-ISSN: 2279-0853, p-ISSN: 2279-0861. Volume 7, Issue 6 (Mar.- Apr. 2013), PP 46-48 www.iosrjournals.org Inferior Phrenic Artery, Variations in Origin and Clinical Implications – A Case Study 1 2 3 Dr.Anupama D, Dr.R.Lakshmi Prabha Subhash .Dr. B.S Suresh Assistant Professor. Dept. Of Anatomy, SSMC. Tumkur.Karnataka.India Professor & HOD. Dept. Of Anatomy, SSMC. Tumkur.Karnataka.India Associate professor.Dept. Of Anatomy, SSMC. Tumkur.Karnataka.India Abstract:Variations in the branching pattern of abdominal aorta are quite common, knowledge of which is required to avoid complications during surgical interventions involving the posterior abdominal wall. Inferior Phrenic Arteries, the lateral aortic branches usually arise from Abdominal Aorta ,just above the level of celiac trunk. Occasionally they arise from a common aortic origin with celiac trunk, or from the celiac trunk itself or from the renal artery. This study describes the anomalous origin of this lateral or para aortic branches in the light of embryological and surgical basis. Knowledge of such variations has important clinical significance in abdominal operations like renal transplantation, laparoscopic surgery, and radiological procedures in the upper abdomen or invasive arterial procedures . Keywords: Abdominal Aorta, Celiac Trunk(Ct), Diaphragm, Inferior Phrenic Artery (Ipa), Retro Peritoneal, Renal Artery(Ra). I. Introduction The abdominal aorta begins from the level of 12th thoracic vertebra after passing through the Osseo aponeurotic hiatus of diaphragm. It courses downwards with Inferior vena cava to its right and terminates at the level of 4th lumbar vertebra by dividing in to two terminal branches.
    [Show full text]
  • Prostaglandin E2 Breaks Down Pericyte–Endothelial Cell Interaction Via EP1 and EP4-Dependent Downregulation of Pericyte N-Cadh
    www.nature.com/scientificreports OPEN Prostaglandin E2 breaks down pericyte–endothelial cell interaction via EP1 and EP4‑dependent downregulation of pericyte N‑cadherin, connexin‑43, and R‑Ras Carole Y. Perrot1,2, Jose L. Herrera1,2, Ashley E. Fournier‑Goss1,2 & Masanobu Komatsu1,2* A close association between pericytes and endothelial cells (ECs) is crucial to the stability and function of capillary blood vessels and microvessels. The loss or dysfunction of pericytes results in signifcant disruption of these blood vessels as observed in pathological conditions, including cancer, diabetes, stroke, and Alzheimer’s disease. Prostaglandin E2 (PGE2) is a lipid mediator of infammation, and its tissue concentration is elevated in cancer and neurological disorders. Here, we show that the exposure to PGE2 switches pericytes to a fast‑migrating, loosely adhered phenotype that fails to intimately interact with ECs. N‑cadherin and connexin‑43 in adherens junction and gap junction between pericytes and ECs are downregulated by EP‑4 and EP‑1‑dependent mechanisms, leading to breakdown of the pericyte–EC interaction. Furthermore, R‑Ras, a small GTPase important for vascular normalization and vessel stability, is transcriptionally repressed by PGE2 in an EP4‑dependent manner. Mouse dermal capillary vessels lose pericyte coverage substantially upon PGE2 injection into the skin. Our results suggest that EP‑mediated direct disruption of pericytes by PGE2 is a key process for vascular destabilization. Restoring pericyte–EC interaction using inhibitors of PGE2 signaling may ofer a therapeutic strategy in cancer and neurological disorders, in which pericyte dysfunction contributes to the disease progression. Pericytes are mesenchyme-derived mural cells that surround endothelial cells (ECs) of capillary blood vessels and microvessels.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Role of Pericytes in the Retina
    Eye (2018) 32, 483–486 © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0950-222X/18 www.nature.com/eye Role of pericytes in the COMMENT retina Eye (2018) 32, 483–486; doi:10.1038/eye.2017.220; In contrast, Park and colleagues demonstrated published online 10 November 2017 using state-of-the-art techniques, including deletion of several genes from endothelial cells, that PDGFB/PDGFRβ signaling is indispensable Diabetic retinopathy is a major severe ocular in the formation and maturation of blood- complication associated with the metabolic retinal-barrier at the postnatal stage through disorder of diabetes mellitus.1 The lack of a active recruitment of pericytes onto the growing detailed knowledge about the cellular and retinal vessels.3 Additionally, the authors molecular mechanisms involved in diabetic revealed that pericytes are important in the adult retinopathy restricts the design of effective retina as regulators, as they control the treatments. Understanding the roles of retinal expression of several genes (FOXO1, Ang2, and cells during this process is of utmost importance, VEGFR2) to protect retinal vessels against since gaining control of specific cell populations injuries and stresses.3 fi may allow us to arrest or even induce reversion Here, we discuss the ndings from this work, of diabetic retinopathy. and evaluate recent advances in our Pericyte dropout or loss has been suggested to understanding of pericytes roles in the retina. have great consequences on blood vessel fi remodeling, and possibly causes the rst Perspectives/future directions abnormalities of the diabetic eye which can be fi observed clinically in diabetic retinopathy.2 The ndings from this study are based on the expression of PDGFRβ in pericytes.
    [Show full text]
  • Superior Mesenteric Artery and Nutcracker Syndromes in a Healthy 14-Year-Old Girl Requiring Surgical Intervention After Failed Conservative Management
    ISSN 2377-8369 GASTRO Open Journal Case Report Superior Mesenteric Artery and Nutcracker Syndromes in a Healthy 14-Year-Old Girl Requiring Surgical Intervention after Failed Conservative Management David Wood, MRCPCH, MSc1; Andrew Fagbemi, FRCPCH2; Loveday Jago, MRCPCH2; Dalia Belsha, MRCPCH2; Nick Lansdale, FRCS, PhD3; Ahmed Kadir, FRCPCH, MSc2* 1Paediatric Registrar, Royal Manchester Children’s Hospital, Manchester, UK 2Paediatric Gastroenterology Consultant, Royal Manchester Children’s Hospital, Manchester, UK 3Paediatric Surgeon, Royal Manchester Children’s Hospital, Manchester, UK *Corresponding author Ahmed Kadir, FRCPCH, MSc Paediatric Gastroenterology Consultant, Royal Manchester Children’s Hospital, Manchester, UK; Phone. 07709732356; E-mail: [email protected] Article information Received: January 30th, 2020; Revised: February 17th, 2020; Accepted: February 24th, 2020; Published: February 28th, 2020 Cite this article Wood D, Fagbemi A, Jago L, Belsha D, Lansdale N, Kadir A. Superior mesenteric artery and nutcracker syndromes in a healthy 14-year-old girl requiring surgical intervention after failed conservative management. Gastro Open J. 2020; 5(1): 1-3. doi: 10.17140/GOJ-5-132 ABSTRACT This case report presents the diagnosis of superior mesenteric artery and nutcracker syndromes in a previously fit and well 14-year- old girl. Although these two entities usually occur in isolation, despite their related aetiology, our patient was a rare example of their occurrence together. In this case the duodenal compression of superior mesenteric artery syndrome caused intractable vom- iting leading to weight loss, and her nutcracker syndrome caused severe left-sided abdominal pain and microscopic haematuria without renal compromise. Management of the superior mesenteric artery syndrome can be conservative by increasing the weight of the child which leads to improvement of retroperitoneal fat and hence the angle of the artery.
    [Show full text]
  • Normal and Variant Origin and Branching Pattern of Inferior Phrenic Arteries and Their Clinical Implications: a Cadaveric Study
    International Journal of Research in Medical Sciences Thamke S et al. Int J Res Med Sci. 2015 Jan;3(1):282-286 www.msjonline.org pISSN 2320-6071 | eISSN 2320-6012 DOI: 10.5455/2320-6012.ijrms20150151 Research Article Normal and variant origin and branching pattern of inferior phrenic arteries and their clinical implications: a cadaveric study Swati Thamke1*, Pooja Rani2 1Department of Anatomy, UCMS & GTB Hospital, Delhi, India 2Department of Anatomy, PGIMS, Rohtak, Haryana, India Received: 6 December 2014 Accepted: 18 December 2014 *Correspondence: Dr. Swati Thamke, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: Inferior phrenic arteries, which constitute the chief arterial supply to the diaphragm, are generally the branches of abdominal aorta, however, variations in their mode of origin is not uncommon. Very less information is available regarding the functional anatomy of the inferior phrenic artery in anatomy textbooks. Methods: The present study was conducted utilizing 36 formaline-fixed cadavers between 22 years to 80 years over a period of 5 years. The frequency and anatomical pattern of the origin of the right and left inferior phrenic arteries were studied. Results: On the right side, the inferior phrenic artery arose independently from abdominal aorta in 94.4% cases and on the left side in 97.2% cases.Other sources of origin were seen in 5.55% cases.
    [Show full text]