Downloaded from Brill.Com10/09/2021 12:24:23AM Via Free Access 2 IAWA Journal, Vol

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Brill.Com10/09/2021 12:24:23AM Via Free Access 2 IAWA Journal, Vol IAWA Journal, Vol. 26 (1), 2005: 1-68 WOOD ANATOMY OF THE SUBFAMILY EUPHORBIOIDEAE A comparison with subfamilies Crotonoideae and Acalyphoideae and the implications for the circumscription of the Euphorbiaceae Alberta M. W. Mennega Nationaal Herbarium Nederland, Utrecht University branch, Heidelberglaan 2, 3584 es Utrecht, The Netherlands SUMMARY The wood anatomy was studied of 82 species from 34 out of 54 genera in the subfamily Euphorbioideae, covering all five tribes recognized in this subfamily. In general the woods show a great deal of similarity. They are charac­ terized by a relative paucity of vessels, often arranged in short to long, dumbbell-shaped or twin, radial multiples, and by medium-sized to large intervessel pits; fibres often have gelatinous walls; parenchyma apotracheal in short, wavy, narrow bands and diffuse-in-aggregates; mostly uni- or only locally biseriate rays, strongly heterocellular (except Hippomane, Hura and Pachystroma). Cell contents, either silica or crystals, or both together, are nearly always present and often useful in distinguishing between genera. Radiallaticifers were noticed in most genera, though they are scarce and difficult to trace. The laticifers are generally not surrounded by special cells, except in some genera of the subtribe Euphorbiinae where radiallaticifers are comparatively frequent and conspicuous. Three ofthe five tribes show a great deal of conformity in their anatomy. Stomatocalyceae, however, stand apart from the rest by the combination of the scarcity of vessels, and mostly biseriate, vertically fused and very tall rays. Within Euphorbieae the subtribe Euphorbiinae shows a greater vari­ ation than average, notably in vessel pitting, the frequent presence of two­ celled parenchyma strands, and in size and frequency of the laticifers. Data from surveys of the two other subfamilies of the uniovulate eu­ phorbs, Acalyphoideae and Crotonoideae are compared and their relation­ ships are discussed. The comparison of Euphorbioideae, Acalyphoideae, and Crotonoideae shows a great anatomical conforrnity with only a marked difference in the presence of laticifers: scarce in Acalyphoideae and Cro­ tonoideae but nearly always present and often frequent in Euphorbioideae. All in all, wood anatomy supports a narrower family concept of Euphor­ biaceae, inc1uding only Acalyphoideae, Crotonoideae, and Euphorbioideae, while exc1uding Phyllanthoideae and Oldfieldioideae, as has recently been advocated by several authors. In Table 2 (p. 6-7), informative features are summarized. Key words: Wood structure, Euphorbioideae, Acalyphoideae, Crotonoi­ deae, crystals, latex tubes, lysigenous cavities, silica. Downloaded from Brill.com10/09/2021 12:24:23AM via free access 2 IAWA Journal, Vol. 26 (1), 2005 INTRODUCTION Ever since Prof. G.L. Webster aroused my interest in the wood structure ofthe diverse family of the Euphorbiaceae, I have been studying its wood anatomy on a worldwide scale, taking his concept of the family as a base (Webster 1975). He recognized five subfamilies: Phyllanthoideae and Oldfieldioideae comprising the biovulate genera, and Acalyphoideae, Crotonoideae, and Euphorbioideae comprising the uniovulate genera. Wood structure proved to be greatly variable in the biovulate subfamilies as appeared from studies ofPhyllanthoideae (Mennega 1987) and Oldfieldioideae (Hayden 1994), in contrast to the more uniform structure of the three uniovulate subfamilies. Of the latter, Acalyphoideae was studied by Hayden and Hayden (2000). Moreover, a wood atlas has been published recently of end-grain photographs at low magnification covering all subfamilies and roughly half of the total number of genera. This atlas is intended to aid hand-lens inspection (Westra & Koek-Noorman 2004). The present contribution completes the wood anatomical picture ofthe Euphorbiaceae by presenting an extensive treatment of the subfamily Euphorbioideae, and an overview of the Crotonoideae. This paper is an amended version of an unpublished contribution presented at the International conference on the Systematics of the Euphorbiaceae at the Missouri Botanical Garden, St. Louis, in 1989. That account was based on Webster's generic con­ cepts (1987). However, papers by H.-J. Esser (1994,2001) dealing with the tribe Hip­ pomaneae offered new concepts on generic delimitations within this tribe, the largest of the subfamily. Esser's concepts being in closer agreement with wood anatomical features than Webster's classification (1994), the tribe Hippomaneae is treated here following the work ofEsser. In Webster's treatment (1994) the tribe Hippomaneae com­ prises 19 genera in 3 subtribes, whereas Esser (1994) recognized 36 genera and no sub­ tribes. However, in the recent elaborate overview of the subfamily by Radcliffe-Smith (2001), wherein Esser treated the tribe Hippomaneae, the tribe is split into two subtribes: Carumbiinae and Hippomaninae. MATERIAL AND METHODS The 34 genera studied are listed in Table 1. Of a number of genera no wood was available. For the greater part this concerns shrubby and monotypic genera. For two of these, data were taken from literature. Neither wood nor data were available of the following genera: Adenopeltis, Anomo­ stachys, Bonania, Conosapium, Dendrocousinsia, Ditrysinia, Endadenium, Hamilcoa, Microstachys, Monadenia, Senefeldera, and Spegazziniophytum. Data of the wood samples studied are recorded under the generic descriptions. Genera are treated alphabetically according to tribes and subtribes. Most samples are backed by herbarium vouchers and deposited in the collection of the Wood Anatomy section of the Nationaal Herbarium Nederland, Utrecht University branch. Others were pro­ vided by other institutes, cited in accordance with Stern's Index Xylariorum 3 (1988). Microscopic slides and macerations were prepared in the usual way. All slides are deposited in Utrecht (Uw). Density data were only occasionally available, depending on the size of the wood specimen, or records in the literature. Downloaded from Brill.com10/09/2021 12:24:23AM via free access Mennega - Wood anatomy of the Euphorbioideae (Euphorbiaceae) 3 Table I. Genera of the subfamily Euphorbioideae of wh ich wood was examined. Classification according to Radc1iffe-Smith's Genera Euphorbiacearum (200 I). Tribe 1. Stomatocalyceae (Müll. Arg.) G.L. Webster Subtribe Stomatocalycinae Pimelodendron Hassk. Plagiostyles Pierre Subtribe Hamilcoinae Nealchornea Huber Tribe 2. Hippomaneae A. Juss.ex Bartl. Subtribe Carumbiinae Homalanthus A.Juss. Subtribe Hippomaninae Actinostemon Mart. ex Klotzsch Balakata Esser Colliguaja Molina Dendrothrix Esser Excoecaria L. Falconeria Royle Grimmeodendron Urb. Gymnanthes Sw. Hippomane L. MabeaAubl. Maprounea Aubl. Neoshirakia Esser Pleradenophora Esser Pseudosenefeldera Esser Rhodothyrsus Esser Sapium Jacq. Sclerocroton Hochst. Sebastiania Spreng. Senefelderopsis Steyerrn. Shirakiopsis Esser Spirostachys Sonder Stillingia Garden ex L. Triadica Lour. Tribe 3. Pachystromateae (Pax & K.Hoffm.) Pax Pachystroma (Müll. Arg.) Pax Tribe 4. Hureae Dumort. Hura L. Tribe 5. Euphorbieae Blume Subtribe Anthosteminae Anthostema A. Juss. Dichostemma Pierre Subtribe Neoguillauminiinae Neoguillauminia Croizat Subtribe Euphorbiinae Chamaesyce Gray Elaeophorbia Stapf Euphorbia L. Pedilanthus Neck. ex Poit. Synadenium Boiss. Downloaded from Brill.com10/09/2021 12:24:23AM via free access 4 IAWA Journal, Vol. 26 (1), 2005 SURVEY OF THE WOOD CHARACTERS OF THE SUBFAMILY - Table 2 Physical properties Most woods are of medium density, yellowish brown or cream-coloured, and mostly without distinction between heart- and sapwood. Hard, dark brown, often yellowish­ ly streaked heartwood is present in Gymnanthes lucida, Hippomane maneineIla, Spiro­ stachys africana and S. venenifera. Low-density wood occurs in Hura and Euphorbia. Anatomical characters Growth rings - Nearly always present, but inconspicuous. Indicated by a few rows of radially compressed, sometimes thicker-walled latewood fibres. Vessels - Generally diffuse, but in Actinostemon, Gymnanthes p.p., Pseudosene­ jeldera and Rhodothyrsus a striking radial zonation of alternating strips with or devoid of vessels occurs (Fig. 8, 37). Usually the majority in radial multiples of 2 to 4, often dumbbell-shaped (Fig. 13) or in twin rows, also often in clusters. Frequency from few per sq. mm in Elaeophorbia, Hura, Sapium to numerous in species of Chamaesyce, Pseudosenejeldera, Spirostachys. For the greater part between 10-25 per sq. mm. Tan­ gential diameter very small to large, most frequently 100-200 f-lm; often rather vari­ able within a genus. Perforations almost exclusively simple, only in Maprounea part of the perforations scalariform. In juvenile wood of Euphorbia grandicornis Uhlarz and Kunschert (1976) noticed a rare scalariform perforation plate. Ray-vessel perforations (perforated ray cells) were observed in several genera (Fig. 35; see also Giraud 1983). Intervessel pitting generally alternate, the bordered pits 4-16 f-lm in tangential diameter, largest in Hura and Sapium. In Euphorbia from alternate to opposite and scalariform in the cactoid species. Vessel-ray pitting usually large, half-bordered, the shapes regular or variable. The pits in Euphorbia p.p. and in Hippomane are large, elongate to scalariform; pits of two types occur often in one cell. Thin-walled tyloses in species of Anthostema, Excoecaria, Hippomane, Hura, Mabea, Plagiostyles, Pseudosenejeldera, and Sapium. Dark resin in Spirostachys. Vascular tracheids occasionally present in all genera
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • The Use of Barcoding Sequences for the Construction of Phylogenetic Relationships in the Euphorbiaceae
    University of Padova Department of Land, Environment Agriculture and Forestry MSc in Mediterranean Forestry and Natural Resources Management The use of barcoding sequences for the construction of phylogenetic relationships in the Euphorbiaceae Supervisor: Alessandro Vannozzi Co-supervisor: Prof. Dr. Oliver Gailing Submitted by: Bikash Kharel Matriculation No. 1177536 ACADEMIC YEAR 2017/2018 Acknowledgments This dissertation has come to this positive end through the collective efforts of several people and organizations: from rural peasants to highly academic personnel and institutions around the world. Without their mental, physical and financial support this research would not have been possible. I would like to express my gratitude to all of them who were involved directly or indirectly in this endeavor. To all of them, I express my deep appreciation. Firstly, I am thankful to Prof. Dr. Oliver Gailing for providing me the opportunity to conduct my thesis on this topic. I greatly appreciate my supervisor Alessandro Vannozzi for providing the vision regarding Forest Genetics and DNA barcoding. My cordial thanks and heartfelt gratitude goes to him whose encouragements, suggestions and comments made this research possible to shape in this form. I am also thankful to Prof. Dr. Konstantin V. Krutovsky for his guidance in each and every step of this research especially helping me with the CodonCode software and reviewing the thesis. I also want to thank Erasmus Mundus Programme for providing me with a scholarship for pursuing Master’s degree in Mediterranean Forestry and Natural Resources Management (MEDFOR) course. Besides this, I would like to thank all my professors who broadened my knowledge during the period of my study in University of Lisbon and University of Padova.
    [Show full text]
  • Euphorbia Subg
    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ БОТАНИЧЕСКИЙ ИНСТИТУТ ИМ. В.Л. КОМАРОВА РОССИЙСКОЙ АКАДЕМИИ НАУК На правах рукописи Гельтман Дмитрий Викторович ПОДРОД ESULA РОДА EUPHORBIA (EUPHORBIACEAE): СИСТЕМА, ФИЛОГЕНИЯ, ГЕОГРАФИЧЕСКИЙ АНАЛИЗ 03.02.01 — ботаника ДИССЕРТАЦИЯ на соискание ученой степени доктора биологических наук САНКТ-ПЕТЕРБУРГ 2015 2 Оглавление Введение ......................................................................................................................................... 3 Глава 1. Род Euphorbia и основные проблемы его систематики ......................................... 9 1.1. Общая характеристика и систематическое положение .......................................... 9 1.2. Краткая история таксономического изучения и формирования системы рода ... 10 1.3. Основные проблемы систематики рода Euphorbia и его подрода Esula на рубеже XX–XXI вв. и пути их решения ..................................................................................... 15 Глава 2. Материал и методы исследования ........................................................................... 17 Глава 3. Построение системы подрода Esula рода Euphorbia на основе молекулярно- филогенетического подхода ...................................................................................................... 24 3.1. Краткая история молекулярно-филогенетического изучения рода Euphorbia и его подрода Esula ......................................................................................................... 24 3.2. Результаты молекулярно-филогенетического
    [Show full text]
  • Survey of Euphorbiaceae Family in Kopergaon Tehsil Of
    International Journal of Humanities and Social Sciences (IJHSS) ISSN (P): 2319–393X; ISSN (E): 2319–3948 Vol. 9, Issue 3, Apr–May 2020; 47–58 © IASET SURVEY OF EUPHORBIACEAE FAMILY IN KOPERGAONTEHSIL OF MAHARASHTRA Rahul Chine 1 & MukulBarwant 2 1Research Scholar, Department of Botany, Shri Sadguru Gangagir Maharaj Science College, Maharashtra, India 2Research Scholar, Department of Botany, Sanjivani Arts Commerce and Science College, Maharashtra, India ABSTRACT The survey of Family Euphorbiaceae from Kopargoantehshil is done. In this we first collection of different member of Family Euphorbiaceae from different region of Kopargoantehasil. An extensive and intensive survey at plants was carried out from village Pathare, Derde, Pohegoan, Kopergaon, Padhegaon, Apegoan during the were collected in flowering and fruiting period throughout the year done. During survey we determine 16 member of Euphorbiceae from Kopargoantehshil Then we decide characterization on the basis of habit, flowering character, leaf and fruit character with help of that character and using different literature we identified each and every member of Euphorbiaceae Species were identified with relevant information and documented in this paper with regard to their Botanical Name, family, Habitat, flowering Fruiting session and their medicinal value of some member of Euphorbiaceae that used in medicine respiratory disorder such as cough, asthama, bronchitis etc and some are toxic in nature due to their toxic latex that is showing itching reaction. KEYWORDS : Family Euphorbiaceae, Respiratory Ailment, Identification, Chracterization and Documentation Article History Received: 09 Apr 2020 | Revised: 10 Apr 2020 | Accepted: 18 Apr 2020 INTRODUCTION The Euphorbiaceae, the spurge family, is one of the complex large family of flowering plants of angiosperm with 334 genera and 8000 species in the worlds (Wurdack 2004).
    [Show full text]
  • Stillingia: a Newly Recorded Genus of Euphorbiaceae from China
    Phytotaxa 296 (2): 187–194 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.296.2.8 Stillingia: A newly recorded genus of Euphorbiaceae from China SHENGCHUN LI1, 2, BINGHUI CHEN1, XIANGXU HUANG1, XIAOYU CHANG1, TIEYAO TU*1 & DIANXIANG ZHANG1 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China 2University of Chinese Academy of Sciences, Beijing 100049, China * Corresponding author, email: [email protected] Abstract Stillingia (Euphorbiaceae) contains ca. 30 species from Latin America, the southern United States, and various islands in the tropical Pacific and in the Indian Ocean. We report here for the first time the occurrence of a member of the genus in China, Stillingia lineata subsp. pacifica. The distribution of the genus in China is apparently narrow, known only from Pingzhou and Wanzhou Islands of the Wanshan Archipelago in the South China Sea, which is close to the Pearl River estuary. This study updates our knowledge on the geographic distribution of the genus, and provides new palynological data as well. Key words: Island, Hippomaneae, South China Sea, Stillingia lineata Introduction During the last decade, hundreds of new plant species or new species records have been added to the flora of China. Nevertheless, newly described or newly recorded plant genera are not discovered and reported very often, suggesting that botanical expedition and plant survey at the generic level may be advanced in China. As far as we know, only six and eight angiosperm genera respectively have been newly described or newly recorded from China within the last ten years (Qiang et al.
    [Show full text]
  • The Framework Species Approach to Forest Restoration: Using Functional Traits As Predictors of Species Performance
    - 1 - The Framework Species Approach to forest restoration: using functional traits as predictors of species performance. Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Hannah Betts July 2013 - 2 - - 3 - Abstract Due to forest degradation and loss, the use of ecological restoration techniques has become of particular interest in recent years. One such method is the Framework Species Approach (FSA), which was developed in Queensland, Australia. The Framework Species Approach involves a single planting (approximately 30 species) of both early and late successional species. Species planted must survive in the harsh conditions of an open site as well as fulfilling the functions of; (a) fast growth of a broad dense canopy to shade out weeds and reduce the chance of forest fire, (b) early production of flowers or fleshy fruits to attract seed dispersers and kick start animal-mediated seed distribution to the degraded site. The Framework Species Approach has recently been used as part of a restoration project in Doi Suthep-Pui National Park in northern Thailand by the Forest Restoration Research Unit (FORRU) of Chiang Mai University. FORRU have undertaken a number of trials on species performance in the nursery and the field to select appropriate species. However, this has been time-consuming and labour- intensive. It has been suggested that the need for such trials may be reduced by the pre-selection of species using their functional traits as predictors of future performance. Here, seed, leaf and wood functional traits were analysed against predictions from ecological models such as the CSR Triangle and the pioneer concept to assess the extent to which such models described the ecological strategies exhibited by woody species in the seasonally-dry tropical forests of northern Thailand.
    [Show full text]
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2012
    Natural Heritage Program List of Rare Plant Species of North Carolina 2012 Edited by Laura E. Gadd, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program Office of Conservation, Planning, and Community Affairs N.C. Department of Environment and Natural Resources 1601 MSC, Raleigh, NC 27699-1601 Natural Heritage Program List of Rare Plant Species of North Carolina 2012 Edited by Laura E. Gadd, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program Office of Conservation, Planning, and Community Affairs N.C. Department of Environment and Natural Resources 1601 MSC, Raleigh, NC 27699-1601 www.ncnhp.org NATURAL HERITAGE PROGRAM LIST OF THE RARE PLANTS OF NORTH CAROLINA 2012 Edition Edited by Laura E. Gadd, Botanist and John Finnegan, Information Systems Manager North Carolina Natural Heritage Program, Office of Conservation, Planning, and Community Affairs Department of Environment and Natural Resources, 1601 MSC, Raleigh, NC 27699-1601 www.ncnhp.org Table of Contents LIST FORMAT ......................................................................................................................................................................... 3 NORTH CAROLINA RARE PLANT LIST ......................................................................................................................... 10 NORTH CAROLINA PLANT WATCH LIST ..................................................................................................................... 71 Watch Category
    [Show full text]
  • Vascular Flora and Vegetation Classification of the South Atlantic Coastal Plain Limestone Forest Association of Central Georgia
    VASCULAR FLORA AND VEGETATION CLASSIFICATION OF THE SOUTH ATLANTIC COASTAL PLAIN LIMESTONE FOREST ASSOCIATION OF CENTRAL GEORGIA by PATRICK SUMNER LYNCH (Under the Direction of J.L. Hamrick) ABSTRACT The South Atlantic Coastal Plain Limestone forest is a globally imperiled (G2) forest association known only from the upper Coastal Plain of central Georgia. These calcareous forest communities support diverse floristic assemblages unique among the Georgia Coastal Plain, but have not been subject to detailed floristic study. I conducted a comprehensive floristic inventory, multivariate community analyses and floristic quality assessments to document composition, elucidate community structure and underlying physiographic regimes, and assess habitat integrity for seven sites in Houston, Bleckley and Twiggs counties. Community analyses revealed twelve community types within two floristically defined domains corresponding to uplands and slopes, and bottomlands, respectively, and governed largely by moisture content and degree of inclination. Floristic quality assessments revealed varying degrees of floristic quality and habitat integrity corresponding primarily to local physiography and disturbance history. Floristic inventory recovered 339 vascular plant taxa representing 218 genera in 98 families, including 17 rare Georgia species. INDEX WORDS: Limestone forest, community analysis, floristic inventory, floristic quality assessment, Georgia, Coastal Plain. VASCULAR FLORA AND VEGETATION CLASSIFICATION OF THE SOUTH ATLANTIC COASTAL PLAIN LIMESTONE FOREST ASSOCIATION OF CENTRAL GEORGIA by PATRICK SUMNER LYNCH B.S., The University of Illinois, Urbana-Champaign, 2006 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2010 © 2012 Patrick Sumner Lynch All Rights Reserved VASCULAR FLORA AND VEGETATION CLASSIFICATION OF THE SOUTH ATLANTIC COASTAL PLAIN LIMESTONE FOREST ASSOCIATION OF CENTRAL GEORGIA by PATRICK SUMNER LYNCH Major Professor: J.L.
    [Show full text]
  • Origin of the Cyathium-Bearing Euphorbieae (Euphorbiaceae): Phylogenetic Study Based on Morphological Characters
    ParkBot. Bull.and Backlund Acad. Sin. — (2002) Origin 43: of 57-62 the cyathium-bearing Euphorbieae 57 Origin of the cyathium-bearing Euphorbieae (Euphorbiaceae): phylogenetic study based on morphological characters Ki-Ryong Park1,* and Anders Backlund2 1Department of Biology, Kyung-Nam University, Masan 631-701, Korea 2Division of Pharmacognosy, Department of Pharmacy, Uppsala University, BMC-Biomedical center, S-751 23 Uppsala, Sweden (Received October 6, 2000; Accepted August 24, 2001) Abstract. A cladistic analysis of the subfamily Euphorbioideae was undertaken to elucidate the origin of the cyathium- bearing Euphorbieae and to provide hypotheses about evolutionary relationships within the subfamily. Twenty-one species representing most of the genera within the study group and three outgroup taxa from the subfamilies Acalyphoideae and Crotonoideae were selected for parsimony analysis. An unweighted parsimony analysis of 24 morphological characters resulted in five equally parsimonious trees with consistency indices of 0.67 and tree lengths of 39 steps. The strict consensus tree supported monophyly of the cyathium-bearing Euphorbieae. The sister group relationships of cyathium bearing Euphorbieae with Maprounea (subtribe Hippomaninae) were supported weakly, and the origin of cyathium is possibly in Hippomaneae, or in the common ancestor of Euphorbieae and remaining taxa of Euphorbioideae plus Acalyphoideae. Within the tribe Euphorbieae, both subtribes Euphorbiinae and Neoguilauminiinae are monophyletic, but the African endemic subtribe Anthosteminae is unresolved. The resulting trees support the monophyly of the tribe Stomatocalyceae while the tribe Hippomaneae does not consistently form a clade. Keywords: Cyathium; Euphorbieae; Phylogeny. Introduction to the position of a female flower. Accordingly, the Eu- phorbia-like cyathium results from the alteration of floral In a recent classification of subfamily Euphorbioideae axis and the condensation of the axis of male flower in Boiss., Webster (1975, 1994b) recognized six tribes: Hippomaneae.
    [Show full text]
  • Inventaire Et Analyse Chimique Des Exsudats Des Plantes D'utilisation Courante Au Congo-Brazzaville
    Inventaire et analyse chimique des exsudats des plantes d’utilisation courante au Congo-Brazzaville Arnold Murphy Elouma Ndinga To cite this version: Arnold Murphy Elouma Ndinga. Inventaire et analyse chimique des exsudats des plantes d’utilisation courante au Congo-Brazzaville. Chimie analytique. Université Paris Sud - Paris XI; Université Marien- Ngouabi (Brazzaville), 2015. Français. NNT : 2015PA112023. tel-01269459 HAL Id: tel-01269459 https://tel.archives-ouvertes.fr/tel-01269459 Submitted on 5 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MARIEN NGOUABI UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE 470: CHIMIE DE PARIS SUD Laboratoire d’Etude des Techniques et d’Instruments d’Analyse Moléculaire (LETIAM) THÈSE DE DOCTORAT CHIMIE par Arnold Murphy ELOUMA NDINGA INVENTAIRE ET ANALYSE CHIMIQUE DES EXSUDATS DES PLANTES D’UTILISATION COURANTE AU CONGO-BRAZZAVILLE Date de soutenance : 27/02/2015 Directeur de thèse : M. Pierre CHAMINADE, Professeur des Universités (France) Co-directeur de thèse : M. Jean-Maurille OUAMBA, Professeur Titulaire CAMES (Congo) Composition du jury : Président : M. Alain TCHAPLA, Professeur Emérite, Université Paris-Sud Rapporteurs : M. Zéphirin MOULOUNGUI, Directeur de Recherche INRA, INP-Toulouse M. Ange Antoine ABENA, Professeur Titulaire CAMES, Université Marien Ngouabi Examinateurs : M.
    [Show full text]
  • Influence of Altitude and Host-Plant Species on Gall Distribution in Colliguaja Spp
    Revista Chilena de Historia Natural 72: 305-313, 1999 Influence of altitude and host-plant species on gall distribution in Colliguaja spp. (Euphorbiaceae) in central Chile Influencia de la altitud y la especie de planta hospedadora sobre la distribuci6n de cecidias en Colliguaja spp. (Euphorbiaceae) en Chile central EDUARDO FUENTES-CONTRERAS, ERNESTO GIANOLI, PAULA P. CABALLERO & HERMANN M. NIEMEYER Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile ABSTRACT The shrub genus Colliguaja (Euphorbiaceae) shows a characteristic pattern of altitudinal distribution in central Chile. At lower altitudes it is represented by C. odorifera, at middle elevation by the putative hybrid C. salicifolia and at upper altitudes by C. integerrima. Flower buds of Colliguaja spp. are galled by gall-midges and also show the presence of associated parasitoids and hyperparasitoids. In this study we evaluated the effect of altitude and Colliguaja species on the distribution and abundance of flower galls resulting from parasitoid attack. Analysis of leaf morphology was used to represent either putative hybridisation or a host-plant species transition at different altitudes, while gall prevalence and relative abundance were measured as dependent variables. Gall prevalence and relative abundance decreased significantly as altitude increased, and leaf morphology indicated a host-plant transition from C. odorifera through C. salicifolia to C. integerrima. Path analysis revealed that altitude had a stronger direct effect on relative abundance of galls than host-plant, while the influence of host-plant hybridisation or species transition was mainly mediated by changes in elevation. Key-words: Mediterranean matorral, elevation, flower galls, Colliguaja. RESUMEN El genero Colliguaja (Euphorbiaceae) presenta un patron de distribucion altitudinal caracterfstico en Chile central.
    [Show full text]
  • Biochemical Assessment of the Effect of Aqueous Leaf Extract of Euphorbia Heterophylla Linn on Hepatocytes of Rats
    IOSR Journal Of Environmental Science, Toxicology And Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume 3, Issue 5 (Mar. - Apr. 2013), PP 37-41 www.Iosrjournals.Org Biochemical Assessment of the Effect of Aqueous Leaf Extract Of Euphorbia Heterophylla Linn on Hepatocytes of Rats Apiamu Augustine1, Evuen Uduenevwo Francis 2, Ajaja Uche Ivy3 1, 2 & 3( Department of Biochemistry, College of Natural and Applied Sciences, Western Delta University, Nigeria) Abstract: In recent years, the search for biologically active compounds from Euphorbia heterophylla in the treatment of different diseases has always been of great interest to researchers. In this present study, we investigated the effect of the aqueous leaf extract of the plant on hepatocytes using animal models. A total of twenty (20) wistar albino rats (150-240g) were used for the study. The rats were randomly divided into four experimental groups (A, B, C & D) comprising five rats per group. The control group was administered deionised water while the treatment groups were orally administered doses of the aqueous leaf extract of the plant( 100mg/kg, 200mg/kg and 300mg/kg body weights) by means of a gavage for two weeks. Total protein, albumin, urea nitrogen, alanine aminotransferase(ALT), aspartate aminotransferase(AST) and alkaline phosphatase(ALP) were the biochemical parameters assessed in this study. The results showed no significant difference(p>0.05 in the levels of the aforementioned parameters. The aqueous leaf extract of the plant indicated the presence of carbohydrates, saponins, tannins, flavonoids, alkaloids, terpenoids and steroids, but anthracene derivatives were absent. The results obtained in this study, therefore, justify the traditional use of the plant for food and medicinal purposes respectively.
    [Show full text]