Inventaire Et Analyse Chimique Des Exsudats Des Plantes D'utilisation Courante Au Congo-Brazzaville
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Endangered Plants in Nigeria: Time for a New Paradigm for Vegetation Conservation
64 The Nigerian Field 75:64-84 (2010) ENDANGERED PLANTS IN NIGERIA: TIME FOR A NEW PARADIGM FOR VEGETATION CONSERVATION Augustine 0. Isichei Department of Botany, Obafemi Awolowo University,Ile-lfe The global problem of biodiversity loss, especially vegetation loss has been of concern since humans realized the implications of habitat destruction in the course of economic development. Plants form the bedrock of life and human material culture depends on them. Our human world has been so closely tied to plants that it is dficult to imagine human existence without them. Being the only primary producers, all other consumers in the food chain are dependent on plants for food, fibre and energy. Knowledge of plants, their habitats, structure, metabolism and inheritance is thus the basic foundation for human survival and the way a people incorporate plants into their cultural traditions, religions and Table 1: Categories of Biodiversity Values (adapted from Okali 2004) Use values Non-use values Consumptive Non- Indirect Option Existence consumptive value value Generic: goods Ecological functions Possible Satisfaction for home for maintaining future of fiom consumption, 'sustainability & serendipity knowledge of manufacture or productivity existence and trade ability to bequeath Examples from Aesthetic Diversity of species Gene pool: Special diversity: mixed value of assists ecosystem potential concern for crop varieties; diverse resilience and medicines rare and mixed food landscapes; stability and drugs threatened combinations bird watching species -
Chemical Constituents of Garcinia Mannii (Glusiaceae)
Available online at www.derpharmachemica.com ISSN 0975-413X Der Pharma Chemica, 2021, 13(7): 1-8 CODEN (USA): PCHHAX (http://www.derpharmachemica.com/archive.html) Chemical constituents of Garcinia mannii (Glusiaceae) Hasan M.H. Muhaisen . Department of Chemistry, Faculty of Science and Arts, Najran University, Sharurah, Kingdom of Saudi Arabia *Corresponding author: Hasan M.H. Muhaisen, Department of Chemistry, Faculty of Science and Arts, Najran University, Sharurah, Kingdom of Saudi Arabia, E-mail: [email protected] ABSTRACT Biflavonoid named as I-3, II-3, I-5, II-5, I-7, II-7, I-40 , II-40 -octahydroxy [I-20 , II-20] biflavone, quercetin, apigenin along with dimethylether of phloroacetophenone named as 2,4- dimethoxy-6-hydroxy acetophenone, have been isolated from leaves of Garcinia mannii. Their structures were elucidated by chemical and physical data (IR, UV, H-NMR, C-NMR and Mass spectra). Keywords: Garcinia mannii, Leaves, Biflavone, Flavonoids, acetophenone INTRODUCTION The genus Garcinia includes more than 300 species and belongs to the family Clusiaceae. The plants of the genus have multiple applications in culinary, pharmaceutical, and industrial fields. It is also ornamental, with a dense canopy of green leaves and red-tinged tender emerging leaves. The genus is native to Asia and Africa. About 35 species are common in India and are endemic to the evergreen forests of Western Ghats, Gujarat, Andaman and Nicobar Islands and North-Eastern region of India. The tree is large, having elliptic, oblong with deep-green glossy leaves up to 5–8 cm long and 2–3 cm broad. The flowers are fleshy, dark pink, solitary or in spreading cluster. -
The Condensed Tannins of Okoume (Aucoumea Klaineana Pierre)
www.nature.com/scientificreports OPEN The condensed tannins of Okoume (Aucoumea klaineana Pierre): A molecular structure and thermal stability study Starlin Péguy Engozogho Anris 1,2*, Arsène Bikoro Bi Athomo1,2, Rodrigue Safou Tchiama2,3, Francisco José Santiago-Medina4, Thomas Cabaret1, Antonio Pizzi4 & Bertrand Charrier1 In order to promote convenient strategies for the valorization of Aucoumea klaineana Pierre (Okoume) plywood and sawmill wastes industry in the felds of adhesives and composites, the total phenolic content of Okoume bark, sapwood and heartwood was measured. The molecular structure of tannins extracted from the bark was determined by Matrix Assisted Laser Desorption/Ionization Time-Of-Flight (Maldi-ToF) mass spectrometry and Fourier transform infrared spectroscopy (FTIR). The total phenolic content displayed signifcant diference (p = 0.001) between the bark, sapwood and heartwood which decreased as follows: 6 ± 0.4, 2 ± 0.8 and 0.7 ± 0.1% respectively. The pro-anthocyanidins content was also signifcantly diferent (p = 0.01) among the three wood wastes, and the bark was the richest in condensed tannins (4.2 ± 0.4%) compared to the sapwood (0.5 ± 0.1%) and heartwood (0.2 ± 0.2%). Liquid chromatography coupled mass spectroscopy (LC-MS) and Maldi-ToF analysis of the bark showed for the frst time that Okoume condensed tannins are fsetinidin, gallocatechin and trihydroxyfavan based monomers and complex polymers obtained with glycosylated units. No free catechin or robitinidin units were detected, whereas distinctive dihydroxy or trihydroxyfavan-3-benzoate dimers were observed in the investigated condensed tannin extracts. FTIR analysis showed the occurrence of glucan- and mannan-like sugars in the condensed tannins, and Maldi-ToF highlighted that these sugars should account for ten glycosylated units chemically bonded with two fsetinidins and one gallocatechin trimer. -
Euphorbia Subg
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ БОТАНИЧЕСКИЙ ИНСТИТУТ ИМ. В.Л. КОМАРОВА РОССИЙСКОЙ АКАДЕМИИ НАУК На правах рукописи Гельтман Дмитрий Викторович ПОДРОД ESULA РОДА EUPHORBIA (EUPHORBIACEAE): СИСТЕМА, ФИЛОГЕНИЯ, ГЕОГРАФИЧЕСКИЙ АНАЛИЗ 03.02.01 — ботаника ДИССЕРТАЦИЯ на соискание ученой степени доктора биологических наук САНКТ-ПЕТЕРБУРГ 2015 2 Оглавление Введение ......................................................................................................................................... 3 Глава 1. Род Euphorbia и основные проблемы его систематики ......................................... 9 1.1. Общая характеристика и систематическое положение .......................................... 9 1.2. Краткая история таксономического изучения и формирования системы рода ... 10 1.3. Основные проблемы систематики рода Euphorbia и его подрода Esula на рубеже XX–XXI вв. и пути их решения ..................................................................................... 15 Глава 2. Материал и методы исследования ........................................................................... 17 Глава 3. Построение системы подрода Esula рода Euphorbia на основе молекулярно- филогенетического подхода ...................................................................................................... 24 3.1. Краткая история молекулярно-филогенетического изучения рода Euphorbia и его подрода Esula ......................................................................................................... 24 3.2. Результаты молекулярно-филогенетического -
Original Article Canarium Album Extract Restrains Lipid Excessive Accumulation in Hepatocarcinoma Cells
Int J Clin Exp Med 2016;9(9):17509-17518 www.ijcem.com /ISSN:1940-5901/IJCEM0022450 Original Article Canarium album extract restrains lipid excessive accumulation in hepatocarcinoma cells Qingpei Liu1,2, Meiling Zhou1,2, Mingjing Zheng1, Ni Chen1, Xiuli Zheng2, Shaoxiao Zeng1, Baodong Zheng1 1College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People’s Republic of China; 2Fuzhou Great Olive Co., Ltd, Fuzhou 350101, Fujian, People’s Republic of China Received December 22, 2015; Accepted May 17, 2016; Epub September 15, 2016; Published September 30, 2016 Abstract: Lipid metabolism is an important section of human body metabolism, and lipid metabolism disorder can lead to multiple diseases. Canarium album is a nature food, whose extract has been reported hepatoprotective, anti-inflammatory and antioxidant. In this study, we extracted polyphenol and flavonoid substances from Canarium album fruits, and demonstrated that they restrain lipid excessive accumulation induced by oleic acid in hepatocarci- noma cells. Moreover, polyphenol and flavonoid extracted fromCanarium album fruits facilitated phosphorylation of adenosine monophosphate activated protein kinase (AMPK) and regulated several lipid metabolism related genes expression, including fatty acid synthase (FAS), sterol regulatory element binding protein (SREBP)-1 and peroxisame proliferator activated receptor (PPAR)-α. Therefore, for the first time, we demonstrated thatCanarium album extract restrained lipid excessive accumulation by activating AMPK signaling pathway, downregulating SREBP-1 and FAS, upregulating PPAR-α in hepatocarcinoma cells, which may be of great significance for prevention and clinical treat- ment of lipid metabolism disorders. Keywords: Canarium album, polyphenol, flavonoid, hepatocarcinoma cells, lipid, AMPK Introduction plants including Juniperus lucayana [5], induc- es lipolysis in adipocytes of mice [6, 7]. -
Araceae), with P
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326850; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Taxonomic revision of the threatened African genus Pseudohydrosme Engl. (Araceae), with P. ebo, a new, Critically Endangered species from Ebo, Cameroon. Martin Cheek¹, Barthelemy Tchiengue2, Xander van der Burgt¹ ¹Science, Royal Botanic Gardens, Kew, Richmond, Surrey, U.K. 2 IRAD-Herbier National Camerounais, Yaoundé, BP 1601, Cameroon Corresponding author: Martin Cheek¹ Email address: [email protected] ABSTRACT This is the first revision in nearly 130 years of the African genus Pseudohydrosme, formerly considered endemic to Gabon. Sister to Anchomanes, Pseudohydrosme is distinct from Anchomanes because of its 2–3-locular ovary (not unilocular), peduncle concealed by cataphylls at anthesis and far shorter than the spathe (not exposed, far exceeding the spathe), stipitate fruits and viviparous (vegetatively apomictic) roots (not sessile, roots non-viviparous). Three species, one new to science, are recognised, in two sections. Although doubt has previously been cast on the value of recognising Pseudohydrosme buettneri, of Gabon, it is here accepted and maintained as a distinct species in the monotypic section, Zyganthera. However, it is considered to be probably globally extinct. Pseudohydrosme gabunensis, type species of the genus, also Gabonese, is maintained in Sect. Pseudohydrosme together with Pseudohydrosme ebo sp.nov. of the Ebo Forest, Littoral, Cameroon, the first addition to the genus since the nineteenth century, and which extends the range of the genus 450 km north from Gabon, into the Cross-Sanaga biogeographic area. -
Flora Composition, Structure and Diversity in the Kimbi Fungom National Park, North West Region, Cameroon
Vol. 11(1), pp. 1-13, January 2019 DOI: 10.5897/JENE2018.0735 Article Number: 27553D160148 ISSN 2006-9847 Copyright © 2019 Author(s) retain the copyright of this article Journal of Ecology and The Natural Environment http://www.academicjournals.org/JENE Full Length Research Paper Flora composition, structure and diversity in the Kimbi Fungom National Park, North West Region, Cameroon Amos Fang Zeh*, Nkwatoh Athanasius Fuashi, Melle Ekane Maurice Department of Environmental Science, Faculty of Sciences, University of Buea, Buea, Cameroon. Received 22 December, 2018; Accepted 21 January, 2019 The Kimbi Fungom National Park is reported to be relatively less diverse compared to other national parks of Cameroon. This might be due to the configuration of the landscape and habitat types. The main objective of this study is to determine the species composition, structure and diversity in the heterogeneous landscape of the Kimbi Fungom National Park defined by different habitat types. The park was divided into 20 blocks and 10 blocks were randomly selected for this flora survey. In each block, a 1 km line transect was established with 5 quadrates of 20 × 20 m. These transects were laid to cut across four major vegetation types (lowland rainforest, gallery forest, woodland and grassland savanna). A total of 2831 stems 1 cm circumference were identified and measured. This belongs to 222 species, in 54 families. Fabaceae, Rubiaceae and Euphorbiaceae were found to be the most dominant plant families. Tree density and basal area were lowest in the grassland while it was highest in the lowland forest. Species composition and diversity varied with vegetation type and landscape configuration. -
An Expanded Nuclear Phylogenomic PCR Toolkit for Sapindales1
Applications in Plant Sciences 2016 4(12): 1600078 Applications in Plant Sciences PRIMER NOTE AN EXPANDED NUCLEAR PHYLOGENOMIC PCR TOOLKIT FOR SAPINDALES1 ELIZABETH S. COLLIns2,4, MORGAN R. GOSTEL3, AND ANDREA WEEKS2 2George Mason University, 4400 University Drive, MSN 3E1, Fairfax, Virginia 22030-4444 USA; and 3Department of Botany, National Museum of Natural History, Smithsonian Institution, MRC 166, P.O. Box 37012, Washington, D.C. 20013-7012 USA • Premise of the study: We tested PCR amplification of 91 low-copy nuclear gene loci in taxa from Sapindales using primers developed for Bursera simaruba (Burseraceae). • Methods and Results: Cross-amplification of these markers among 10 taxa tested was related to their phylogenetic distance from B. simaruba. On average, each Sapindalean taxon yielded product for 53 gene regions (range: 16–90). Arabidopsis thaliana (Brassicales), by contrast, yielded product for two. Single representatives of Anacardiaceae and Rutacaeae yielded 34 and 26 products, respectively. Twenty-six primer pairs worked for all Burseraceae species tested if highly divergent Aucoumea klaineana is excluded, and eight of these amplified product in every Sapindalean taxon. • Conclusions: Our study demonstrates that customized primers for Bursera can amplify product in a range of Sapindalean taxa. This collection of primer pairs, therefore, is a valuable addition to the toolkit for nuclear phylogenomic analyses of Sapindales and warrants further investigation. Key words: Anacardiaceae; Burseraceae; low-copy nuclear genes; microfluidic PCR; Rutaceae. Low-copy nuclear gene regions offer increased phyloge- PCR-based target enrichment, a method that allows simultane- netic utility for species- and population-level studies of plants ous and cost-effective amplification of multiple loci (Blow, as compared to chloroplast and nuclear ribosomal markers 2009; Uribe-Convers et al., 2016). -
Origin of the Cyathium-Bearing Euphorbieae (Euphorbiaceae): Phylogenetic Study Based on Morphological Characters
ParkBot. Bull.and Backlund Acad. Sin. — (2002) Origin 43: of 57-62 the cyathium-bearing Euphorbieae 57 Origin of the cyathium-bearing Euphorbieae (Euphorbiaceae): phylogenetic study based on morphological characters Ki-Ryong Park1,* and Anders Backlund2 1Department of Biology, Kyung-Nam University, Masan 631-701, Korea 2Division of Pharmacognosy, Department of Pharmacy, Uppsala University, BMC-Biomedical center, S-751 23 Uppsala, Sweden (Received October 6, 2000; Accepted August 24, 2001) Abstract. A cladistic analysis of the subfamily Euphorbioideae was undertaken to elucidate the origin of the cyathium- bearing Euphorbieae and to provide hypotheses about evolutionary relationships within the subfamily. Twenty-one species representing most of the genera within the study group and three outgroup taxa from the subfamilies Acalyphoideae and Crotonoideae were selected for parsimony analysis. An unweighted parsimony analysis of 24 morphological characters resulted in five equally parsimonious trees with consistency indices of 0.67 and tree lengths of 39 steps. The strict consensus tree supported monophyly of the cyathium-bearing Euphorbieae. The sister group relationships of cyathium bearing Euphorbieae with Maprounea (subtribe Hippomaninae) were supported weakly, and the origin of cyathium is possibly in Hippomaneae, or in the common ancestor of Euphorbieae and remaining taxa of Euphorbioideae plus Acalyphoideae. Within the tribe Euphorbieae, both subtribes Euphorbiinae and Neoguilauminiinae are monophyletic, but the African endemic subtribe Anthosteminae is unresolved. The resulting trees support the monophyly of the tribe Stomatocalyceae while the tribe Hippomaneae does not consistently form a clade. Keywords: Cyathium; Euphorbieae; Phylogeny. Introduction to the position of a female flower. Accordingly, the Eu- phorbia-like cyathium results from the alteration of floral In a recent classification of subfamily Euphorbioideae axis and the condensation of the axis of male flower in Boiss., Webster (1975, 1994b) recognized six tribes: Hippomaneae. -
Caesalpinioideae, Fabaceae) Reveals No Significant Past 4 Fragmentation of Their Distribution Ranges
bioRxiv preprint doi: https://doi.org/10.1101/730911; this version posted August 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 TITLE : 2 Population genomics of the widespread African savannah trees Afzelia africana and 3 Afzelia quanzensis (Caesalpinioideae, Fabaceae) reveals no significant past 4 fragmentation of their distribution ranges 5 AUTHORS : 6 7 Armel S.L. Donkpegan1,2,3*, Rosalía Piñeiro4,5, Myriam Heuertz6, Jérôme Duminil2,7,8, Kasso 8 Daïnou 1,2,9, Jean-Louis Doucet1 and Olivier J. Hardy2 9 10 11 AFFILIATIONS : 12 13 14 1 University of Liège, Gembloux Agro-Bio Tech, Management of Forest Resources, Tropical 15 Forestry, TERRA, 2 Passage des Déportés, B-5030 Gembloux, Belgium 16 17 2 Evolutionary Biology and Ecology Unit, CP 160/12, Faculté des Sciences, Université Libre de 18 Bruxelles, 50 avenue F. D. Roosevelt, B-1050 Brussels, Belgium 19 20 3 UMR 1332 BFP, INRA, Université de Bordeaux, F-33140, Villenave d’Ornon, France 21 22 4 University of Exeter, Geography, College of Life and Environmental Sciences, Stocker road, 23 EX44QD, Exeter, UK 24 25 5 Evolutionary Genomics, Centre for Geogenetics - Natural History Museum of Denmark, Øster 26 Voldgade 5-7, 1350 Copenhagen K, Denmark 27 28 6 Biogeco, INRA, Univ. Bordeaux, 69 route d’Arcachon, F-33610 Cestas, France 29 30 7 DIADE, IRD, Univ Montpellier, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France. -
The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution
The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution Dissertation submitted to the Combined Faculties for Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Liza Paola Ding born in Mosbach, Baden-Württemberg, Germany Oral examination: 22.12.2014 Referees: Prof. Dr. Marcus A. Koch Prof. Dr. Claudia Erbar Table of contents INTRODUCTION ............................................................................................................. 18 1 THE MUSTARD FAMILY ....................................................................................... 19 2 THE TRIBAL SYSTEM OF THE BRASSICACEAE ........................................... 22 3 CHALCONE SYNTHASE ........................................................................................ 23 PART 1: TROUBLE WITH THE OUTGROUP............................................................ 27 4 MATERIAL AND METHODS ................................................................................. 28 4.1 Experimental set-up ......................................................................................................................... 28 4.1.1 Plant material and data composition .............................................................................................. 28 4.1.2 DNA extraction and PCR amplification ........................................................................................ -
A.B. Kadiri and J.D
Nigerian Journal of Science Vol 48 (2014): 1-13 Anatomy of Timber Species of Nigeria *A.B. KADIRI AND J.D. OLOWOKUDEJO Department of Botany, University of Lagos, Akoka, Lagos Nigeria *Corresponding Author E-mail: [email protected], [email protected] Abstract Vessels, parenchyma and ray cells of eighteen woody plant species belonging to 14 families (8 Orders) in Nigeria were studied using light microscopy. Configuration of ray cells, vessel diameter, pitting pattern of the vessels and parenchyma position in relation to the vessel pores are useful taxonomically and they can be linked to the various uses of the woods. Multiseriate ray cells were common in the Order Gentianales e.g. Alstonia congensis, (Apocynaceae) and Mitragyna ciliata (Rubiaceae). Family Fabaceae e.g. Brachystegia eurycoma and Piptadeniastrum africanum have paratracheal parenchyma, absence of cell inclusions and solitary or clustered vessels in common. Order Lamiales e.g. Family Lamiaceae: Tectona grandis and Boraginaceae: Cordia millenii have homogenous ray cells and banded paratracheal parenchyma with no inclusions. These characters may contribute to understanding the incertae sedis situation surrounding appropriate placement of Boraginaceae in an Order. Cleistopholis patens (Annonaceae) and Pycnanthus angolensis (Myristicaeae) in the Order Magnoliales have scalariform vessels and multiseriate ray cells, usually with some inclusions. Order Malpighiales e.g. Anthostema aubryanum and Mallotus oppositifolus (Euphorbiaceae) and Lophira alata (Ochnaceae) have apo- or paratracheal parenchyma and also possess inclusions in the ray cells and vessels while absence of cell inclusions distinguishes the family Malvaceae (Ceiba petandra and Triplochiton scleroxylon) from Sterculiaceae (Mansonia altissima and Pterygota macrocarpa). Multiseriate and homogenous ray cells characterized the Order Myrtales e.g.