Appendix 4.3 Biological Resources

Total Page:16

File Type:pdf, Size:1020Kb

Appendix 4.3 Biological Resources Appendix 4.3 Biological Resources 4.3.1 Preliminary Tree Survey of APM Alignment (TBD) 4.3.2 Preliminary Tree Survey of Potential Support Facility Sites (TBD) 4.3.3 Tree Inventory Inglewood Transit Connector Project Tree Inventory Prepared for: Meridian Consultants 920 Hampshire Road, Suite A5 Westlake Village, CA 91361 805.367.5720 www.meridianconsultants.com Prepared by: Pax Environmental, Inc. Certified DBE/DVBE/SBE 226 West Ojai Ave., Ste. 101, #157 Ojai, CA 93023 805.633.9218 www.paxenviro.com December 10, 2018 Inglewood Transit Connector Project Section Page Introduction ............................................................................................................. 1 1.1 Project Location ............................................................................................. 1 1.2 Project Description and Background .............................................................. 1 1.3 Regulatory Setting ......................................................................................... 1 Survey Methodology ............................................................................................... 2 Results ..................................................................................................................... 3 References ............................................................................................................... 4 Tables Page 1 Tree species observed in the project alignment .................................................. 3 ATTACHMENTS APPENDIX 1 TREE POINT LOCATION MAP APPENDIX 2 TREE POINT DATA APPENDIX 3 TREE INVENTORY PHOTOGRAPHS i Tree Inventory Inglewood Transit Connector Project INTRODUCTION This tree inventory has been prepared to support California Environmental Quality Act (CEQA) analysis of the Inglewood Transit Connector (ITC) Project proposed by the City of Inglewood. This information is reported in accordance with accepted scientific and technical standards that are consistent with the requirements of the U.S. Fish and Wildlife Service (USFWS) and the California Department of Fish and Wildlife (CDFW). 1.1 PROJECT LOCATION The proposed Inglewood Transit Connector (ITC) Project would include transit improvements that would be constructed in an area of the City of Inglewood within the public right-of-way from Market Street at the Metro Crenshaw/LAX Line; south to the intersection of Market Street and Manchester Boulevard; east to the intersection of Manchester Boulevard and Prairie Avenue; then south to the intersection of Prairie Avenue and Century Boulevard. The proposed Project would also include a Maintenance and Storage Facility (MSF) and Intermodal Transportation Facility (ITF). These facilities would be constructed adjacent to the right-of-way in one of four potential sites along the project alignment. 1.2 PROJECT DESCRIPTION AND BACKGROUND The proposed Inglewood Transit Connector (ITC) Project would include transit improvements that would be constructed in an area of the City of Inglewood within the public right-of-way from Market Street at the Metro Crenshaw/LAX Line; south to the intersection of Market Street and Manchester Boulevard; east to the intersection of Manchester Boulevard and Prairie Avenue; then south to the intersection of Prairie Avenue and Century Boulevard. The proposed Project would also include a Maintenance and Storage Facility (MSF) and Intermodal Transportation Facility (ITF); these facilities would be constructed adjacent to the right-of-way in one of four potential sites along the project alignment. The study area boundary, which encompasses all areas potentially affected by the project alignment and associated facilities, is provided on the first page of Appendix 1. 1.3 REGULATORY SETTING The City of Inglewood Municipal Code includes a Protected Tree Ordinance (Chapter 12: Planning and Zoning, Article 32: Tree Preservation) that is applicable to all types of existing or new development. Protected trees include those of specific species or size that may not be reshaped, altered, damaged, relocated or removed without first obtaining a Tree Removal and Cutting Permit from the City of Inglewood. Trees meeting the following specifications are subject to the ordinance. A) Trees having a minimum trunk diameter of eight inches measured fifty-four inches above the ground. When measuring a multi-trunk tree, the diameters of the largest three trunks shall be added together. 1 Tree Inventory Inglewood Transit Connector Project B) Street trees or other required trees such as those required as a condition of approval, Use Permit,or other zoning requirement, regardless of size. C) All memorial trees dedicated by an entity recognized by the City, and all specimen trees that define a neighborhood or community. D) Trees of the following species that have reached a minimum of four inches diameter trunk size: 1) Big Leaf Maple (Acer macrophyllum) 2) California Buckeye (Aesculus californica) 3) Madrone (Arbutus menziesii) 4) Western Dogwood (Cornus nuttallii) 5) California Sycamore (Platanus racemosa) 6) Coast Live Oak (Quercus agrifolia) 7) Canyon Live Oak (Quercus chrysolepis) 8) Blue Oak (Quercus douglassii) 9) Oregon White Oak (Quercus garryana) 10) California Black Oak (Quercus kelloggii) 11) Valley Oak (Quercus lobata) 12) Interior Live Oak (Quercus wislizenii) 13) California Bay (Umbellularia californica) E) A tree or trees of any size planted as a replacement for a protected tree. SURVEY METHODOLOGY Field surveys were conducted on November 15, 16 and 18, and December 6, 2018 by Pax Senior Biologist, Sam Stewart. Data was recorded on all trees meeting the specifications under subheadings A and D of the Protected Tree Ordinance, including any trees with a diameter at breast height (DBH) exceeding eight (8) inches regardless of species, and/or any of the fourteen listed species with a DBH of at least four (4) inches observed within the alignment boundary provided by Meridian Consultants. Data collection included a determination of species, geographic positioning system (GPS) coordinates, tree DBH (54.5 inches above the ground), and a description of tree health (poor, fair, or good as determined in the field). Health grade was based on appearance and the presence or absence of disease, structural damage including but not limited to cracked or split trunk(s), compromised roots, decay, and/or stunted or imbalanced growth. RESULTS A total of 549 protected trees were recorded within the project alignment boundary during the survey. Recorded trees included 25 non-native, ornamental species, and 2 California native, 2 Tree Inventory Inglewood Transit Connector Project ornamentally-planted species. It should be noted that the aerials used to map tree locations are somewhat outdated given the only available orthographically-corrected maps predate recent construction work on the Los Angeles Stadium at Hollywood Park and adjacent Prairie Avenue. For this reason, many of the trees shown on the aerial are no longer present. A list of species and quantities observed is provided in Table 1 below. Maps showing the locations of each of the trees on aerials are provided in Appendix 1. Tree point data, including DBH, GPS point, and health grade are provided in Appendix 2. Representative photographs of each of the tree species observed within the project alignment boundary are provided in Appendix 3. Table 1: Tree species observed in the project alignment. Common Name Scientific Name Quantity Brazilian pepper Schinus terebinthifolius 25 Cajeput Melaleuca quinquenervia 10 California fan palm Washingtonia filifera 2 Callery pear Pyrus calleryana 4 Canary Island pine Pinus canariensis 23 Carrotwood Cupaniopsis anacardioides 8 Chinese elm Ulmus parvifolia 15 Chinese juniper Juniperus chinensis 1 Coral tree Erythrina caffra 14 European hackberry Celtis australis 2 Evergreen ash Fraxinus uhdei 2 Fern pine Podocarpus gracilior 5 Giant yucca Yucca elephantipes 2 Gold medallion tree Cassia leptophylla 1 Italian Cypress Cupressus sempervirens 1 Italian stone pine Pinus pinea 1 Jacaranda Jacaranda mimosifolia 24 Liquidambar Liquidambar styraciflua 10 Little-leaved Fig Ficus microcarpa 71 Magnolia Magnolia grandiflora 4 Mexican fan palm Washingtonia robusta 222 Narrow-leaved eucalyptus Magnolia grandiflora 25 Peruvian pepper Schinus molle 1 Queen palm Syagrus romanzoffiana 41 Red Gum Eucalyptus camaldulensis 33 Red flowering gum Eucalyptus ficifolia 1 Western sycamore Platanus racemosa 1 Grand Total 549 3 Tree Inventory Inglewood Transit Connector Project REFERENCES Hatch, Charles R. 2007. Trees of the California Landscape. University of California Press, Berkeley & Los Angeles, California. Jepson Flora Project. 2018. Jepson eFlora. Berkeley, California: University of California. Accessed November 18, 2018. http://ucjeps.berkeley.edu/cgi-bin/get_JM_name_data.pl USDA (U.S. Department of Agriculture). 2018. “California.” State PLANTS Checklist. Accessed November 18, 2018. http://plants.usda.gov/dl_state.html. 4 Tree Inventory APPENDIX 1 TREE POINT LOCATION MAP 1 2 3 N Prairie Ave Prairie N 4 5 6 7 9 8 10 11 W Manchester Blvd 12 13 14 15 16 17 18 19 20 W Century Blvd 21 22 Service Layer Credits: Airbus,USGS,NGA,NASA,CGIAR,NCEAS,NLS,OS,NMA,Geodatastyrelsen,GSA,GSI and the Legend 0 0.25 0.5 Miles Mapbook Pages ¯ Kilometers 0 0.25 0.5 Project Date: 12/6/2018 Coordinate System: NAD 1983 UTM Zone 11N Projection: Transverse Mercator 1 2 (! (! 3 4 (! (! 5 (! 7 8 9 (! (! (! (!(! 6 13 10 (! (! (! (! 12 11 15 14 (! 16 (! 17 (! 18 ! ( 19 (! 20 (! 21 22 23 (! (! (! 24
Recommended publications
  • Gradient Analysis of Exotic Species in Pinus Radiata Stands of Tenerife (Canary Islands) S
    The Open Forest Science Journal, 2009, 2, 63-69 63 Open Access Gradient Analysis of Exotic Species in Pinus radiata Stands of Tenerife (Canary Islands) S. Fernández-Lugo and J.R. Arévalo* Departamento de Ecología, Facultad de Biología, Universidad de La Laguna, La Laguna 38206, Spain Abstract: Identifying the factors that influence the spread of exotic species is essential for evaluating the present and future extent of plant invasions and for the development of eradication programs. We randomly established a network of 250 plots on an exotic Pinus radiata D. Don plantation on Tenerife Island in order to determine if roads and urban centers are favouring the spread of exotic plant species into the forest. We identified four distinct vegetation groups in the P. radiata stands: advanced laurel forest (ALF), undeveloped laurel forest (ULF), ruderal (RU), and Canarian pine stand (CPS). The groups farthest from roads and urban nuclei (ALF and CPS) have the best conserved vegetation, characterizing by the main species of the potential vegetation of the area and almost no exotic and ruderal species. On the other hand, the groups nearest to human infrastructures (ULF and RU) are characterized by species from potential vegetation’s substitution stages and a higher proportion of exotic and ruderal species. The results indicate distance to roads and urban areas are disturbance factors favouring the presence of exotic and ruderal species into the P. radiata plantation. We propose the eradication of some dangerous exotic species, monitoring of the study area in order to detect any intrusion of alien species in the best conserved areas and implementation of management activities to reduce the perturbation of the ULF and RU areas.
    [Show full text]
  • Palm Trees for Landscapes in Tulare & Kings Counties
    Palm Trees for Landscapes in Tulare & Kings Counties Suggested by Nancy Gravender, UC Master Gardener MEDIUM-SIZED PALM TREES (10-25 Ft. Tall) FAN PALMS: Guadalupe Palm (Brahea edulis) – Grows to 20 ft., spread 15 ft., solitary trunk, large handsome fan leaves, (old leaves self-prune), slow growth, temperature range 20-105 °F. Mexican Blue Palm (Brahea armata) – Grows to 20 ft., spread 10 ft., solitary trunk, stiff, palmate fan covered with pale blue bloom, slow growth, temp. range 20-120 °F. Mediterranean or European Fan Palm (Chamerops humilus) – Grows to 15 ft., spread 15 ft., clumping or multiple trunks, 4-5 ft. in diameter; fan, 2-3 ft. diameter stiff leaflets, petiole has sharp spines, slow growth, temp. range 20-120 °F. Windmill Palm (Trachycarpus fortunei) – Grows to 15 ft. spread 5 ft., solitary trunk covered with old leaf bases, and brown fibrous matted hairy fibers; fan irregularly divided, if not trimmed, the old leaves hang down; temp. range 10–115 °F. FEATHER PALMS: Pigmy Date Palm (Phoenix roebelinii) – Grows to 10 ft., solitary trunk, 4-8 in. in diameter, feather with leaflets much softer than those of other Phoenix palms, although the lower leaflets still contain sharp spines, slow growth, temperature range 28-105 °F. Requires shade in this area. Pindo Palm (Butia capitata) - Grows to 20 ft., spread 15 ft., solitary trunk, blue green pinnate feather, slow growth, temp. range 15-120 °F. Queen Palm (Syagrus romanzoffiana) – Grows to 25 ft. spread 12 ft., solitary trunk ringed with old leaf bases, feather, plumose (leaflets radiating at different angles), fast growth with abundant summer water and fertilizer, temp.
    [Show full text]
  • Ficus Microcarpa Chinese Banyan Moraceae
    Ficus microcarpa Chinese banyan Moraceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i January, 2003 OVERVIEW Ficus microcarpa is a popular ornamental tree grown widely in many tropical regions of the world. The pollinator wasp has been introduced to a number of places where the tree is cultivated, including Hawai'i, allowing this species to spread beyond initial plantings. F. microcarpa is a notorious invader in Hawai'i, Florida, Bermuda, and from Central to South America. Tiny seeds within small sized fruit are ingested by many fruit eating animals, such as birds. Seeds are capable of germinating and growing almost anywhere they land, even in cracks in concrete or in the crotch of other trees. The small seedling begins to grow on its host, sending down aerial roots, and eventually strangling and replacing the host tree or structure. In Hawai'i, most of the main islands are infested with F. microcarpa. Typically, this species invades disturbed urban sites to degraded secondary forests in areas nearby initial plantings. It has recently been observed growing on native wiliwili (Erythrina sandwicense) in lowland dry forests of Maui. On the main islands of Hawai'i, rapid containment once inside natural area boundaries may be the only feasible action, given the widespread distribution. On Midway Atoll, the wasp was introduced later than on the main islands and, as a result, F. microcarpa has only recently begun to spread there. With limited distribution, control here seems more feasible than on the main islands. To decrease the potential for this species to spread, it should not be introduced to new areas and could be removed in natural areas where it is limited in distribution.
    [Show full text]
  • Aerial Roots of Ficus Microcarpa Phelloderm
    "Chinese Banyan grows Aerial roots of ‘rapidly with but little care, its Ficus microcarpa foliage is of a glossy green Mathew Pryor and Li Wei colour, and it soon affords an agreeable shade from the fierce rays of the sun, which renders it particularly valuable in a place like Hong-kong’." Robert Fortune, (1852). A Journey to the Tea Countries of China Section of flexible aerial root of Ficus microcarpa This article reports on a study to The distribution and growth of aerial since the beginning of the colonial investigate the nature of aerial roots in roots was observed to be highly variable, period,2 and was used almost exclusively Chinese banyan trees, Ficus microcarpa, but there was a clear link between for this purpose until the 1870s.3 The and the common belief that their growth and high levels of atmospheric botanist Robert Fortune noted, as early presence and growth is associated with humidity. The anatomical structure of as 1852,4 that the Banyan grew ‘rapidly wet atmospheric conditions. the aerial roots suggests that while with but little care, its foliage is of a aerial roots could absorb water under glossy green colour, and it soon affords First, the form and distribution of free- certain conditions, their growth was an agreeable shade from the fierce rays hanging aerial roots on eight selected generated from water drawn from of the sun, which renders it particularly Ficus microcarpa trees growing in a terrestrial roots via trunk and branches, valuable in a place like Hong-kong’. public space in Hong Kong, were mapped and that the association with humid Even the Hongkong Governor, in 1881, on their form and distribution.
    [Show full text]
  • Macaques ( Macaca Leonina ): Impact on Their Seed Dispersal Effectiveness and Ecological Contribution in a Tropical Rainforest at Khao Yai National Park, Thailand
    Faculté des Sciences Département de Biologie, Ecologie et Environnement Unité de Biologie du Comportement, Ethologie et Psychologie Animale Feeding and ranging behavior of northern pigtailed macaques ( Macaca leonina ): impact on their seed dispersal effectiveness and ecological contribution in a tropical rainforest at Khao Yai National Park, Thailand ~ ~ ~ Régime alimentaire et déplacements des macaques à queue de cochon ( Macaca leonina ) : impact sur leur efficacité dans la dispersion des graines et sur leur contribution écologique dans une forêt tropicale du parc national de Khao Yai, Thaïlande Année académique 2011-2012 Dissertation présentée par Aurélie Albert en vue de l’obtention du grade de Docteur en Sciences Faculté des Sciences Département de Biologie, Ecologie et Environnement Unité de Biologie du Comportement, Ethologie et Psychologie Animale Feeding and ranging behavior of northern pigtailed macaques ( Macaca leonina ): impact on their seed dispersal effectiveness and ecological contribution in a tropical rainforest at Khao Yai National Park, Thailand ~ ~ ~ Régime alimentaire et déplacements des macaques à queue de cochon ( Macaca leonina ) : impact sur leur efficacité dans la dispersion des graines et sur leur contribution écologique dans une forêt tropicale du parc national de Khao Yai, Thaïlande Année académique 2011-2012 Dissertation présentée par Aurélie Albert en vue de l’obtention du grade de Docteur en Sciences Promotrice : Marie-Claude Huynen (ULg, Belgique) Comité de thèse : Tommaso Savini (KMUTT, Thaïlande) Alain Hambuckers (ULg, Belgique) Pascal Poncin (ULg, Belgique) Président du jury : Jean-Marie Bouquegneau (ULg, Belgique) Membres du jury : Pierre-Michel Forget (MNHN, France) Régine Vercauteren Drubbel (ULB, Belgique) Roseline C. Beudels-Jamar (IRSN, Belgique) Copyright © 2012, Aurélie Albert Toute reproduction du présent document, par quelque procédé que ce soit, ne peut être réalisée qu’avec l’autorisation de l’auteur et du/des promoteur(s).
    [Show full text]
  • Entry & Buffer Landscape Plans
    PLANT MATERIAL SCHEDULE PLANTI NGT DETAl LS ;;;;;.;;;;..;;;.....;....,;;LOCATION.......... ..,.;...,.;.,=......,;;,;,,,;;...;,;,/ KEY MAP___________________ i'LT.S. - V') a.. a..~ II f~I !~~...~l"""'''"'i. M Code Quantity Botanical Common Cont/Cal Size Native Remarks ,,,.,;<_..;@.~·/ s w ...J _.. ~~ . 1/ I ,. LLl N CSlO 26 CASSIA SURATTENSIS CASSIA GLAUCA 10' HTX8' SPR . ...J M ~1/ 1 I- IC 55 ILEX CASSI NE OAHOON HOLLY · 14' OAH NATIVE 4' c.t. ~ _J M TRIM ONLY THOSE FRONDS WHICH HANG COR 45 CORDIA SEBESTENA ORANGE GEIGER TREE 10'HTX5'SPR hK 0 M BELOW LEVEL OF TREE HEART. ~ PE12 31 PINUS ELLIOTT! 'DENSA' SLASH PINE 12', 14', 16' o.a. NATIVE staggered hts <( SABALS: 'HURRICANE cur FRONDS PRIOR TO DELIVERY. w 0 QV14 103 QUERCUS VIRGINIANA SOUTHERN LIVE DAI( 14' HTX 7' SPR NATIVE :C> 0 0 ROYALS: SECURE FRONDS PRIOR TO SHIPPING TO > a.. QV20 10 QUERCUS VIRGINIANA SOUTHERN LIVE OAK 20'HT 0:: - c::: 0 - NATIVE PROTECT BUD. w >- V') 0 "'-I" c::: MG 28 MAGNOLIA GRANDIFLORA SOUTHERN MAGNOLIA 16'HT NATIVE NO SCARRED TRUNKS WILL BE ACCEPTED. (/) CV 4 CALLISTEMON VIMINALIS WEEPING BOTTLE BRUSH 10'HTX5'SPR 4' ct ~ SECURE WITH THREE WOOD BATTENS HELD WITH w 1-w U LLl 0 0:: I- _J Code Quantity Botanical Common Cont/Cal Size Native Remarks METAL STRAPS/3-2 X 4" BRACES. Q_ z I- V"l LL.. NO NAILS IN TRUNK; PROTECT TRUNK WITH BURLAP. SP 143 SABAL PALMETTO CABBAGE PALMETTO 14' · 18' OAH NATIVE V"l :::, staggered ROOT BALL TO BE 10% ABOVE FIN. GRADE :::) <:( VM 13 VEITCH IA MONTGOMERYANA MONTGOMERY PALM 16'CT V"l - 3" DEEP/3' DIA.
    [Show full text]
  • Ficus Plants for Hawai'i Landscapes
    Ornamentals and Flowers May 2007 OF-34 Ficus Plants for Hawai‘i Landscapes Melvin Wong Department of Tropical Plant and Soil Sciences icus, the fig genus, is part of the family Moraceae. Many ornamental Ficus species exist, and probably FJackfruit, breadfruit, cecropia, and mulberry also the most colorful one is Ficus elastica ‘Schrijveriana’ belong to this family. The objective of this publication (Fig. 8). Other Ficus elastica cultivars are ‘Abidjan’ (Fig. is to list the common fig plants used in landscaping and 9), ‘Decora’ (Fig. 10), ‘Asahi’ (Fig. 11), and ‘Gold’ (Fig. identify some of the species found in botanical gardens 12). Other banyan trees are Ficus lacor (pakur tree), in Hawai‘i. which can be seen at Foster Garden, O‘ahu, Ficus When we think of ficus (banyan) trees, we often think benjamina ‘Comosa’ (comosa benjamina, Fig. 13), of large trees with aerial roots. This is certainly accurate which can be seen on the UH Mänoa campus, Ficus for Ficus benghalensis (Indian banyan), Ficus micro­ neriifolia ‘Nemoralis’ (Fig. 14), which can be seen at carpa (Chinese banyan), and many others. Ficus the UH Lyon Arboretum, and Ficus rubiginosa (rusty benghalensis (Indian banyan, Fig. 1) are the large ban­ fig, Fig. 15). yans located in the center of Thomas Square in Hono­ In tropical rain forests, many birds and other animals lulu; the species is also featured in Disneyland (although feed on the fruits of different Ficus species. In Hawaii the tree there is artificial). Ficus microcarpa (Chinese this can be a negative feature, because large numbers of banyan, Fig.
    [Show full text]
  • Io Moth Automeris Io (Fabricius) (Insecta: Lepidoptera: Saturniidae)1 Donald W
    EENY608 Io Moth Automeris io (Fabricius) (Insecta: Lepidoptera: Saturniidae)1 Donald W. Hall2 Introduction The beautiful Io moth, Automeris io (Fabricius), is one of our most recognizable moths. It is distinctive because of its prominent hind wing eyespots. The Io moth, like many of the other saturniid moths, is less common now in parts of its range. With the exception of Cape Cod and some of the Massachusetts islands, it is now rare in New England where it was once common, and its populations have declined in the Gulf States (with the exception of Louisiana) since the 1970s (Manley 1993). The attractive Io moth caterpillar is also well-known because of its painful sting. Figure 1. Male Io moth, Automeris io (Fabricius). Automeris is a large genus with about 145 species (Heppner Credits: Donald W. Hall, University of Florida 1996). All Automeris species are characterized by large eyespots in the middle of the hind wings. Most species Synonymy are found in Central and South America. There are seven Fabricius (1775, p.560) described the Io moth and named species in the United States. Five of these, Automeris it Bombyx io. Abbott and Smith (1797, p.97) published zephyria Grote (New Mexico and western Texas), Automeris the first account of the Io moth’s life cycle under the cecrops (Boisduval), Automeris iris (Walker), Automeris name Phalaena io. Some early references used the genus patagoniensis Lemaire, and Automeris randa Druce name Hyperchiria (e.g., Eliot & Soule 1902, Lintner 1872, (southeastern Arizona) are found only in the western U.S. Stratton-Porter 1921, Strecker 1872).
    [Show full text]
  • Exotic Pine Species for Georgia Dr
    Exotic Pine Species For Georgia Dr. Kim D. Coder, Professor of Tree Biology & Health Care, Warnell School, UGA Our native pines are wonderful and interesting to have in landscapes, along streets, in yards, and for plantation use. But our native pine species could be enriched by planting selected exotic pine species, both from other parts of the United States and from around the world. Exotic pines are more difficult to grow and sustain here in Georgia than native pines. Some people like to test and experiment with planting exotic pines. Pride of the Conifers Pines are in one of six families within the conifers (Pinales). The conifers are divided into roughly 50 genera and more than 500 species. Figure 1. Conifer families include pine (Pinaceae) and cypress (Cupressaceae) of the Northern Hemisphere, and podocarp (Podocarpaceae) and araucaria (Araucariaceae) of the Southern Hemisphere. The Cephalotaxaceae (plum-yew) and Sciadopityaceae (umbrella-pine) families are much less common. Members from all these conifer families can be found as ornamental and specimen trees in yards around the world, governed only by climatic and pest constraints. Family & Friends The pine family (Pinaceae) has many genera (~9) and many species (~211). Most common of the genera includes fir (Abies), cedar (Cedrus), larch (Larix), spruce (Picea), pine (Pinus), Douglas-fir (Pseudotsuga), and hemlock (Tsuga). Of these genera, pines and hemlocks are native to Georgia. The pine genus (Pinus) contains the true pines. Pines (Pinus species) are found around the world almost entirely in the Northern Hemisphere. They live in many different places under highly variable conditions. Pines have been a historic foundation for industrial development and wealth building.
    [Show full text]
  • The Taxonomic Position and the Scientific Name of the Big Tree Known As Sequoia Gigantea
    The Taxonomic Position and the Scientific Name of the Big Tree known as Sequoia gigantea HAROLD ST. JOHN and ROBERT W. KRAUSS l FOR NEARLY A CENTURY it has been cus­ ing psychological document, but its major,ity tomary to classify the big tree as Sequoia gigan­ vote does not settle either the taxonomy or tea Dcne., placing it in the same genus with the nomenclature of the big tree. No more the only other living species, Sequoia semper­ does the fact that "the National Park Service, virens (Lamb.) End!., the redwood. Both the which has almost exclusive custodY of this taxonomic placement and the nomenclature tree, has formally adopted the name Sequoia are now at issue. Buchholz (1939: 536) pro­ gigantea for it" (Dayton, 1943: 210) settle posed that the big tree be considered a dis­ the question. tinct genus, and he renamed the tree Sequoia­ The first issue is the generic status of the dendron giganteum (Lind!.) Buchholz. This trees. Though the two species \differ con­ dassification was not kindly received. Later, spicuously in foliage and in cone structure, to obtain the consensus of the Calif.ornian these differences have long been generally botanists, Dayton (1943: 209-219) sent them considered ofspecific and notofgeneric value. a questionnaire, then reported on and sum­ Sequoiadendron, when described by Buchholz, marized their replies. Of the 29 answering, was carefully documented, and his tabular 24 preferred the name Sequoia gigantea. Many comparison contains an impressive total of of the passages quoted show that these were combined generic and specific characters for preferences based on old custom or sentiment, his monotypic genus.
    [Show full text]
  • Coexistent Heteroblastic Needles of Adult Pinus Canariensis C.Sm
    Article Coexistent Heteroblastic Needles of Adult Pinus canariensis C.Sm. ex DC. in Buch Trees Differ Structurally and Physiologically Beatriz Fernández-Marín 1,* , Marcos Adrián Ruiz-Medina 1, José Carlos Miranda 2 and Águeda María González-Rodríguez 1 1 Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), 38202 Tenerife, Spain; [email protected] (M.A.R.-M.); [email protected] (Á.M.G.-R.) 2 Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; [email protected] * Correspondence: [email protected] Abstract: Great variation in shape and size between primary (juvenile) and secondary (adult) needles, so-called leaf-heteroblasty, occurs in several Pinus species. Most of them loss primary needles during the juvenile-to-adult transition of the tree. An exception to this is Pinus canariensis (a Canary Islands endemism) in which basal resprouting twigs of adult trees frequently wear both primary and secondary needles. Taking advantage of this extraordinary study-case-species, we conducted an exhaustive comparison of both needle types through quantitative analyses of needle anatomy, photochemical performance, gas exchange, and resistance to extreme dehydration and to extreme needle temperature. We hypothesized that primary needles would show lower investment to leaf structure but higher photosynthetical efficiency. Primary needles had less stomatal density and thicker and less wettable cuticles. In cross section, primary needles showed smaller structural fraction (e.g., percent of hypodermis, endodermis and vascular tissue) and higher fraction of photosynthetic Citation: Fernández-Marín, B.; parenchyma. Significant differences between primary and secondary needles were not found in Ruiz-Medina, M.A.; Miranda, J.C.; net carbon assimilation not in their leaf mass area values.
    [Show full text]
  • Date Palm Tamar Matzu’I תמר מצוי :Hebrew Name Scientific Name: Phoenix Dactylifera نخيل :Arabic Name Family: Arecaceae (Palmae)
    Signs 10-18 Common name: Date Palm tamar matzu’i תמר מצוי :Hebrew name Scientific name: Phoenix dactylifera نخيل :Arabic name Family: Arecaceae (Palmae) “The righteous shall flourish like the palm-tree; he DatE PaLM shall grow like a cedar in Lebanon” (Psalms 92:12/13) A tall palm tree, one of the symbols of the des- dates; the color of the fruit ranges from yellow to ert. Its trunk is tall and straight, and it bears “scars” dark red. that are remnants of old leaves that have been shed The date palm grows wild throughout the Near or removed. Additional trunks may grow from the East and North Africa and, as a fruit tree, has spread base of the main trunk. At the top of the trunks are around the world. All parts of the tree are used by crowns of large, stiff pinnate leaves. The bluish-gray humans: the trunks for construction, the leaves for leaves (palm fronds) are divided into leaflets with roofing, the fruit-bearing branches for brooms, and pointed tips. the seeds for medicinal purposes. The date palm The date palm is dioecious: large inflorescences is often mentioned in the Bible as an example of a (clusters) of male and female flowers develop on multi-use plant. It is one of the seven species with separate trees. In its natural habitat, the wind which the Land of Israel is blessed, and the lulav – a pollinates female trees, but this is done manually for closed date palm frond – is one of the four species cultivated trees.
    [Show full text]