Iilihfflf WWETWIU HI Ull ISTITUTO NAZIONALE DI FISICA NUCLEARE - ISTITUTO NAZIONALE DI FISICA NUCLEARE - \ST, ^3 Laboratori Nazionali Di Frascati
Total Page:16
File Type:pdf, Size:1020Kb
MICROCOPY RESOIUTION TEST CHART NBS • 1010a (ANSI and 150 TEST CHART No 2 PHOTOGRAPHIC SCIENCES CORPORATION 770 BASKFT ROAD P O BOX 13B IILIHfflF WWETWIU HI Ull ISTITUTO NAZIONALE DI FISICA NUCLEARE - ISTITUTO NAZIONALE DI FISICA NUCLEARE - \ST, ^3 Laboratori Nazionali di Frascati LWF - \ft-- Vr-o^ LNF-9S/Q14 (IR) 29 Marzo 1995 The KLOE Collaboration THE KLOE DATA ACQUISITION SYSTEM ADDENDUM TO THE KLOE TECHNICAL PROPOSAL PACS.: 11.30.Er, 13.20.Eb; 13.20.Jf; 29.40.Gx; 29.40.Vj tu. 26 A 2^ Servizio Documentazione dei Laboratori Nazionali di Frascati P.O. Box, 13 - 00044 Frascati (Italy) LNF-yg/014 (IR) 29 Marzo 1995 The KLOE Collaboration THE KLOE DATA ACQUISITION SYSTEM ADDENDUM TO THE KLOE TECHNICAL PROPOSAL PACS.: 11.30.Er, 13.20.Eb; 13.20.Jf; 29.40.Gx; 29.40.Vj IOTN - Laboratori Nazionali di Frascati SIS - Pubblicazioni LNF-fflOH (IR) 29 M?rzo 1995 The KLOE Collaboration THE KLOE DATA ACQUISITION SYSTEM ADDENDUM TO THE KLOE TECHNICAL PROPOSAL ABSTRACT We present in the following the design of the KLOE Data Acquisition System. Included are the philosophy and pxtensive discussions on all parts of the system. The KLOE Collaboration A. Aloisio? A. Andryokov* A. Antonella M. Antonella F. Anulli* C. Avanzini* D. Babusci* C. Baccio R. Baldini-Ferroli* G. BarbielliniT" M. Barone? K. Barth? V. Baturin? H. Beker* G. Bencivenni* S. Bertolucci? C. Bini!* C. Bloise* V. Bocci! V. Bolognesi? F. Bossi?. P. Branching L. Bucci* A. Calcaterra? R. Caloi* P. Campana? G. Capon. M. Carboni? G. Cataldo S. Cavaliere* F. CeradinW L. Cerrito', M. Cerù? F. Cervelli? F. Cevenini? G. Chiefari? G. Ciapetti* M. Cordella P. Creti? F. Donno* R. De Sangro? P. De Simone? G. De Zorzi* D. Della Volpe,e A. Denig? G. Di Cosimo* A. Di Domenico? A. Doria? E. Drago? V. Elia? 0. Erriquez? A. Farilla? G. Felici? A. Ferrari? M. L. Ferrer? G. Finocchiaro? D. Fiore? P. Franzini*-' A. Caddi* C. Gatto? P. Gauzzi* E. Gero* S. Giovanella* E. Gorini? F. Grancagnolo?/ W. Grandegger? E. Graziane U. v. Hagel? R. Haydar? M. Imhof? M. Incagli? C. Joram? L. Keeble? VV. Kim'. VV. Kìuge? F. Lacava* G. Lanfranchi* P. Laureili* .J. Lee-Franzini?' G. Margotti* A. Martini* A. Martinis?1 M. M. Massai? R. Messi'. L. Merola? S. Miscetti? S. Moccia? F. Murtas* M. Napolitano? A. Nisati* E. Pace* G. F. Palamà?" M. Panareo? L. Paoluzi! A. Parri? E. Pasqualucci! M. Passaseo* A. Passeri, V. Patera* F. Pelucchi* E. Petrolo* M. C. Petrucc i* M. Pigolo* M. Pollack! L. Pontecorvo* M. Primavera, F. Ruggieri? P. Santantonio* R. D. Schamberger' A. Sciubba* F. Scuri?1 A. Smilzo? S. Spagnolo?; E. Spirita C. Stanescu* L. Tortora* P. M. Tuts/ E. Valente* P. Valente* G. Venanzoni? S. Veneziano* S. Weseler? R. Wieser? S. Wòlfle* A. Zallo* a Dipartimento di Fisica dell'Università e Sezione (N'FN, Bari b Laboratori .Nazionali di Frascati dell'lNFN, Frascati ' Institut fiir Experimentelle Kernphysik, Universitàt Karlsruhe d Dipartimento di Fisica dell'Università e Sezione INFN. Lecce e Dipartimento di Scienze Fisiche dell'Università e Sezione INFN, Napoli f Physics Department, Columbia University, New York 3 Dipartimento di Fisica dell'Università e Sezione INFN, Pisa * Dipartimento di Fisica dell'Università e Sezione INFN, Roma I 1 Dipartimento di Fisica dell'Università e Sezione INFN, Roma II J Dipartimento di Fisica dell'Università di Roma III e Sezione INFN, Roma I k Istituto Superiore di Sanità and Sezione INFN, ISS, Roma. ' Physics Department. State University of New York at Stony Brook. mDipartimento di Fisica dell'Università e Sezione INFN. Trieste/Udine TABLE OF CON TENTS 1. INTRODUCTION p. 1 2. SYSTEM OVERVIEW p. 2 2.1 Data Rates and Other Boundary Conditions p. 2 2.2 Fast Data Read Out p. 3 2.3 Data Flow Control and Event Building p. 3 2.-4 SBC Farm p. 4 2.5 Software p. 4 2.6 Mass Storage p. 4 2.7 Slow Controls p. 5 2.8 Conclusion p. 5 3. FRONT END ELECTRONICS p. 7 3.1 Overview p. 7 3.2 Calorimeter Front End Electronics p. 8 3.3 Drift Chamber Front End Electronics p. 11 4. LEVEL 1 READOUT p. 18 4.1 System Architecture p. 18 4.2 Protocols Overview p. 19 4.3 Simulations p. 21 4.5 Cost and Time Schedule p. 23 5. DATA FLOW CONTROL and EVENT BUILDING p. 24 5.1 The Level 2 VME Subsystems p. 24 5.2 Data Flow Control p. 26 5.3 Elvent Building p. 28 5.4 Test of Components p. 29 5.5 Event Building Simulations p. 30 5.6 Hardware Configuration p. 33 6. ON-LINE FARM p. 34 6.1 An Alpha-Based SBC p. 34 7. RI N CONTROLLER. MONITORING AND SLOW CONTROI p. 38 7.1 Run Controller p. 38 7.2 Monitoring p. 38 7.3 Slow Control p. 39 8. MASS STORAGE p. 41 9. OFF LINE ANALYSIS DEVELOPMENT p. 43 9.1 Introduction p. 43 9.2 The Development Environment p. 43 9.3 The Data Format and the Management System p. 44 9.4 The Offline Analysis Tools p. 4"> 10. COSTS and SCHEDULES p. 48 10.1 Time Schedule p. 48 10.2 Costs p. 48 REFERENCES p. 51 ì. iXTRonrciiox In this addendum, we describe the KI.OE data acquisition system. DAQ: the front end electronics; the two level read out of the FEE output; the data transmission to the on line processing farm: the processing farm: mass storage and off line computing requirements. The front end electronics. FEE, is included as short descriptions of the basic components to help in better understanding the DAQ s proper functions. Emphasis is placed on the high speed two level data concentration, distribution to the farm of "single board computers". SBCs. on data flow control, run control and monitoring, and on data handling and mass storage. This document is an amplification of the preliminary description of the system which has been presented in the KLOE proposals. The requirements of KLOE represent a challenge in this field, since we have to deal with data rates. (f>(101! events/year), considerably highei than those of typical collider experiments such as LEP or TEY-I. albeit a factor ten smaller than those foreseen at the I.HC. In contrast to hadron collider experiment, the large amount of data collected with KLOc] are all of physics interest, or necessary for detector calibration. Moreover, since the major aim of KLOE is to perform CP violation studies at sensitivities of 0{ 10~ '). very stringent requirements are imposed on its DAQ system, to insure that no biases are introduced at such levels. Error rates, especially if dependent on event configurations, which would be quite acceptable in other situations, must be minimized and procedures for insuring dat? integrity must be incorporated in the system design ab initio. 2. SYSTKM OVKRYIEW 2.1 DATA RATKS AND OTHER BOINDARY CONDITIONS The expected data rate from the KLOK detector, once the DA<t>NE collider reaches its max imum design luminosity. C=\ x 10u cm-2 s_I. has been estimated as 10"4 events per second. Half of this rate is due to o decays, the remainde, ,s from Bhabha scattering, scaled down from the rate into the detector. ~50 kHz. Bhabha scattering events are fundamental in maintaining the calorimeter calibration scale for time and energy measurements, and to determine the tracking chamber parameters. It is also estimated that the average event size is 5 kbytes, corresponding to a total bandwidth requirement of 50 Mbytes/s. Given the above rate, the average time for the read-out of an event from the FEF. is 100 //s. Care must be taken to insure that the readout will not in.roduce dead times and especially to avoid the possible build-up of instantaneous backlogs. The occurrence of these backlogs might result in losses of parts of an event and would require a complicated system flushing procedure upon their occurrence. A two level data concentration scheme is the proposed solution. While it is ver_\ hard to realize a completely deadtimeless DAQ system, what is truly neces sary is to maintain the dead times at a reasonably low level, insuring that the dead time is not a function of the event configuration, a s'tuation which could lead to the introduction of biases in the data. 2.1.1 Standards The KLOK FKE and the data concentration scheme will use VMK hardware, typically 91" cards. 100 mm deep. Wherever high volume digital data is transferred, the Pi and P2 connectors will provide standard YMF, functions. The P3 connector will be typically employed for analog data in and/or out. In addition, at the last level of the FV.E electronics, a custom bus, using the free P2 pins, will be used for fast data transfer. 2.1.2 Dead Tim, The KLOF] FKK will perform analog signal conditioning and digitization at, fixed dead time, chosen to be of 0('2 /is). This is equivalent to a 2'A loss in luminosity, quite negligible on all accounts. Kadi individual detector channel will carry out analog processing and digitizing. After receipt of a trigger signal, generated by an appropriate trigger system, the entire KLOF, FllK system has 2 //s in which to perform its functions after which it is ready to receive another trigger. In other words, in normal operation, no busy signals are generated by the FKF1 and ihe subsequent DAQ system. 2.1M Buffrrfi Because of the above specification, every !• KK channel contains an event, buffer of appropriate length, allowing asynchronous data read-out, as described later, without data losses.