Recovery of a Tropical Rain Forest Over 30 Years Following Silvicultural Interventions

Total Page:16

File Type:pdf, Size:1020Kb

Recovery of a Tropical Rain Forest Over 30 Years Following Silvicultural Interventions Recovery of a tropical rain forest over 30 years following silvicultural interventions Thesis submitted in partial fulfilment of the requirements of the degree Doctor rer. nat. of the Faculty of Environment and Natural Resources, Albert-Ludwigs-Universität Freiburg im Breisgau, Germany by Angela Luciana de Avila Freiburg im Breisgau, September 2016 Dean: Prof. Dr. Tim Freytag First examiner: Prof. Dr. Jürgen Bauhus Second examiner: Prof. Dr. Jaboury Ghazoul Third examiner: Prof. Dr. Carsten Dormann Date of thesis defence: 23rd January 2017 Statement of originality I hereby declare that this thesis has never been submitted to another examination commission in Germany or in another country for a degree in the same or similar form. This thesis contains no material previously published or written by another person except where due acknowledgement is made in the proper manner. Angela Luciana de Avila Freiburg, 29th September 2016 Statement of contributions and manuscripts This doctoral research was carried out between April 2012 and September 2016. I conducted most of the work myself, from the development of the research concept, data preparation and analyses to the writing of manuscripts, introduction and final chapters of this thesis. Three manuscripts were elaborated to be published in peer-reviewed scientific journals, as follows: de Avila, A.L., A.R. Ruschel, J.O.P. de Carvalho, L. Mazzei, J.N.M. Silva, J.do.C. Lopes, M.M. Araujo, C.F. Dormann, and J. Bauhus. 2015. Medium-term dynamics of tree species composition in response to silvicultural intervention intensities in a tropical rain forest. Biological Conservation, 191:577–586. de Avila, A.L., M. van der Sande, C.F. Dormann, L. Mazzei, M. Peña-Claros, L. Poorter, A.R. Ruschel, J.N.M. Silva, J.O.P. de Carvalho, and J. Bauhus. Biomass resilience to silvicultural interventions in a tropical rain forest: effects of disturbance intensity and tree community properties. Submitted for publication. de Avila, A. L., G. Schwartz, A.R. Ruschel, J.doC. Lopes, J.N.M. Silva, J.O.P. de Carvalho, C.F. Dormann, L. Mazzei, M. Soares, and J. Bauhus. 2017. Recruitment, growth and recovery of commercial tree species over 30 years following logging and thinning in a tropical rain forest. Forest Ecology and Management, 385: 225–235. Prof. Dr. Jürgen Bauhus supervised and participated actively in all stages of the work. Prof. Dr. Carsten Dormann helped with data analysis and development of manuscripts. Dr. José N. M. Silva, Dr. João O. P. de Carvalho and Dr. José. C. Lopes designed the experiment and accompanied it since 1981. In this thesis, they contributed to improve the manuscripts. Dr. Ademir R. Ruschel, Dr. Lucas Mazzei and Marcio Soares are responsible for the continued monitoring of the experiment and helped with data preparation and improvement of manuscripts. Prof. Dr. Maristela Araujo participated in the development of the first manuscript. Dr. Masha van der Sande coordinated the collection of functional trait data used in the third chapter and together with Prof. Dr. Marielos Peña-Claros and Prof. Dr. Lourens Poorter helped develop the concept and improve the second manuscript. Gustavo Schwartz contributed to develop the third manuscript. Data collection was carried out by the Forest Management Group of Embrapa and I participated in the last inventory in 2012. Lastly, five conference presentations were held and one additional publication resulted from a scientific collaboration, as follows: van der Sande, M., E.J. Arets, M. Peña-Claros, A.L. de Avila, A. Roopsind, L. Mazzei, N. Ascarrunz, B. Finegan, A. Alarcón, Y. Cáceres-Siani, J.C. Licona, A.R. Ruschel, M.Toledo, and L. Poorter 2016. Old-growth Neotropical forests are shifting in species and trait composition. Ecological Monographs, 86: 228-243. I dedicate this thesis to my parents José and Marli who taught me to love nature. Dedico esta tese aos meus pais José e Marli que me ensinaram a amar a natureza. Acknowledgements I thank God for giving me life and health that enable me to experience and learn from life at its fullest extent. Thanks for the greatness and beauty of the Amazonian or any other tropical rain forest which always inspired me to try to do something to help conserve these ecosystems. Doing this doctoral research was an enjoyable experience that made me grow both personally and professionally. This journey started in 2011, when after finishing my Master thesis on the regeneration of Araucaria forests in south-eastern Brazil, I wanted to do something concrete to help towards the conservation of Amazonian forests. As a forester, I believe in the potential of sustainably managing these ecosystems to combine the production of goods and the conservation of biodiversity and other associated benefits. As a scientist, I believe that science can and needs to contribute with generating knowledge to this purpose. I am grateful to Prof. Dr. Maristela Machado Araujo for her friendship and support. She helped me build the bridge towards my professional objective. I extend my gratitude to Prof. Dr. João Olegário Pereira de Carvalho who accepted my participation in such a long-term project, which provided the data to be evaluated in this thesis. I also thank Prof. Dr. Benno Pokorny who helped get in contact with my supervisor, Prof. Dr. Jürgen Bauhus, whom I am deeply grateful for believing in my doctoral proposal and on my potential to develop it. He instigated and inspired the development of new and interesting ideas and always motivated me to make the most out of this doctoral research, encouraging and supporting me throughout the whole process. I am also very grateful to my second supervisor, Prof. Dr. Carten Dormann, who taught me theories and tools for statistical analysis, instigated critical thinking and closely supported and motivated the development of this research. Thanks also to Prof. Dr. Jaboury Ghazoul for accepting to examine this doctoral thesis. I would like to extend my thanks to the many institutions that supported the development of this doctoral research. Embrapa Amazônia Oriental was the host institution of this project and I thank Embrapa for the possibility of working with such a valuable dataset. I thank the German Academic Exchange Service (DAAD) for financing my doctoral studies at the University of Freiburg (doctoral scholarship) and Mrs. Maria Salgado from DAAD office, who was always ready to help. I thank the Müller-Fahnenberg Foundation for supporting the field trip to accompany the inventory of permanent sample plots in 2012. I am thankful to the following institutions for supporting my participation in academic conferences and summer schools that surely helped in the development of this research and of my academic career: the Müller- Fahnenberg Foundation, the Sino-German Centre for Research Promotion, the Georg-Ludwig- Hartig foundation, the Council for Tropical and Subtropical Agricultural Research, the Wissenschaftliche Gesellschaft, the International Graduate Academy, and the graduate school “Environment, Society and Global Change”. Thanks also to the two last institutions for providing courses to improve professional skills. This work could not have been done without the active participation of many people. I am grateful to Dr. Ademir Roberto Ruschel for all the support provided throughout the development of this research. I also thank other members of the Embrapa Forest Management group that were always open and available to exchange ideas and help in the development of this research: Dr. Lucas Mazzei, Marcio Soares, Dr. Gustavo Schwartz, Dr. José do Carmo Lopes and Dr. José Natalino Macedo Silva. My gratitude extends to Lúcio Reginaldo Seixas and Nilson de Souza Carvalho that taught me a lot about the Amazonian forests during fieldwork and made that time fun. I thank Rubens and Vera for supporting me during my stops in Santarém for the travels between Belém and the study area, and Esther Muschelknautz for her support to me as a member of the Graduate School. I am thankful to Alain, Locardia and Sofche for their comments on some sections of this thesis, and Katrin and Stefen for their help with translating the summary into German. Thanks also to Tiemo Kahl, Alvaro Soares, David Forrester, Clara Arranz, Cristabel Duran Rangel, Masha van der Sande, Simone Ciuti, Somidh Saha, Rüdiger Unseld and Adam Benneter for helping me to clarify and find answers in times of uncertainty about statistical analysis. I would like to extend my thanks to Prof. Dr. Marielos Peña-Claros, Prof. Dr. Francis Putz and Prof. Dr. Helge Bruelheide for significant and important discussions that contributed to the improvement of some sections and to additional motivation for the development of this doctoral research. I also thank the Forest Ecology and Management group at Wageningen University for warmly receiving me for a short-term research mission, especially to Marielos, Masha and Lourens for discussing and sharing ideas and data on functional traits for the development of the third chapter of this thesis. In Freiburg, I felt very welcomed at my work group since the beginning to the very last moment. Thank you to all members of the “Waldbau-family” for that! Your friendly, respectful and lively atmosphere helped me feel at home and encouraged me to challenge myself, from exercising my German skills to confronting some beliefs. I thank Ursula Eggert, Bernardette Trautwein, Germar Csapek, Martin Kohler and Mathias Frowein for their prompt assistance throughout these years, and Prof. Dr. Albert Reif for always making the best for the group. Thanks for sharing good moments to Sofche, Juliane, Locardia, Cristabel, Peggy, Mario, Alvaro, Anderson, Fabiana, Adriana, Juanita, Katja, Rodrigo and Jan. Special thanks to my roommates Steffan Schneider and Fillipo Del Gatto for making the time at the office enjoyable and motivating, as well as to your wives and families for nice moments spent together.
Recommended publications
  • Effects of Forest Fragmentation on Bottom-Up Control in Leaf-Cuttings Ants
    Effects of forest fragmentation on bottom-up control in leaf-cuttings ants Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades Fachbereich Biologie Technische Universität Kaiserslautern vorgelegt von M.Sc. Pille Urbas Kaiserslautern, Dezember 2004 1. Gutachter: Prof. Dr. Burkhard Büdel 2. Gutachter: PD Dr. Jürgen Kusch Vorsitzender der Prüfungskommission: Prof. Dr. Matthias Hahn ACKNOWLEDGEMENTS I ACKNOWLEDGEMENTS I wish to thank my family for always being there; Joachim Gerhold who gave me great support and Jutta, Klaus and Markus Gerhold who decided to provide me with a second family; my supervisors Rainer Wirth, Burkhard Büdel and the department of Botany, University of Kaiserslautern for integrating me into the department and providing for such an interesting subject and the infrastructure to successfully work on it; the co-operators at the Federal University of Pernambuco (UFPE), Brazil - Inara Leal and Marcelo Tabarelli - for their assistance and interchange during my time overseas; the following students for the co-operatation in collecting and analysing data for some aspects of this study: Manoel Araújo (LAI and LCA leaf harvest), Ùrsula Costa (localization and size measurements of LCA colonies), Poliana Falcão (LCA diet breadth) and Nicole Meyer (tree density and DBH). Conservation International do Brasil, Centro de Estudos Ambientais do Nordeste and Usina Serra Grande for providing infrastructure during the field work; Marcia Nascimento, Lourinalda Silva and Lothar Bieber (UFPE) for sharing their laboratory, equipment and knowledge for chemical analyses; Jose Roberto Trigo (University of Campinas) for providing some special chemicals; my friends in Brazil Reisla Oliveira, Olivier Darrault, Cindy Garneau, Leonhard Krause, Edvaldo Florentino, Marcondes Oliveira and Alexandre Grillo for supporting me in a foreign land.
    [Show full text]
  • Ethnopharmacology of Fruit Plants
    molecules Review Ethnopharmacology of Fruit Plants: A Literature Review on the Toxicological, Phytochemical, Cultural Aspects, and a Mechanistic Approach to the Pharmacological Effects of Four Widely Used Species Aline T. de Carvalho 1, Marina M. Paes 1 , Mila S. Cunha 1, Gustavo C. Brandão 2, Ana M. Mapeli 3 , Vanessa C. Rescia 1 , Silvia A. Oesterreich 4 and Gustavo R. Villas-Boas 1,* 1 Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras-BA CEP 47810-059, Brazil; [email protected] (A.T.d.C.); [email protected] (M.M.P.); [email protected] (M.S.C.); [email protected] (V.C.R.) 2 Physical Education Course, Center for Health Studies and Research (NEPSAU), Univel University Center, Cascavel-PR, Av. Tito Muffato, 2317, Santa Cruz, Cascavel-PR CEP 85806-080, Brazil; [email protected] 3 Research Group on Biomolecules and Catalyze, Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras-BA CEP 47810-059, Brazil; [email protected] 4 Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa. postal 364, Dourados-MS CEP 79804-970, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-(77)-3614-3152 Academic Editors: Raffaele Pezzani and Sara Vitalini Received: 22 July 2020; Accepted: 31 July 2020; Published: 26 August 2020 Abstract: Fruit plants have been widely used by the population as a source of food, income and in the treatment of various diseases due to their nutritional and pharmacological properties.
    [Show full text]
  • Mechanical Stress in the Inner Bark of 15 Tropical Tree Species and The
    Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure Romain Lehnebach, Léopold Doumerc, Bruno Clair, Tancrède Alméras To cite this version: Romain Lehnebach, Léopold Doumerc, Bruno Clair, Tancrède Alméras. Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure. Botany / Botanique, NRC Research Press, 2019, 10.1139/cjb-2018-0224. hal-02368075 HAL Id: hal-02368075 https://hal.archives-ouvertes.fr/hal-02368075 Submitted on 18 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure1 Romain Lehnebach, Léopold Doumerc, Bruno Clair, and Tancrède Alméras Abstract: Recent studies have shown that the inner bark is implicated in the postural control of inclined tree stems through the interaction between wood radial growth and tangential expansion of a trellis fiber network in bark. Assessing the taxonomic extent of this mechanism requires a screening of the diversity in bark anatomy and mechanical stress. The mechanical state of bark was measured in 15 tropical tree species from various botanical families on vertical mature trees, and related to the anatomical structure of the bark.
    [Show full text]
  • Chec List What Survived from the PLANAFLORO Project
    Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al.
    [Show full text]
  • Rain-Forest Fragmentation and the Phenology of Amazonian Tree Communities
    Journal of Tropical Ecology (2003) 19:343–347. Copyright 2003 Cambridge University Press DOI:10.1017/S0266467403003389 Printed in the United Kingdom SHORT COMMUNICATION Rain-forest fragmentation and the phenology of Amazonian tree communities William F. Laurance*†1, Judy M. Rankin-de Merona†, Ana Andrade†, Susan G. Laurance†, Sammya D’Angelo†, Thomas E. Lovejoy† and Heraldo L. Vasconcelos† *Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama´ †Biological Dynamics of Forest Fragments Project, National Institute for Amazonian Research (INPA), C.P. 478, Manaus, AM 69011-970, Brazil (Accepted 16 June 2002) Key Words: Amazon, edge effects, flowering, fruiting, habitat fragmentation, leaf production, plant reproduction, rain forest, trees Habitat fragmentation affects the ecology of tropical rain and leaf production (Lovejoy et al. 1986), whereas higher forests in many ways, such as reducing species diversity desiccation and light intensities near edges would lead to of many taxa (Laurance et al. 2002, Lovejoy et al. 1986) increased leaf shedding (Sizer & Tanner 1999). and increasing rates of tree mortality and canopy-gap The study area is the 1000-km2, experimentally frag- formation near forest edges (Laurance et al. 1997, 1998, mented landscape of the Biological Dynamics of Forest 2001). Such obvious alterations have been documented in Fragments Project (BDFFP) in central Amazonia, 80 many fragmented forests, but more subtle changes, such km N of Manaus, Brazil (2°30′S, 60°W; Lovejoy et al. as those affecting plant phenology (the timing and fre- 1986). Rainfall ranges from 1900–3500 mm annually quency of flower, fruit and leaf production), have received with a dry season from June to October.
    [Show full text]
  • Disentangling the Phenotypic Variation and Pollination Biology of the Cyclocephala Sexpunctata Species Complex (Coleoptera:Scara
    DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) A Thesis by Matthew Robert Moore Bachelor of Science, University of Nebraska-Lincoln, 2009 Submitted to the Department of Biological Sciences and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science July 2011 © Copyright 2011 by Matthew Robert Moore All Rights Reserved DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) The following faculty members have examined the final copy of this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science with a major in Biological Sciences. ________________________ Mary Jameson, Committee Chair ________________________ Bin Shuai, Committee Member ________________________ Gregory Houseman, Committee Member ________________________ Peer Moore-Jansen, Committee Member iii DEDICATION To my parents and my dearest friends iv "The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. He to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, is as good as dead: his eyes are closed." – Albert Einstein v ACKNOWLEDMENTS I would like to thank my academic advisor, Mary Jameson, whose years of guidance, patience and enthusiasm have so positively influenced my development as a scientist and person. I would like to thank Brett Ratcliffe and Matt Paulsen of the University of Nebraska State Museum for their generous help with this project.
    [Show full text]
  • Exudates Used As Medicine by the “Caboclos River-Dwellers” of the Unini River, AM, Brazil – Classification Based in Their
    Revista Brasileira de Farmacognosia 26 (2016) 379–384 ww w.elsevier.com/locate/bjp Original Article Exudates used as medicine by the “caboclos river-dwellers” of the Unini River, AM, Brazil – classification based in their chemical composition a,b a a a João Henrique G. Lago , Jaqueline Tezoto , Priscila B. Yazbek , Fernando Cassas , c a,∗ Juliana de F.L. Santos , Eliana Rodrigues a Department of Biological Sciences, Centro de Estudos Etnobotânicos e Etnofarmacológicos, Universidade Federal de São Paulo, Diadema, SP, Brazil b Department of Exact Sciences and Earth, Universidade Federal de São Paulo, Diadema, SP, Brazil c Coordenac¸ ão em Ciência e Tecnologia, Universidade Federal do Maranhão, São Luís, MA, Brazil a b s t r a c t a r t i c l e i n f o Article history: Although the use of exudates in traditional medicine has been commonly observed during ethnophar- Received 30 June 2015 macological surveys, few records have been made concerning the scientific merits of these products. The Accepted 14 March 2016 aim of this study was to document ethnopharmacological data and to classify exudates used as medicine Available online 28 March 2016 by the “caboclos” river-dwellers from the Unini River of Amazonas, Brazil, on chemical analyses basis. Using an ethnographic approach, indicated plants and their respective exudates were collected, identi- Keywords: fied and incorporated into herbarium of the National Institute of Amazonian Research. To classify these Amazon forest exudates, plant material was extracted using methanol, and obtained extracts were analyzed by Nuclear Ethnobotany Magnetic Resonance and mass spectrometry aiming identification of main compounds.
    [Show full text]
  • The One Hundred Tree Species Prioritized for Planting in the Tropics and Subtropics As Indicated by Database Mining
    The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass LIMITED CIRCULATION Correct citation: Kindt R, Dawson IK, Lillesø J-PB, Muchugi A, Pedercini F, Roshetko JM, van Noordwijk M, Graudal L, Jamnadass R. 2021. The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining. Working Paper No. 312. World Agroforestry, Nairobi, Kenya. DOI http://dx.doi.org/10.5716/WP21001.PDF The titles of the Working Paper Series are intended to disseminate provisional results of agroforestry research and practices and to stimulate feedback from the scientific community. Other World Agroforestry publication series include Technical Manuals, Occasional Papers and the Trees for Change Series. Published by World Agroforestry (ICRAF) PO Box 30677, GPO 00100 Nairobi, Kenya Tel: +254(0)20 7224000, via USA +1 650 833 6645 Fax: +254(0)20 7224001, via USA +1 650 833 6646 Email: [email protected] Website: www.worldagroforestry.org © World Agroforestry 2021 Working Paper No. 312 The views expressed in this publication are those of the authors and not necessarily those of World Agroforestry. Articles appearing in this publication series may be quoted or reproduced without charge, provided the source is acknowledged.
    [Show full text]
  • Amazon Plant List
    Amazon Plant List The Plant list below is contributed by Dr.Christopher Dick, PhD who has worked in Amazonia for many years. Note that it is a working list and neither exhaustive nor complete. English Common Portuguese Common Plant Family Name Botanical Name Name Name Annonaceae Guatteria Envira-bobô recurvisepala Unonopsis guatterioides Myristicaceae Virola calophylla Wild nutmeg Ucuuba Iryanthera uleii Dead-bark Osteophloeum Ucuuba-amarela platyspermum Lauraceae Mezilaurus itauba Itaúba Persea americana Avocado Abacate Aniba canella Casca preciosa Aniba roseadora Pau rosa Ocotea rubra Louro-gamela Peperomia Piperaceae Ant-garden macrostachya Nymphaeaceae Victoria amazonica Amazon-lily Victoria-regia Menispermaceae Ulmaceae Trema micrantha Trema, Periquitinho Moraceae Clarisia racemosa Guariúba Naucleopsis Miratinga, Pau pica caloneura Brosimim Amapá parinarioides Cecropia Cecropiaceae Purple cecropia Imbaúba roxa purpurascens Cecropia sciadophylla Cecropia Imbaúba-torém Caruru-bravo, Bredo- Phytolaccaceae Phytolacca rivinoides Pokeweed roxo Epiphyllum Cactaceae Cactus phyllanthus Polygonaceae Coccoloba spp. Water-grape? Symeria paniculata Carauaçuzeiro Tetracera Dilleniaceae Water-vine Cipó d'agua willdenowiana Pinzona coriaceae Fire-vine Cipó-de-fôgo Caryocaraceae Caryocar villosum Piquiá Caryocar glabrum Piquiarana Margraviaceae Marcgravia Quiinaceae Clusiaceae Vismia cayennensis Lacre-branco Vismia guianensis Lacre-vermelho Symphonia Ananí used for cerol? globulifera Elaeocarpaceae Sterculiaceae Sterculia frondosa Tacacá Waltheria
    [Show full text]
  • The Evolution of Bat Pollination: a Phylogenetic Perspective
    Annals of Botany 104: 1017–1043, 2009 doi:10.1093/aob/mcp197, available online at www.aob.oxfordjournals.org INVITED REVIEW The evolution of bat pollination: a phylogenetic perspective Theodore H. Fleming1,*, Cullen Geiselman2 and W. John Kress3 1Emeritus, Department of Biology, University of Miami, Coral Gables, FL 33124, USA, 2Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458, USA and 3Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA Received: 2 April 2009 Returned for revision: 27 May 2009 Accepted: 13 July 2009 Published electronically: 29 September 2009 † Background Most tropical and subtropical plants are biotically pollinated, and insects are the major pollinators. A small but ecologically and economically important group of plants classified in 28 orders, 67 families and about 528 species of angiosperms are pollinated by nectar-feeding bats. From a phylogenetic perspective this is a derived pollination mode involving a relatively large and energetically expensive pollinator. Here its ecologi- cal and evolutionary consequences are explored. Downloaded from † Scope and Conclusions This review summarizes adaptations in bats and plants that facilitate this interaction and discusses the evolution of bat pollination from a plant phylogenetic perspective. Two families of bats contain specialized flower visitors, one in the Old World and one in the New World. Adaptation to pollination by bats has evolved independently many times from a variety of ancestral conditions, including insect-, bird- and non-volant mammal-pollination. Bat pollination predominates in very few families but is relatively common in certain angiosperm subfamilies and tribes.
    [Show full text]
  • Downloaded from Brill.Com10/09/2021 12:24:23AM Via Free Access 2 IAWA Journal, Vol
    IAWA Journal, Vol. 26 (1), 2005: 1-68 WOOD ANATOMY OF THE SUBFAMILY EUPHORBIOIDEAE A comparison with subfamilies Crotonoideae and Acalyphoideae and the implications for the circumscription of the Euphorbiaceae Alberta M. W. Mennega Nationaal Herbarium Nederland, Utrecht University branch, Heidelberglaan 2, 3584 es Utrecht, The Netherlands SUMMARY The wood anatomy was studied of 82 species from 34 out of 54 genera in the subfamily Euphorbioideae, covering all five tribes recognized in this subfamily. In general the woods show a great deal of similarity. They are charac­ terized by a relative paucity of vessels, often arranged in short to long, dumbbell-shaped or twin, radial multiples, and by medium-sized to large intervessel pits; fibres often have gelatinous walls; parenchyma apotracheal in short, wavy, narrow bands and diffuse-in-aggregates; mostly uni- or only locally biseriate rays, strongly heterocellular (except Hippomane, Hura and Pachystroma). Cell contents, either silica or crystals, or both together, are nearly always present and often useful in distinguishing between genera. Radiallaticifers were noticed in most genera, though they are scarce and difficult to trace. The laticifers are generally not surrounded by special cells, except in some genera of the subtribe Euphorbiinae where radiallaticifers are comparatively frequent and conspicuous. Three ofthe five tribes show a great deal of conformity in their anatomy. Stomatocalyceae, however, stand apart from the rest by the combination of the scarcity of vessels, and mostly biseriate, vertically fused and very tall rays. Within Euphorbieae the subtribe Euphorbiinae shows a greater vari­ ation than average, notably in vessel pitting, the frequent presence of two­ celled parenchyma strands, and in size and frequency of the laticifers.
    [Show full text]
  • Diversificação E Conservação Das Lecythidaceae Neotropicais
    Acta bot. bras. 4(1): 1990 4S DIVERSIFICAÇÃO E CONSERVAÇÃO DAS LECYTHIDACEAE NEOTROPICAIS ScottMori 1 RESUMO - As Lecythidaceae (família da castanha-do-Pará) são árvores tro­ picais de planície que atingiram sua maior diversidade em espécies nos neotró• picos. No Novo Mundo, a família está mais diversificada em habitats de terra firme na Amazônia e nas Guianas. Pouco mais de 50% de todas as espécies neo­ tropicais de Lecythidaceae são encontradas na Amazônia, sendo a Amazônia cen­ tral especialmente rica em espécies. Uma única área de ~OO hectares, 90 Km ao norte de Manaus apresenta 38 espécies diferentes de Lecythidaceae. Além disso, um grande número de espécies de Lecythidaceae têm o centro de distribuição na província florística das Guianas. As espécies de Lecythidaceae com flores actino­ mórficas são mais numerosas no noroeste da América do Sul, enquanto que as es­ pécies com flores zigomórfas predominam da Amazônia central até as Guianas. As matas costeiras do Equador e da Colômbia até o Panamá abrigam sete espécies de Lecythidaceae ameaçadas de extinção e nove das 15 espécies de Lecythidaceae que ocorrem nas matas do leste do Brasil extra-amazônico são endêmicas. Estas matas costeiras do Pacífico e do leste brasileiro devem receber alta prioridade quanto à conservação das Lecythidaceae, porque são nestas matas que o alto grau de endemismo coincide com extremo destamatamento. Palavras-chave: Lecythidaceae, neotropical, padrão de distribuição geográfica. ABSTRACT - Lecythidaceae (Brazil nut family) are lowland, tropical trees which have reached their greatest species diversity in the Neotropics. In the New World, the family . is most diverse in terra firme habitats of Amazonia and the Guianas.
    [Show full text]