Macaques ( Macaca Leonina ): Impact on Their Seed Dispersal Effectiveness and Ecological Contribution in a Tropical Rainforest at Khao Yai National Park, Thailand
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Taxonomy of Primates in the Laboratory Context
P0800261_01 7/14/05 8:00 AM Page 3 C HAPTER 1 The Taxonomy of Primates T HE T in the Laboratory Context AXONOMY OF P Colin Groves RIMATES School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia 3 What are species? D Taxonomy: EFINITION OF THE The biological Organizing nature species concept Taxonomy means classifying organisms. It is nowadays commonly used as a synonym for systematics, though Disagreement as to what precisely constitutes a species P strictly speaking systematics is a much broader sphere is to be expected, given that the concept serves so many RIMATE of interest – interrelationships, and biodiversity. At the functions (Vane-Wright, 1992). We may be interested basis of taxonomy lies that much-debated concept, the in classification as such, or in the evolutionary implica- species. tions of species; in the theory of species, or in simply M ODEL Because there is so much misunderstanding about how to recognize them; or in their reproductive, phys- what a species is, it is necessary to give some space to iological, or husbandry status. discussion of the concept. The importance of what we Most non-specialists probably have some vague mean by the word “species” goes way beyond taxonomy idea that species are defined by not interbreeding with as such: it affects such diverse fields as genetics, biogeog- each other; usually, that hybrids between different species raphy, population biology, ecology, ethology, and bio- are sterile, or that they are incapable of hybridizing at diversity; in an era in which threats to the natural all. Such an impression ultimately derives from the def- world and its biodiversity are accelerating, it affects inition by Mayr (1940), whereby species are “groups of conservation strategies (Rojas, 1992). -
The Use of Barcoding Sequences for the Construction of Phylogenetic Relationships in the Euphorbiaceae
University of Padova Department of Land, Environment Agriculture and Forestry MSc in Mediterranean Forestry and Natural Resources Management The use of barcoding sequences for the construction of phylogenetic relationships in the Euphorbiaceae Supervisor: Alessandro Vannozzi Co-supervisor: Prof. Dr. Oliver Gailing Submitted by: Bikash Kharel Matriculation No. 1177536 ACADEMIC YEAR 2017/2018 Acknowledgments This dissertation has come to this positive end through the collective efforts of several people and organizations: from rural peasants to highly academic personnel and institutions around the world. Without their mental, physical and financial support this research would not have been possible. I would like to express my gratitude to all of them who were involved directly or indirectly in this endeavor. To all of them, I express my deep appreciation. Firstly, I am thankful to Prof. Dr. Oliver Gailing for providing me the opportunity to conduct my thesis on this topic. I greatly appreciate my supervisor Alessandro Vannozzi for providing the vision regarding Forest Genetics and DNA barcoding. My cordial thanks and heartfelt gratitude goes to him whose encouragements, suggestions and comments made this research possible to shape in this form. I am also thankful to Prof. Dr. Konstantin V. Krutovsky for his guidance in each and every step of this research especially helping me with the CodonCode software and reviewing the thesis. I also want to thank Erasmus Mundus Programme for providing me with a scholarship for pursuing Master’s degree in Mediterranean Forestry and Natural Resources Management (MEDFOR) course. Besides this, I would like to thank all my professors who broadened my knowledge during the period of my study in University of Lisbon and University of Padova. -
Enrichment for Nonhuman Primates, 2005
A six-booklet series on providing appropriate enrichment for baboons, capuchins, chimpanzees, macaques, marmosets and tamarins, and squirrel monkeys. Contents ...... Introduction Page 4 Baboons Page 6 Background Social World Physical World Special Cases Problem Behaviors Safety Issues References Common Names of the Baboon Capuchins Page 17 Background Social World Physical World Special Cases Problem Behaviors Safety Issues Resources Common Names of Capuchins Chimpanzees Page 28 Background Social World Physical World Special Cases Problem Behaviors Safety Issues Resources Common Names of Chimpanzees contents continued on next page ... Contents Contents continued… ...... Macaques Page 43 Background Social World Physical World Special Cases Problem Behaviors Safety Issues Resources Common Names of the Macaques Sample Pair Housing SOP -- Macaques Marmosets and Tamarins Page 58 Background Social World Physical World Special Cases Safety Issues References Common Names of the Callitrichids Squirrel Monkeys Page 73 Background Social World Physical World Special Cases Problem Behaviors Safety Issues References Common Names of Squirrel Monkeys ..................................................................................................................... For more information, contact OLAW at NIH, tel (301) 496-7163, e-mail [email protected]. NIH Publication Numbers: 05-5745 Baboons 05-5746 Capuchins 05-5748 Chimpanzees 05-5744 Macaques 05-5747 Marmosets and Tamarins 05-5749 Squirrel Monkeys Contents Introduction ...... Nonhuman primates maintained in captivity have a valuable role in education and research. They are also occasionally used in entertainment. The scope of these activities can range from large, accredited zoos to small “roadside” exhib- its; from national primate research centers to small academic institutions with only a few monkeys; and from movie sets to street performers. Attached to these uses of primates comes an ethical responsibility to provide the animals with an environment that promotes their physical and behavioral health and well-be- ing. -
Stillingia: a Newly Recorded Genus of Euphorbiaceae from China
Phytotaxa 296 (2): 187–194 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.296.2.8 Stillingia: A newly recorded genus of Euphorbiaceae from China SHENGCHUN LI1, 2, BINGHUI CHEN1, XIANGXU HUANG1, XIAOYU CHANG1, TIEYAO TU*1 & DIANXIANG ZHANG1 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China 2University of Chinese Academy of Sciences, Beijing 100049, China * Corresponding author, email: [email protected] Abstract Stillingia (Euphorbiaceae) contains ca. 30 species from Latin America, the southern United States, and various islands in the tropical Pacific and in the Indian Ocean. We report here for the first time the occurrence of a member of the genus in China, Stillingia lineata subsp. pacifica. The distribution of the genus in China is apparently narrow, known only from Pingzhou and Wanzhou Islands of the Wanshan Archipelago in the South China Sea, which is close to the Pearl River estuary. This study updates our knowledge on the geographic distribution of the genus, and provides new palynological data as well. Key words: Island, Hippomaneae, South China Sea, Stillingia lineata Introduction During the last decade, hundreds of new plant species or new species records have been added to the flora of China. Nevertheless, newly described or newly recorded plant genera are not discovered and reported very often, suggesting that botanical expedition and plant survey at the generic level may be advanced in China. As far as we know, only six and eight angiosperm genera respectively have been newly described or newly recorded from China within the last ten years (Qiang et al. -
The Framework Species Approach to Forest Restoration: Using Functional Traits As Predictors of Species Performance
- 1 - The Framework Species Approach to forest restoration: using functional traits as predictors of species performance. Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Hannah Betts July 2013 - 2 - - 3 - Abstract Due to forest degradation and loss, the use of ecological restoration techniques has become of particular interest in recent years. One such method is the Framework Species Approach (FSA), which was developed in Queensland, Australia. The Framework Species Approach involves a single planting (approximately 30 species) of both early and late successional species. Species planted must survive in the harsh conditions of an open site as well as fulfilling the functions of; (a) fast growth of a broad dense canopy to shade out weeds and reduce the chance of forest fire, (b) early production of flowers or fleshy fruits to attract seed dispersers and kick start animal-mediated seed distribution to the degraded site. The Framework Species Approach has recently been used as part of a restoration project in Doi Suthep-Pui National Park in northern Thailand by the Forest Restoration Research Unit (FORRU) of Chiang Mai University. FORRU have undertaken a number of trials on species performance in the nursery and the field to select appropriate species. However, this has been time-consuming and labour- intensive. It has been suggested that the need for such trials may be reduced by the pre-selection of species using their functional traits as predictors of future performance. Here, seed, leaf and wood functional traits were analysed against predictions from ecological models such as the CSR Triangle and the pioneer concept to assess the extent to which such models described the ecological strategies exhibited by woody species in the seasonally-dry tropical forests of northern Thailand. -
Ranging Bonnet Macaques, Macaca Radiata
Flexibility in Food Extraction Techniques in Urban Free- Ranging Bonnet Macaques, Macaca radiata Madhur Mangalam1, Mewa Singh1,2* 1 Biopsychology Laboratory, University of Mysore, Mysore, India, 2 Evolutionary & Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India Abstract Non-human primate populations, other than responding appropriately to naturally occurring challenges, also need to cope with anthropogenic factors such as environmental pollution, resource depletion, and habitat destruction. Populations and individuals are likely to show considerable variations in food extraction abilities, with some populations and individuals more efficient than others at exploiting a set of resources. In this study, we examined among urban free-ranging bonnet macaques, Macaca radiata (a) local differences in food extraction abilities, (b) between-individual variation and within-individual consistency in problem-solving success and the underlying problem-solving characteristics, and (c) behavioral patterns associated with higher efficiency in food extraction. When presented with novel food extraction tasks, the urban macaques having more frequent exposure to novel physical objects in their surroundings, extracted food material from PET bottles and also solved another food extraction task (i.e., extracting an orange from a wire mesh box), more often than those living under more natural conditions. Adults solved the tasks more frequently than juveniles, and females more frequently than males. Both solution-technique and problem-solving characteristics varied across individuals but remained consistent within each individual across the successive presentations of PET bottles. The macaques that solved the tasks showed lesser within-individual variation in their food extraction behavior as compared to those that failed to solve the tasks. -
Assessing the Reliability of an Automated Method for Measuring Dominance Hierarchy in Nonhuman Primates
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.389908; this version posted November 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Assessing the reliability of an automated method for measuring dominance hierarchy in 2 nonhuman primates 3 Sébastien Ballestaa,b*, Baptiste Sadoughib,c,d, Fabia Missb,e, Jamie Whitehousea,b , Géraud 4 Aguenounona,b and Hélène Meuniera,b 5 a. Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Strasbourg, France 6 b. Centre de Primatologie de l’Université de Strasbourg, Niederhausbergen, France, 7 c. Department of Life Sciences, University of Roehampton, London, United Kingdom 8 d. Oniris – Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, 9 Nantes, France 10 e. Department of Anthropology, University of Zurich, Switzerland 11 12 Abstract 13 Among animals’ societies, dominance is an important social factor that influences inter-individual 14 relationships. However, assessing dominance hierarchy can be a time-consuming activity which 15 is potentially impeded by environmental factors, difficulties in the recognition of animals, or 16 through the disturbance of animals during data collection. Here we took advantage of novel 17 devices, Machines for Automated Learning and Testing (MALT), designed primarily to study 18 nonhuman primates’ cognition - to additionally measure the social structure of a primate group. 19 When working on a MALT, an animal can be replaced by another; which could reflect an 20 asymmetric dominance relationship (or could happen by chance). To assess the reliability of our 21 automated method, we analysed a sample of the automated conflicts with video scoring and found 22 that 75% of these replacements include genuine forms of social displacements. -
REVIEW ARTICLE Agroecosystems and Primate Conservation in the Tropics: a Review
American Journal of Primatology 74:696–711 (2012) REVIEW ARTICLE Agroecosystems and Primate Conservation in The Tropics: A Review ∗ ALEJANDRO ESTRADA1 , BECKY E. RABOY2,3, AND LEONARDO C. OLIVEIRA3-6 1Estaci´on de Biolog´ıa Tropical Los Tuxtlas Instituto de Biolog´ıa, Universidad Nacional Aut´onoma de M´exico, Mexico City, Mexico 2Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 3Instituto de Estudos S´ocioambientais do Sul da Bahia (IESB), Ilh´eus-BA, Brazil 4Programa de P´os-Gradua¸c˜ao em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 5Programa de P´os-Gradua¸c˜ao em Ecologia e Conserva¸c˜ao da Biodiversidade, Universidade Estadual de Santa Cruz, Ilh´eus-BA, Brazil 6Bicho do Mato Instituto de Pesquisa, Belo Horizonte-MG, Brazil Agroecosystems cover more than one quarter of the global land area (ca. 50 million km2) as highly simplified (e.g. pasturelands) or more complex systems (e.g. polycultures and agroforestry systems) with the capacity to support higher biodiversity. Increasingly more information has been published about primates in agroecosystems but a general synthesis of the diversity of agroecosystems that primates use or which primate taxa are able to persist in these anthropogenic components of the landscapes is still lacking. Because of the continued extensive transformation of primate habitat into human-modified landscapes, it is important to explore the extent to which agroecosystems are used by primates. In this article, we reviewed published information on the use of agroecosystems by primates in habitat countries and also discuss the potential costs and benefits to human and nonhuman primates of primate use of agroecosystems. -
Ficus Microcarpa Chinese Banyan Moraceae
Ficus microcarpa Chinese banyan Moraceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i January, 2003 OVERVIEW Ficus microcarpa is a popular ornamental tree grown widely in many tropical regions of the world. The pollinator wasp has been introduced to a number of places where the tree is cultivated, including Hawai'i, allowing this species to spread beyond initial plantings. F. microcarpa is a notorious invader in Hawai'i, Florida, Bermuda, and from Central to South America. Tiny seeds within small sized fruit are ingested by many fruit eating animals, such as birds. Seeds are capable of germinating and growing almost anywhere they land, even in cracks in concrete or in the crotch of other trees. The small seedling begins to grow on its host, sending down aerial roots, and eventually strangling and replacing the host tree or structure. In Hawai'i, most of the main islands are infested with F. microcarpa. Typically, this species invades disturbed urban sites to degraded secondary forests in areas nearby initial plantings. It has recently been observed growing on native wiliwili (Erythrina sandwicense) in lowland dry forests of Maui. On the main islands of Hawai'i, rapid containment once inside natural area boundaries may be the only feasible action, given the widespread distribution. On Midway Atoll, the wasp was introduced later than on the main islands and, as a result, F. microcarpa has only recently begun to spread there. With limited distribution, control here seems more feasible than on the main islands. To decrease the potential for this species to spread, it should not be introduced to new areas and could be removed in natural areas where it is limited in distribution. -
Aerial Roots of Ficus Microcarpa Phelloderm
"Chinese Banyan grows Aerial roots of ‘rapidly with but little care, its Ficus microcarpa foliage is of a glossy green Mathew Pryor and Li Wei colour, and it soon affords an agreeable shade from the fierce rays of the sun, which renders it particularly valuable in a place like Hong-kong’." Robert Fortune, (1852). A Journey to the Tea Countries of China Section of flexible aerial root of Ficus microcarpa This article reports on a study to The distribution and growth of aerial since the beginning of the colonial investigate the nature of aerial roots in roots was observed to be highly variable, period,2 and was used almost exclusively Chinese banyan trees, Ficus microcarpa, but there was a clear link between for this purpose until the 1870s.3 The and the common belief that their growth and high levels of atmospheric botanist Robert Fortune noted, as early presence and growth is associated with humidity. The anatomical structure of as 1852,4 that the Banyan grew ‘rapidly wet atmospheric conditions. the aerial roots suggests that while with but little care, its foliage is of a aerial roots could absorb water under glossy green colour, and it soon affords First, the form and distribution of free- certain conditions, their growth was an agreeable shade from the fierce rays hanging aerial roots on eight selected generated from water drawn from of the sun, which renders it particularly Ficus microcarpa trees growing in a terrestrial roots via trunk and branches, valuable in a place like Hong-kong’. public space in Hong Kong, were mapped and that the association with humid Even the Hongkong Governor, in 1881, on their form and distribution. -
High-Ranking Geladas Protect and Comfort Others After Conflicts
www.nature.com/scientificreports OPEN High-Ranking Geladas Protect and Comfort Others After Conficts Elisabetta Palagi1, Alessia Leone1, Elisa Demuru1 & Pier Francesco Ferrari2 Post-confict afliation is a mechanism favored by natural selection to manage conficts in animal Received: 2 January 2018 groups thus avoiding group disruption. Triadic afliation towards the victim can reduce the likelihood Accepted: 30 August 2018 of redirection (benefts to third-parties) and protect and provide comfort to the victim by reducing its Published: xx xx xxxx post-confict anxiety (benefts to victims). Here, we test specifc hypotheses on the potential functions of triadic afliation in Theropithecus gelada, a primate species living in complex multi-level societies. Our results show that higher-ranking geladas provided more spontaneous triadic afliation than lower- ranking subjects and that these contacts signifcantly reduced the likelihood of further aggression on the victim. Spontaneous triadic afliation signifcantly reduced the victim’s anxiety (measured by scratching), although it was not biased towards kin or friends. In conclusion, triadic afliation in geladas seems to be a strategy available to high-ranking subjects to reduce the social tension generated by a confict. Although this interpretation is the most parsimonious one, it cannot be totally excluded that third parties could also be afected by the negative emotional state of the victim thus increasing a third party’s motivation to provide comfort. Therefore, the debate on the linkage between third-party afliation and emotional contagion in monkeys remains to be resolved. Conficts in social animals can have various immediate and long-term outcomes. Immediately following a con- fict, opponents may show a wide range of responses, from tolerance and avoidance of open confict, to aggres- sion1. -
Entry & Buffer Landscape Plans
PLANT MATERIAL SCHEDULE PLANTI NGT DETAl LS ;;;;;.;;;;..;;;.....;....,;;LOCATION.......... ..,.;...,.;.,=......,;;,;,,,;;...;,;,/ KEY MAP___________________ i'LT.S. - V') a.. a..~ II f~I !~~...~l"""'''"'i. M Code Quantity Botanical Common Cont/Cal Size Native Remarks ,,,.,;<_..;@.~·/ s w ...J _.. ~~ . 1/ I ,. LLl N CSlO 26 CASSIA SURATTENSIS CASSIA GLAUCA 10' HTX8' SPR . ...J M ~1/ 1 I- IC 55 ILEX CASSI NE OAHOON HOLLY · 14' OAH NATIVE 4' c.t. ~ _J M TRIM ONLY THOSE FRONDS WHICH HANG COR 45 CORDIA SEBESTENA ORANGE GEIGER TREE 10'HTX5'SPR hK 0 M BELOW LEVEL OF TREE HEART. ~ PE12 31 PINUS ELLIOTT! 'DENSA' SLASH PINE 12', 14', 16' o.a. NATIVE staggered hts <( SABALS: 'HURRICANE cur FRONDS PRIOR TO DELIVERY. w 0 QV14 103 QUERCUS VIRGINIANA SOUTHERN LIVE DAI( 14' HTX 7' SPR NATIVE :C> 0 0 ROYALS: SECURE FRONDS PRIOR TO SHIPPING TO > a.. QV20 10 QUERCUS VIRGINIANA SOUTHERN LIVE OAK 20'HT 0:: - c::: 0 - NATIVE PROTECT BUD. w >- V') 0 "'-I" c::: MG 28 MAGNOLIA GRANDIFLORA SOUTHERN MAGNOLIA 16'HT NATIVE NO SCARRED TRUNKS WILL BE ACCEPTED. (/) CV 4 CALLISTEMON VIMINALIS WEEPING BOTTLE BRUSH 10'HTX5'SPR 4' ct ~ SECURE WITH THREE WOOD BATTENS HELD WITH w 1-w U LLl 0 0:: I- _J Code Quantity Botanical Common Cont/Cal Size Native Remarks METAL STRAPS/3-2 X 4" BRACES. Q_ z I- V"l LL.. NO NAILS IN TRUNK; PROTECT TRUNK WITH BURLAP. SP 143 SABAL PALMETTO CABBAGE PALMETTO 14' · 18' OAH NATIVE V"l :::, staggered ROOT BALL TO BE 10% ABOVE FIN. GRADE :::) <:( VM 13 VEITCH IA MONTGOMERYANA MONTGOMERY PALM 16'CT V"l - 3" DEEP/3' DIA.