DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE SEXPUNCTATA COMPLEX (COLEOPTERA: : )

A Thesis by

Matthew Robert Moore

Bachelor of Science, University of Nebraska-Lincoln, 2009

Submitted to the Department of Biological Sciences and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science

July 2011

© Copyright 2011 by Matthew Robert Moore

All Rights Reserved

DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE)

The following faculty members have examined the final copy of this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science with a major in Biological Sciences.

______Mary Jameson, Committee Chair

______Bin Shuai, Committee Member

______Gregory Houseman, Committee Member

______Peer Moore-Jansen, Committee Member

iii

DEDICATION

To my parents and my dearest friends

iv

"The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. He to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, is as good as dead: his eyes are closed." – Albert Einstein

v

ACKNOWLEDMENTS

I would like to thank my academic advisor, Mary Jameson, whose years of guidance, patience and enthusiasm have so positively influenced my development as a scientist and person. I would like to thank Brett Ratcliffe and Matt Paulsen of the University of Nebraska State Museum for their generous help with this project. Several others deserve credit for helping me along the way: Dr. Maxi Polihronakis,

Dr. Bin Shuai and Dr. Karen Brown-Sullivan. Lastly, I am very grateful to the researchers at the Biofinity

Project (http://biofinity.unl.edu) for their funding of this work.

vi

ABSTRACT

Researching cryptic is an integrative process that uses a “total evidence” approach to identify population-level evolutionary lineages (species). Cryptic species of aroids have been discovered but the existence of cryptic pollinator species has not been addressed. The highly polymorphic , Cyclocephala sexpunctata, is a hypothesized pollinator of two cryptic aroid species. This research integrates detailed morphological data, spatial and distribution data, mitochondrial CO1 sequence data and host associations to test the hypothesis that cryptic species of Cyclocephala are visiting aroid . Nine morphologically similar Cyclocephala species were included to address identification problems among similar species. A new country record was found for C. pan (Honduras). A female paratype specimen of C. letiranti was determined to be a female C. sexpunctata raising the possibility that there are no female type specimens of C. letiranti. Four unique male paramere forms (morphotypes) were found in C. sexpunctata and the allied species C. brevis. These paramere forms were associated with four female morphotypes that have a diagnostic form of the ventral surface of the epipleural pillow. The ventral form of the female epipleural pillow is described here for the first time and is a new character for the Cyclocephala. Detailed elevational and distribution data indicate that the morphotypes of C. sexpunctata and C. brevis are rarely collected together at specific localities. A checklist of cyclocephaline floral associations was compiled. Examination of voucher specimens and published floral associations indicate that the morphotypes described here visit different species of flowers within their hypothesized elevational range. Mitochondrial CO1 data demonstrate that C. sexpunctata is polyphyletic but the monophyly of C. brevis could not be addressed. The combination of these datasets indicates that the morphotypes described here are cryptic species though their remains unresolved due to large numbers of synonyms.

vii

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1 1.1 Introduction 1 1.2 Questions and Significance 2

2. BACKGROUND 4 2.1 The genus Cyclocephala 4 2.2 Variation in Species-level Diagnostic Characters 5 2.3 Variation and Diagnosability of C. sexpunctata, C. brevis and Morphologically Allied Species 5

3. MATERIALS AND METHODS 8 3.1 Taxa Selection 8 3.2 Morphological and Distribution Data 8 3.3 Scoring Maculae Phenotypes 10 3.4 Molecular Methods 11 3.4.1 DNA Extraction 11 3.4.2 Mitochondrial CO1 Amplification 11 3.4.3 Purification, Sequencing and Contig Assembly 12 3.4.4 Alignment and Parsimony Analysis 13 3.5 Checklist of Floral Associations for the 13

4. RESULTS AND DISCUSSION 16 4.1 Taxa Selection and Specimen Acquisition 16 4.1.1 Taxa Selection 16 4.1.2 Specimen Acquisition 17 4.1.3 Discussion 18 4.2 The Morphology and Distribution of Morphotypes 21 4.2.1 Morphotype 1 22 4.2.2 Morphotype 2 29 4.2.3 Morphotype 3 36 4.2.4 Morphotype 4 45 4.2.5 Sympatry of the Morphotypes 51 4.2.6 Discussion 51 4.3 Maculae Phenotypes 54 4.3.1 Morphotype 1 55 4.3.2 Morphotype 2 57 4.3.3 Morphotype 3 60 4.3.4 Morphotype 4 63 4.3.5 Discussion 65 4.4 Molecular Relationships 66 4.4.1 Discussion 68 4.5 Checklist of Floral Associations for the Cyclocephalini 70 4.5.1 Discussion 80

5. CONCLUSIONS 83

viii

TABLE OF CONTENTS (continued)

Chapter Page

REFERENCES 87

APPENDICES 101 1. Molecular Voucher Specimen and Sequence Data 102 2. Mitochondrial CO1 Alignment 113 3. Checklist of Floral Associations for the Cyclocephalini 121

ix

LIST OF TABLES

Table Page

1. Taxonomic history of C. sexpunctata. 7

2. Taxonomic history of C. brevis. 7

3. Primers for CO1 amplification. 12

4. CO1 sequences from NCBI. 13

5. Cyclocephala species of the C. sexpunctata species group examined during this study. 16

6. Private and institutional collections providing loaned material. 17

7. Elevational distribution of morphotype 1. 27

8. Elevational distribution of morphotype 2. 34

9. Elevational distribution of morphotype 3. 43

10. Elevational distribution of morphotype 4. 50

11. Localities of sympatry between morphotypes. 51

12. Cyclocephaline synonyms reported in floral association literature. 71

13. Unresolved cyclocephaline names reported in floral association literature. 71

14. Plant synonyms reported in floral association literature. 71

15. Manuscript names and unresolved plant names reported in floral association literature. 73

16. Generic level summary of cyclocephaline floral associations based on most specific data. 73

17. Host plant data for the C. sexpunctata species complex. 78

x

LIST OF FIGURES

Figure Page

1. Dorsal maculae of C. sexpunctata. 10

2. Ventral view of female epipleural flange of C. letiranti from , (Monte Verde Forest Reserve). 20

3. Lateral view of female epipleural flange of C. letiranti from Costa Rica, Puntarenas (Monte Verde Forest Reserve). 20

4. Dorsal habitus of morphotype 1 female and male.. 23

5. Caudal view of parameres of a Morphotype 1 male from El Salvador, Ahuachapán (Parque Nacional El Imposible, Cancha San Benito). 23

6. Lateral view of parameres of a Morphotype 1 male from El Salvador, Ahuachapán (Parque Nacional El Imposible, Cancha San Benito). 23

7. Caudal view of parameres of a morphotype 1 male from Mexico, Chiapas (Finca Irlanda). 24

8. Lateral view of parameres of a morphotype 1 male from Mexico, Chiapas (Finca Irlanda). 24

9. Ventral view of female epipleural flange of morphotype 1 from Honduras, Yoro (Sinai, 5.3 km NW of Sn. Fco. Campo). 24

10. Ventral view of female epipleural flange of morphotype 1 from Honduras, Yoro (Pico Pijol National Park). 25

11. Lateral view of female epipleural flange of morphotype 1 from Honduras, Yoro (Sinai, 5.3 km NW of Sn. Fco. Campo). 25

12. Ventral form of female epipleural pillow of morphotype 1 from Honduras, Yoro (Sinai, 5.3 km NW of Sn. Fco. Campo). 26

13. The distribution of morphotype 1 in Mexico, Guatemala, Honduras and El Salvador. 27

14. Dorsal habitus of morphotype 2 female and male. 30

15. Caudal view of parameres of a morphotype 2 male from Costa Rica, Guanacaste (Rio San Lorenzo, R. F. Cord., Tenorio). 30

16. lateral view of parameres of a morphotype 2 male from Costa Rica, Guanacaste (Rio San Lorenzo, R. F. Cord., Tenorio). 30

17. Caudal view of parameres of a morphotype 2 male from Costa Rica, Puntarenas (Est. La Casona Res. Biol. Monteverde). 31

xi

LIST OF FIGURES (continued)

Figure Page

18. Lateral view of parameres of a morphotype 2 male from Costa Rica, Puntarenas (Est. La Casona Res. Biol. Monteverde). 31

19. Ventral view of female epipleural flange of morphotype 2 from Costa Rica, Puntarenas (Monteverde Forest Reserve). 31

20. Ventral view of female epipleural flange of morphotype 2 from , Chiriquí (Santa Clara). 32

21. Lateral view of female epipleural flange of morphotype 2 from Panama, Chiriquí (Finca La Suiza, 5.3 km N. Los Planes). 32

22. Ventral form of female epipleural pillow of morphotype 2 from Costa Rica, Puntarenas (Monteverde Forest Reserve). 33

23. The distribution of morphotype 2 in Costa Rica and Panama. 34

24. Dorsal habitus of morphotype 3 female and male. 37

25. Caudal view of parameres of a morphotype 3 male from , Pichincha (Maquipucuna For. Res., 50 km NW Quito). 37

26. Lateral view of parameres of a morphotype 3 male from Ecuador, Pichincha (Maquipucuna For. Res., 50 km NW Quito). 37

27. Caudal view of parameres of a morphotype 3 male from , Jinotega (Cerro Kilambé, Camp 6-Las Torres). 38

28. Lateral view of parameres of a morphotype 3 male from Nicaragua, Jinotega (Cerro Kilambé, Camp 6-Las Torres). 38

29. Ventral view of female epipleural flange morphotype 3 from Costa Rica, Guanacaste (Est. Pitilla, 9 km S Santa Cecilia, P.N. Guanacaste). 38

30. Ventral view of female epipleural flange of morphotype 3 from Costa Rica, Puntarenas (Est. Sirena, Corcovado N.P.). 39

31. Lateral view of female epipleural flange of morphotype 3 from Costa Rica, Puntarenas (Est. Sirena, Corcovado N.P.). 39

32. Ventral form of female epipleural pillow of morphotype 3 from Costa Rica, Puntarenas (San Vito, Las Cruces). 40

33. Ventral form of female epipleural pillow of morphotype 3 from Costa Rica, Puntarenas (Est. Sirena, Corcovado N.P). 40

xii

LIST OF FIGURES (continued)

Figure Page

34. Caudal view of parameres of a morphotype 3 male from , Aragua (Parque Nacional Henri Pittier). 40

35. Lateral view of parameres of a morphotype 3 male from Venezuela, Aragua (Parque Nacional Henri Pittier). 40

36. Ventral view of female epipleural flange of morphotype 3 from Venezuela, Aragua (Parque Nacional Henri Pittier). 41

37. Ventral form of female epipleural pillow of morphotype 3 from Venezuela, Aragua (Parque Nacional Henri Pittier). 41

38. The distribution of morphotype 3 in Honduras, Nicaragua and Costa Rica. 42

39. The distribution of morphotype 3 in , Ecuador, , and Venezuela. 43

40. Dorsal habitus of morphotype 4 female and male. 46

41. Caudal view of parameres of a morphotype 4 male from Panama, Former Canal Zone (Madden Forest Preserve). 46

42. Lateral view of parameres of a morphotype 4 male from Panama, Former Canal Zone (Madden Forest Preserve). 46

43. Caudal view of parameres of a morphotype 4 male from Costa Rica, Limón (Manzanillo, RNFS Grandoca y Manzanillo). 47

44. Lateral view of parameres of a morphotype 4 male from Costa Rica, Limón (Manzanillo, RNFS Grandoca y Manzanillo). 47

45. Ventral view of female epipleural flange of morphotype 4 from Panama, Former Canal Zone (Barro Colorado Island). 47

46. Ventral view of female epipleural flange of morphotype 4 from Panama, Panama (El llano-Carti Rd., km 8). 48

47. Lateral view of female epipleural flange of morphotype 4 from Panama, Panama (El llano-Carti Rd., km 8). 48

48. Ventral form of female epipleural pillow of morphotype 4 from Panama (Barro Colorado Island). 49

xiii

LIST OF FIGURES (continued)

Figure Page

49. Ventral form of female epipleural pillow of morphotype 4 from Costa Rica, Puntarenas (, La Amistad, Sector Altamira). 49

50. The distribution morphotype 4 in Costa Rica, Panama and Colombia. 49

51. Mating scarab (Cyclocephala colasi) on the sterile male florets of solimoesense in . Arrow indicates position of male protarsal claw and female epipleuron. From http://5e.plantphys.net/article.php?ch=e&id=503. Photo credited to R. Seymour. 52

52. Ventral form of female epipleural pillow of C. brittoni from Panama, Former Canal Zone (Skunk Hollow). 53

53. Ventral form of female epipleural pillow of C. tutilina from Venezuela, Aragua (Henri Pittier National Park). 54

54. Maculae phenotypes of morphotype 1. 55

55. Frequency of dorsal maculae phenotypes in morphotype 1 56

56. Maculae phenotypes of morphotype 2. 57

57. Frequency of dorsal maculae phenotypes in morphotype 2. 59

58. Maculae phenotypes in morphotype 3. 60

59. Frequency of dorsal maculae phenotypes in morphotype 3. 62

60. Maculae phenotypes in morphotype 4. 63

61. Frequency of dorsal maculae phenotypes in morphotype 4. 64

62. One of nine equally parsimonious generated from CO1 sequence data. 67

63. Strict consensus generated from nine equally parsimonious trees. 68

xiv

LIST OF ABBREVIATIONS

bp Base pairs

C Celsius

CO1 Mitochondrial Cytochrome Oxidase Subunit 1

EtBr Ethidium Bromide

μl Microliter

μm Micrometer

μM Micromolar ml Milliliter mm Millimeter mM Millimolar

M Molar

PCR Polymerase Chain Reaction

QV Quality value rpm Rotations per minute sp. Species spp. Species (multiple)

TBE Tris/Borate/EDTA

UV Ultraviolet

V Volt w/v Weight/volume

xv

LIST OF SYMBOLS

& and

° Degree

μ Micro

% Percent

„ Prime

xvi

CHAPTER 1

INTRODUCTION

1.1 Introduction

Cryptic species are two or more species classified as a single nominal species because they are superficially indistinguishable (Bickford et al. 2006). Researching cryptic biodiversity is an integrative process that uses a “total evidence” approach to identify population-level evolutionary lineages (species).

Diverse data sets combining detailed examination of morphological characters (especially sexual structures), behavioral and ecological observations, distributional data and molecular data have been used to discover cryptic species diversity (Smith et al. 2000; Blair et al. 2005; Marsteller et al. 2009).

Discovery of cryptic species elucidates patterns of geographic models of speciation, morphological evolution and ecological specialization in diverse taxonomic groups (Smith et al. 2000; Blair et al. 2005;

Marsteller et al. 2009).

Investigation and discovery of cryptic species has challenged interpretations of specialization and generalism between various and host plant taxa. Fig wasps (Agaonidae) and their fig hosts (Ficus spp.) were believed to constitute one of the tightest known pollination mutualisms, with each fig species being pollinated by one wasp species. Molecular data indicate that this assumption is often incorrect and that there are many lineages (species) of fig wasps that pollinate single fig species (Molbo et al. 2003).

Conversely, similar data sets have shown that insect species considered generalists are cryptic complexes of specialists (Blair et al. 2005).

Flowers of the basal angiosperm are visited by taxonomically diverse assemblages of in the Neotropics. Nocturnal scarab beetles of the tribe Cyclocephalini

(Scarabaeidae: Dynastinae) are hypothesized pollinators of several Neotropical Araceae genera.

Pollination mutualism is particularly well documented between cyclocephalines and the Araceae genera

Dieffenbachia Schott, Montrichardia H. Crüger, Philodendron Schott and Schott (Young

1986; Goldwasser 1987; Gibernau et al. 2000; Gibernau et al. 2003). Cyclocephaline visitors of these

1 thermogenic aroid genera are offered an array of rewards including food sources in the form of sterile flowers, mating aggregation sites and elevated body temperatures (Young 1986; Goldwasser 1987;

Seymour et al. 2009).

Cyclocephalines are generalist floral visitors and the factors determining which beetle species visit which aroid species are poorly understood. Differences in floral scent, the relative timing of thermogenesis and anthesis and canopy stratification of aroid flowers have been hypothesized to determine the spectrum of cyclocephaline visitors (Young 1986; Schatz 1990; Beath 1999; García-

Robledo et al. 2005). Geographic variation in cyclocephaline floral visitation has been documented in the genera and Xanthosoma (Beath 1999; García-Robledo et al. 2005). The geographic variation of floral visitor communities on Dieffenbachia longispatha Engl. & K. Krause discovered by

Beath (1999) at La Selva (Costa Rica) and Barro Colorado Island (Panama) were later expanded by Croat

(2004). Croat (2004) confirmed that the geographic differences in the spectrum of floral visitors were due to existence of cryptic Dieffenbachia species with different elevational distributions.

1.2 Questions and Significance

The highly polymorphic species Cyclocephala sexpunctata Laporte, 1840 is a visitor of these cryptic Dieffenbachia species (Beath 1999; Croat 2004). Across its distribution C. sexpunctata has been reported from the aroid genera Philodendron and Xanthosoma and the palm genus Socratea H. Karst. A second polymorphic species, Cyclocephala brevis Höhne, 1847, is nearly identical to C. sexpunctata.

Cyclocephala sexpunctata and C. brevis are sympatric at some localities but are hypothesized to have different elevational distributions (Ratcliffe 2003). The data of Beath (1999) and Croat (2004) are complicated by the observation that C. sexpunctata does not occur at La Selva or Barro Colorado Island

(Ratcliffe 2003). The existence of cryptic Dieffenbachia species raises the possibility that their floral visitors may also be cryptic species though this has not been addressed.

This research takes an integrated approach to test the hypothesis that cryptic Cyclocephala

Dejean, 1821 species are involved in aroid visitation and potentially their pollination. The suitability of diverse methods to explore the existence of cryptic cyclocephaline scarab species has not been evaluated.

2

Evidence for cryptic species will be weighed by integrating detailed morphological study, spatial and distribution data, host plant associations and molecular data to address whether:

1) Monophyletic lineages (species) can be circumscribed based on morphological and

phenotypic data.

2) Monophyletic lineages (species) can be circumscribed based on spatial analyses and the

distribution of corroborative host plant associations.

3) Monophyletic lineages can be circumscribed using DNA sequence data.

4) The tools identified in 1-3 can be used to diagnose cryptic species of Cyclocephala.

The outcomes of this research are significant for many reasons. Female sexual characters in the

Cyclocephalini are poorly understood. Close examination of female characters in morphologically similar species will provide a framework for their further study and provide insights into their biological function.

There exists almost no DNA sequence data for the Cyclocephalini and data generated here can be used in future analyses. DNA barcode sequences from the Cyclocephalini, particularly in Cyclocephala, offer an opportunity to preliminarily investigate whether this is a useful tool for identifying speciation events in this genus. The spatial factors that determine host plant associations in Cyclocephala species are obscure.

Pollination mutualism between species having similar elevational tolerances has not been considered in explaining patterns of floral visitation in cyclocephalines. There are other variable Cyclocephala species that have been reported from flowers and this research will create a foundation for evaluating the biological meaning of variability in male and female sexual characters.

3

CHAPTER 2

BACKGROUND

2.1 The Genus Cyclocephala

Cyclocephala is a large genus (~335 species) that ranges from southeastern Canada south to

Argentina and the West Indies (Ratcliffe 2003; Ratcliffe and Cave 2006). Species diversity within

Cyclocephala is concentrated in the Neotropics (Ratcliffe 2003; Ratcliffe and Cave 2006). Adult

Cyclocephala are typically nocturnal or crepuscular and the few larvae described feed on grass roots and organic matter in soil (Ratcliffe 2003; Ratcliffe and Cave 2006; Stechauner-Rohringer and Pardo-Locarno

2010). One exception to this is a collection record of larvae and pupae of Cyclocephala dilatata (Prell,

1934) from tissue of a palm in French Guiana (Ponchel 2006). Adults of many Cyclocephala species are known visitors of flowers and of several plant families (Morón 1997; Morón et al. 1997; Gottsberger 1988; Ratcliffe 2003; Ratcliffe and Cave 2006).

There are currently no phylogenetic hypotheses for species relationships within Cyclocephala and the monophyly of the genus has not been addressed (Ratcliffe 2003). Cyclocephala is currently characterized by a clypeus with sides always converging to a rounded, parabolic, subtruncate or emarginated apex; antennae with 8-10 segments; maxilla with distinct teeth; and sexually dimorphic protarsal claws (males with medial claw enlarged and females with both claws simple) (Ratcliffe 2003;

Ratcliffe and Cave 2006). The cyclocephaline genera Erichson, 1847, Aspidolea Bates, 1888 and Mimeoma Casey, 1915 show overlap in some generic-level characters with Cyclocephala thus creating the potential for paraphyly or polyphyly within the genus (Ratcliffe 2003).

Without a phylogenetic framework, patterns of character evolution within Cyclocephala are necessarily obscure. Based on monographic treatments including Cyclocephala there appears to be a general model for diagnosing externally similar species (Endrödi 1985; Ratcliffe 2003; Ratcliffe and Cave

2006). Characters such as the shape of the apex of the clypeus, shape and arrangement of dorsal maculae, presence/absence of dorsal patches of setae, presence/absence of a pronotal basal bead and the

4 arrangement of teeth on the protibia can be used to phenetically group species. Cyclocephala species have been identified primarily by unique, diagnostic form of the male genitalia and the form of the female epipleuron. Similar male (genitalia) and female (shape and relative position of dilations on elytral epipleuron) species-level diagnostic characters have been described from other cyclocephaline genera, particularly Ancognatha, Arriguttia Martínez, 1960, Aspidolea, Augoderia Burmeister, 1847, Chalepides

Casey, 1915, Harold1869, Mimeoma, Peltonotus Burmeister, 1847 and Surutu Martinez, 1955

(Endrödi 1985; Ratcliffe 2003; Jameson and Wada 2004; Ratcliffe and Cave 2006).

2.2 Variation in Species-level Diagnostic Characters

Some Cyclocephala species exhibit intraspecific variation in patterns of dorsal maculae and sexual characters. Dramatic examples of intraspecific variation in maculae patterns can be observed in large samples of many Cyclocephala species (Endrödi 1966). García-Luna et al. (2002) documented variation in dorsal maculae for three species of Cyclocephala: C. complanata Burmeister, 1847, C. mafaffa Burmeister, 1847 and C. sexpunctata. Two of these species, C mafaffa and C. sexpunctata, are known to have variable male genitalia though correlations between dorsal maculae and genital morphs have not been addressed (García-Luna et al. 2002).

2.3 Variation and Diagnosability of C. sexpunctata, C. brevis and Morphologically Allied Species

Cyclocephala sexpunctata and C. brevis are two taxa illustrative of the intra-specific variation observed in some Cyclocephala species. Cyclocephala sexpunctata and C. brevis have overlapping distributions occurring from Mexico to Brazil and west into Ecuador (Endrödi 1985; Ratcliffe 2003;

Ratcliffe and Cave 2006). Adult emergence is concentrated in the first half of the wet season and adults can be collected in lowland broadleaf rainforests (~sea level) up to montane broadleaf forests (700 m and up) (Ratcliffe 2003; Ratcliffe and Cave 2006). These two morphologically similar species are defined by traits that seemingly vary along altitudinal gradients (Ratcliffe 2003). Cyclocephala brevis is considered a low-land form, characterized by smaller body size, straighter male parameres and relatively less melanic elytra compared to C. sexpunctata (Ratcliffe 2003). Cyclocephala sexpunctata is considered a high altitude form, characterized by larger body size, more bent male parameres and relatively more melanic

5 elytra compared to C. brevis (Ratcliffe 2003). C. sexpunctata and C. brevis, as well as C. tutilina

Burmeister, 1847 are reliably diagnosable only by the following set of male characters:

“The parameres of C. sexpunctata and C. tutilina are distinctly bent for their entire length and remain thick to the apex, whereas those of C. brevis are nearly straight in their apical half and with a slender apex. In caudal view, the apices of all three species are subtriangular but are broadly rounded to nearly blunt in C. sexpunctata and C. tutilina and narrowly rounded to almost pointed or narrow and elongated with an elongated, subtriangular apex in C. brevis (Ratcliffe and Cave 2006).”

In Honduras, Nicaragua and El Salvador C. sexpunctata tends to be of larger size as well as having larger elytral maculae than C. brevis (Ratcliffe and Cave 2006). Diagnostic differences in body and maculae size have been proposed for sympatric populations of C. sexpunctata and C. brevis occurring at Hartmann‟s Finca in Chiriquí, Panama (Ratcliffe 2003). A particularly interesting pattern in this variation is the presence of additional pronotal maculae in C. sexpunctata (a dark morph) populations occurring from Mexico to Honduras and in Venezuela. This trait is mostly lacking in Costa Rican and

Panamanian populations (Ratcliffe 2003; Ratcliffe and Cave 2006).

The distribution this dark morph has created taxonomic confusion and has been treated differently by various authors (Tab 1; Tab 2). In his monographic works, Endrӧdi (1966) referred to this dark morph only as an “aberration”. This particular form was described as a separate species, C. lucida Burmeister,

1847, and C. lucida was later considered to be a synonym of C. sexpunctata (Ratcliffe 2003). Casey

(1915) described several species that have subsequently been synonymized with Cyclocephala sexpunctata. Casey‟s (1915) species concepts were based primarily on differences in dorsal maculae pattern, and he did not discuss male genitalia or female sexual characteristics.

6

TABLE 1

TAXONOMIC HISTORY OF C. SEXPUNCTATA

Taxonomy Type Locality (from Ratcliffe 2003 and Krajcik 2005) (from Krajcik 2005) Cyclocephala sexpunctata Laporte, 1840 French Guiana (Cayenne) -syn. Cyclocephala pubescens Erichson, 1847 -syn. Cyclocephala lucida Burmeister, 1847 Mexico -syn. Cyclocephala sexpunctata spermophila Colombia, Ecuador Ohaus, 1910 -syn. Stigmalia triangulifer Casey, 1915 Mexico (Guerrero) -syn. Stigmalia discoidalis Casey, 1915 Mexico (Jalapa) -syn. Stigmalia costaricana Casey, 1915 Chiriquí -syn. Stigmalia circulifer Casey, 1915 Mexico (Guerrero) -syn. Cyclocephala pubescens nigripes Höhne, 1923

TABLE 2

TAXONOMIC HISTORY OF C. BREVIS

Taxonomy Type Locality (from Ratcliffe 2003 and Krajcik 2005) (from Krajcik 2005) Cyclocephala brevis Höhne, 1847 -hom. Cyclocephala pubescens Burmeister, 1847 Peru -syn. Cyclocephala pubescens brevis Höhne, 1923 Peru

7

CHAPTER 3

MATERIALS AND METHODS

3.1 Taxa Selection

No phylogeny is presently available for the genus Cyclocephala and the monophyly of the genus is in question (Ratcliffe 2003; Ratcliffe and Cave 2006). It is therefore only possible to approximate species relationships based on expert opinion and monographic treatments of the genus Cyclocephala.

Ideally, the taxa included in this study should be closely allied to C. sexpunctata and C. brevis to root molecular analyses and offer a basis to compare intra- and interspecific morphological variation in these species.

Taxa were selected for inclusion in this study based on the following set of characters: clypeus with apex distinctly emarginate, dorsal surface at least partially setose (especially frons, anterior angles of pronotum and elytra); pronotum on base without marginal bead, dorsal color testaceous or reddish-brown, presence of 6-8 elytral maculae; males with protibia tridentate with the basal tooth small and removed from the apical teeth and; the general lance-like form of the male parameres (especially presence of a baso-ventral process or swelling) (Ratcliffe 2003; Ratcliffe and Cave 2006; Brett Ratcliffe, pers. comm.,

May 2009). Geographic distribution of Cyclocephala species was also considered. Species selected for study have distributions from southern Mexico south to northern .

3.2 Morphological and Distribution Data

The form of the parameres of the male genitalia in dynastine scarabs is, with few exceptions, diagnostic for species-level identification (Ratcliffe 2003). Every male specimen of C. sexpunctata and C. brevis was dissected and the male genitalia were extracted by the following procedure: 1) the middle and hind legs were pushed away from the sternites of the abdomen using forceps, 2) the membrane at the base of the first abdominal sternite was broken, 3) the abdomen was removed from the specimen 4) the genitalia were removed from the abdomen and placed using water-soluble glue onto archival mounting points, and 5) the abdomen was placed back onto the specimen using water-soluble glue. Males were

8 sorted initially into morphotypes by the form of their parameres. Characters used to group male morphotypes included the shape of the apex of the parameres in caudal view (broadly rounded and blunt, broadly rounded and elongate or sub-triangular and pointed), the degree of deflection of the apex of the parameres (straight or deflexed downward) and the degree of the production of the basal tooth. Females were initially associated with males by locality data.

The form of the female epipleuron in many cyclocephalines, and especially Cyclocephala, are diagnostic for species-level identification, but characters associated with the epipleuron have not been quantified or investigated (Ratcliffe 2003). For some scarab groups (e.g., Chrysina Kirby, 1827 and

Cyclocephala) the epipleural expansion is important for mating. Females initially sorted with male morphotypes were examined in ventral and lateral view for variation in the epipleural flange. A sub- sample of females was examined for the ventral structure of the epipleural pillow (the ventral form of the expansion). The left elytron was dissected by the following procedure: 1) the specimen was softened by placement in hot, soapy water for several minutes, 2) the left elytron was removed by popping the elytral articulation from the thorax, 3) the elytron was allowed to dry, and 4) was placed using water-soluble glue onto archival mounting points.

The phylogenetic species concept of Wheeler and Platnick (2000) was applied herein: “A species is the smallest aggregation of (sexual) populations or (asexual) lineages diagnosable by a unique combination of character states”. The morphotypes (species lineages) characterized in this work are recognized by combined characters of the shape of the male parameres in lateral view, the shape of the apex of the parameres, degree of production of the baso-ventral tooth, the shape and position of the female epipleural flange and the ventral form of the female epipleural pillow.

Body size was measured from the apex of pronotum to the apex of the elytra using calipers

(Swiss Precision Instruments, Inc., SPI 2000). Images of specimens and structures were captured using

Automontage by Synchroscopy (Synoptics Inc.). Images were edited in Adobe Photoshop CS2 (Adobe

Systems Inc.).

9

Label data were used to generate detailed distribution maps of morphotypes. It was necessary to reference external sources in cases that labels did not include latitude and longitude data. Referenced publications included gazetteers and other taxonomic papers that reported identical or very similar locality data to that associated with specimens observed in this study (Global Gazetteer Version 2.2;

Armbruster et al. 1992; Campbell and Smith 2000; Ratcliffe 2003; Ratcliffe and Cave 2006). Latitude and longitude data were approximated when these data could not be determined from labels or an external reference. These data were approximated using Google Earth by the following procedure: 1) a city or otherwise identifiable location indicated on a label was found on Google Earth, 2) if distance measures were given (e.g., 5 km east of Purulhá) a straight line was drawn from the locality and the end-point data was used for mapping. 134 specimens had latitude, longitude and/or elevational data generated using

Google Earth. Latitiude and longitude coordinates were entered into Excel 2007 (Microsoft Inc.) spreadsheets and converted to KML format in Earth Point (Google Inc.) for mapping in Google Earth

(Google Inc.). Localities above 1000 m were considered high-elevation and localities below 900 m were considered low- to mid-elevation.

3.3 Scoring Maculae Phenotypes

Specimens of C. sexpunctata and C. brevis that had been assigned to morphotypes (based on male and female morphology) were scored for unique maculae patterns. Cyclocephala sexpunctata and C. brevis often have maculae on the pronotum and 4 maculae on the elytra (Fig. 1).

Pronotal Macula

Basal Medial Macula

Basal Lateral Macula

Apical Lateral Macula

Apical Medial Macula

Figure 1. Dorsal maculae of C. sexpunctata.

10

Pronotal maculae were scored as either present or absent. Elytral maculae were scored as present, absent or variably continuous. This was accomplished without magnification. Maculae that could not be detected with the naked eye were considered absent. Unique combinations of maculae presence, absence and contiguousness constituted the phenotypes. The relative size of maculae was not considered when scoring phenotypes. Phenotypes were then counted to determine their relative frequency in the sample.

3.4 Molecular Methods

3.4.1 DNA Extraction

Tissue samples were taken from the coxal cavites of specimens preserved in alcohol and placed in sterile 1.5 ml Eppendorf tubes. Alcohol was allowed to evaporate entirely at room temperature. 10 μl of

Proteinase K (Roche Applied Science) and 80 μl of Chelex (5% w/v) (BioRad) solution were added to each tube, briefly vortexed and centrifuged until tissue samples were immersed in the extraction solution.

Samples were incubated at 55° C for 1 hour and then at 90° C for 8 minutes. Samples were then vortexed for one minute and centrifuged at 13,200 rpm. 70 μl of the resulting supernatant was transferred to a second sterile tube and stored at -80° C for use as template DNA in later reactions. The procedure was the same for pinned specimens except that DNA was extracted from manually pulverized metatarsi. DNA extractions performed on pinned specimens were precipitated using 3 volumes of 100% ethanol and 1/10 volume of 3 M sodium acetate. This mixture was incubated overnight in a -20° C freezer. Extractions were centrifuged for one hour at 13,200 rpm and the supernatant discarded. The resulting DNA pellet was washed with 70% ethanol, stored at -20° C and centrifuged for one hour at 13,200 rpm and the supernatant discarded. Any remaining ethanol was allowed to dry and the resulting DNA pellet was resuspended with Tris buffer (pH 8) at half the volume of the original extraction.

3.4.2 CO1 Amplification

Mitochondrial Cytochrome Oxidase Subunit 1 was amplified using the primers C1-J-1751

(Ron)/TL2-N-3014 (Pat) and C1-J-2183 (Jerry)/TL2-N-3014 (Pat) (Tab. 3) (Simon et al. 1994). Predicted amplicon length for the primers Ron and Pat was approximately 1200 bp (Simon et al. 1994). Predicted amplicon length for the primers Jerry and Pat was approximately 800 bp (Simon et al. 1994). PCR

11 reactions were set up using Ex Taq PCR Kits (Takara). Individual 25 μl PCR reactions using the primers

Ron and Pat were composed of 4μl of template DNA, 1.25 units of Ex Taq, 0.5 μM of each primer, 0.2 mM dNTPs, 1 mM Tris-HCl, 50 mM KCl, 2 mM MgCl2 and millipore H2O used to fill out reaction volume. Individual 25 μl PCR reactions using the primers Jerry and Pat were composed of 4μl of template

DNA, 1.25 units of Ex Taq, 0.5 μM of each primer, 0.2 mM dNTPs, 1 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl2 and millipore H2O used to fill out reaction volume. The thermal cycle for the primers Ron and

Pat was as follows: 1) initial denaturation step of 94° C for 2 minutes, 2) 35 cycles of 94°C for 30 seconds, 55° C for 30 seconds and 72° C for 2 minutes and 3) a final extension of 72° C for 5 minutes

(pers. comm. with M. Polihronakis). The thermal cycle for the primers Ron and Pat was as follows: 1) initial denaturation step of 94° C for 2 minutes, 2) 35 cycles of 94° C for 30 seconds, 50 ° C for 30 seconds and 72° C for 45 seconds and 3) a final extension of 72° C for 2 minutes.

TABLE 3

PRIMERS FOR CO1 AMPLIFICATION

Primer Sequence C1-J-1751 (Ron) (Forward) 5‟ GGATCACCTGATATAGCATTYCC 3‟ C1-J-2183 (Jerry) (Forward) 5‟ CAACATTTATTTTGATTTTTTGG 3‟ TL2-N-3014 (Pat) (Reverse) 5‟ TCCAATGCACTAATCTGCCATATTA 3‟

3.4.3 PCR Product Purification and Sequencing

PCR products were run through 1% agarose TBE gels at 100 V for one hour. Gels were stained by immersion in diluted EtBr for one hour. Stained gels were visualized under UV light and PCR products of the predicted length were extracted from gels. PCR products were purified and prepared for sequencing using a Geneclean Kit (MP Biomedicals) per kit specifications for TBE gels. Purified PCR products were split into two 10 μl aliquots. 2 μl of the appropriate 10 μM primer stock was added to these aliquots for forward and reverse sequencing. Samples were directly sequenced at San Diego State

University‟s CSUPERB Microchemical Core Facility.

12

3.4.4 Contig Assembly, Sequence Alignment and Parsimony Analysis

Sequence contigs were assembled using the program DNA Baser v. 3.2.5. Chromatogram files were imported into DNA Baser and assembled into contigs using the assembler engine with 20 base word size, 80 % sample identity and 25 base minimum overlap. Ends were trimmed until there were 75% good bases in an 18 base window (good bases have a QV higher than 25). Out group taxa sequences from the scarab subfamilies Rutelinae and Melolonthinae were downloaded from The National Center for

Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/) (Tab. 4). Sequences were aligned in

ClustalW (Thompson et al. 1994) using a full sequence alignment with 1000 bootstrap replicates. The ends of the resulting sequence alignment were trimmed to create a rectangular matrix. The resulting matrix was analyzed using parsimony in PAUP (Swofford 1991). The matrix was analyzed using the branch and bound method with 10,000 max trees with upper bound computed via stepwise, multrees and only saving minimal trees. Character support for the strict consensus tree was measured by the full heuristic bootstrap method with 100 replicates starting at random 1904165512.

TABLE 4

CO1 SEQUENCES FROM NCBI

Taxa Accession Phyllophaga hirticula (Knoch) (Scarabaeidae: GQ457160.1 Melolonthinae) Phyllophaga profunda (Blanchard) (Scarabaeidae: GQ457181.1 Melolonthinae) Phyllophaga balia (Say) (Scarabaeidae: GQ457139.1 Melolonthinae) Phyllophaga bipartita (Horn) (Scarabaeidae: GQ457142.1 Melolonthinae) Phyllopertha horticola (L.) (Scarabaeidae: DQ295283.1 Rutelinae)

3. 5 Checklist of Floral Associations for the Cyclocephalini

Published occurrences of cyclocephaline floral associations are numerous, having been reported in journals, books and monographs since the late 18th century. The prevalence, geographic scope and biological importance of these records are difficult to gauge because there is no contemporary, concise review of associations for the Cyclocephalini. Botanical publications summarizing

13 cyclocephaline floral visitation are available though these are somewhat dated and report pollination records limited to specific plant families, geographic areas or vegetation types (Henderson 1986;

Gibernau 2003; Gottsberger and Silberbauer-Gottsberger 2006). The fragmentary nature of these types of data and the widespread citation of unpublished observations have hampered the ability to indentify floral association trends within the Cyclocephalini. Compilation and synthesis of a checklist of floral associations for the tribe is needed in order to understand ecological and evolutionary patterns within the group. The compiled checklist was designed with specific intent to: 1) summarize ecological data for the adult beetles of C. sexpunctata and C. brevis for the purposes of this study; 2) identify and correct invalid taxonomy in the surveyed literature and; 3) aid researchers by providing an easily accessible, comprehensive data set on the taxonomic and geographic scope of floral associations for the tribe.

All reported cyclocephaline species names were verified by referencing the original species description and monographic treatments of the Dynastinae (Endrödi 1985; Ratcliffe 2003; Ratcliffe and

Cave 2006). Synonyms or misspelled cyclocephaline species names were updated to reflect current taxonomy. All reported host plant names were verified using the peer-reviewed botanical taxonomic databases Tropicos (www.tropicos.org) and (www.plantlist.org). Synonyms or misspelled plant names were updated to reflect current taxonomy. In some cases scientific names could not be verified as valid (e.g., possible manuscript names or conflicting synonyms). These unverified plant names were reported according to the original citation for the floral association and the name noted as unresolved (Tab. 4). Occasionally, host plant species and beetles were not assigned authorship in the reference for an association. This caused problems due to the prevalence of synonyms and homonyms in the plant and insect literature. Ambiguities caused by this practice were rectified to the extent possible and explained in the remarks column.

Specimens of Cyclocephala species borrowed for this research allowed for direct and indirect evaluation of species level Cyclocephala identifications reported by several authors. Particularly, this included specimens of C. sexpunctata and C. brevis collected by George Schatz, Helen Young (La Selva

Biological Station, , Costa Rica), Alberto Seres and Nelson Ramirez (Henri Pittier National Park,

14

Venezuela) with floral association data that were subsequently published or unpublished. Identifications of these specimens (or specimen vouchers) were critically examined. Exemplar material borrowed from the University of Nebraska State Museum (authoritatively identified by B. C. Ratcliffe) and monographic treatments (Ratcliffe 2003; Ratcliffe and Cave 2006) served as the basis for evaluating species identifications. An operating assumption of this evaluation was that the collectors and authors were consistent with their species level determinations. Identifications deemed incorrect based on current taxonomy were updated and noted accordingly.

Concrete and anecdotal evidence of floral associations were equally included in the checklist. The nature of the published association occasionally needed clarification or elaboration (e.g., cyclocephalines reported near flowers but not on them or museum specimens covered in resin and pollen). These clarifications were provided in the remarks column. A relatively large amount of unpublished and inaccessible data exists with regards to cyclocephaline visitation of inflorescences. These inaccessible data sets are important because they report certain associations that are not recorded elsewhere in the literature. These records typically provide ambiguous data for plant species, cyclocephaline species and locality. For example, Schatz (1990; Table 7.3) recorded known and predicted (without distinguishing the two) plant taxa pollinated by dynastines in the Neotropics. Schatz (1990; Table 7.4) recorded cyclocephaline plant visitation at La Selva Biological Station, but a large amount of data could not be extracted because of the non-specific nature of the record (i.e., the data were reported at the tribal-level).

Repetitive data from these types of records were omitted from the checklist. Only unique generic or species-level plant associations were reported for the beetle tribe from these data sets. These non-specific records are reported at the end the checklist (App. 3) with the intention that they be reevaluated with stronger data.

15

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Taxa Selection and Specimen Acquisition

4.1.1 Taxa Selection

Nine morphologically similar Cyclocephala species were included in this study (see “Taxa

Selection”, Chapter 2) (Tab. 5). All nine species fit the taxa selection criteria with the following exceptions: 1) Cyclocephala brittoni Endrödi, 1964 has a pronotal basal bead that is variably present or absent, 2) C. krombeini Endrödi, 1979 and C. kuntzeniana Höhne, 1923 have more than six elytral maculae, 3) C. letiranti Young, 1992 males occasionally have the basal tooth of the protibia reduced to a small protuberance and 4) C. zodion Ratcliffe, 1992 male parameres lack a distinct, baso-ventral tooth.

These species were studied primarily because they present identification challenges throughout the distributional range C. sexpunctata and C. brevis. Together, these species are referred to as the C. sexpunctata species group. Together, C. sexpunctata and C. brevis (sensu Ratcliffe 2003; Ratcliffe and

Cave 2006) are referred to as the C. sexpunctata species complex.

TABLE 5

CYCLOCEPHALA SPECIES OF THE C. SEXPUNCTATA SPECIES GROUP EXAMINED DURING THIS STUDY

Cyclocephala Species Number of Observed Specimens Cyclocephala brevis Höhne, 1847 279 -syn. Cyclocephala pubescens Burmeister, 1847 -syn. Cyclocephala pubescens brevis Höhne, 1923 Cyclocephala brittoni Endrödi, 1964 55 Cyclocephala krombeini Endrödi, 1979 46 -syn. Cyclocephala rorschachoides Ratcliffe, 1992 Cyclocephala kuntzeniana Höhne, 1923 5 Cyclocephala letiranti Young, 1992 7 Cyclocephala pan Ratcliffe, 1992 15

16

TABLE 5 (continued)

Cyclocephala sexpunctata Laporte, 1840 441 -syn. Cyclocephala pubescens Erichson, 1847 -syn. Cyclocephala lucida Burmeister, 1847 -syn. Stigmalia triangulifer Casey, 1915 -syn. Stigmalia discoidalis Casey, 1915 -syn. Stigmalia costaricana Casey, 1915 -syn. Stigmalia circulifer Casey, 1915 -syn. Cyclocephala pubescens nigripes Höhne, 1923 Cyclocephala tutilina Burmeister, 1847 17 -syn. Cyclocephala venezuelae Arrow, 1911 Cyclocephala zodion Ratcliffe, 1992 1

4.1.2 Specimen Acquisition

Study material was primarily obtained through loans from museums and private collections.

Specimens from the following institutional and private collections were studied (Tab. 6). This study was based on the examination of 866 specimens of Cyclocephala from Mexico, Guatemala, Honduras,

Nicaragua, El Salvador, Costa Rica, Panama, Colombia, Ecuador, Venezuela, Brazil and Suriname.

Specimens identified as C. sexpunctata and C. brevis comprised 441 and 279 of these records, respectively (Tab. 5).

TABLE 6

PRIVATE AND INSTITUIONAL COLLECTIONS PROVIDING LOANED MATERIAL

EAPZ Escuela Agricola Panamericana, Zamorano, Honduras (Ron Cave) INBI Instituto Nacional de Biodiversidad, Costa Rica, Santo Domingo de Heredia (Angel Solís) MLJC Mary Liz Jameson Collection, Wichita, KS SEMC Snow Entomological Museum, University of Kansas, Lawrence, KS (Zach Falin) UNSM University of Nebraska State Museum, Lincoln, NE (Brett Ratcliffe) USNM U. S. National Museum, Washington, D.C. (Currently housed at the University of Nebraska State Museum for off-site enhancement) UVGC Universidad del Valle de Guatemala, Guatemala City, Guatemala (Enio Cano)

17

4.1.3 Discussion

The majority (approximately 80 %) of specimens that comprised this study were identified to the species level, yet approximately 10 % were incorrectly identified due to misidentification or incorrect association of females with male counterparts. Factors contributing to misidentifications were small sample sizes at certain collecting localities, reliance on dorsal maculae patterning with out dissection of male genitalia, and incorrect association of female specimens with males. I have discovered a new female character (ventral form of the epipleural pillow, see next section) that is useful for species level identification in these species.

Cyclocephala pan, which was previously known from Costa Rica, Panama and Guatemala, was found to occur in Honduras (NEW COUNTRY RECORD) (Ratcliffe 1992a; Ratcliffe 2003). This new country record for Honduras comprises 11 C. pan specimens from 4 localities. All eleven specimens are deposited at Escuela Agricola Panamericana, Zamorano, Honduras.

HONDURAS. Atlántida. Parq. Nac. Pico Bonito, Cerro Miramar, 550 m. N15°34‟01” W87°03‟57”. 14-15 Augusto 2001. Cave, Cordero & Machado. (4 males, 3 females).

HONDURAS. Atlántida. Parq. Nac. Pico Bonito, Rio Zacate, 35 m. N15°41‟35” W86°55‟58”. 27 Enero 2000. Cave, Cordero & Torres. (1 female).

HONDURAS. Atlántida. 7.7 km S La Ceiba en camino a Yuruca, 60 m. N15°43‟43” W86°44‟31”. 24 Enero 2000. Cave, Cordero & Torres. (1 female).

HONDURAS. Yoro. Parq. Nac. Pico Bonito, El Portillo, 640 m. N15°26‟27” W87°08‟09”. 27 Septiembre 2000. R. Cordero & J. Torres. (2 females).

Cyclocephala pan will key out to couplet 29 in Ratcliffe and Cave‟s (2006) key to the adult male

Cyclocephala of Honduras, Nicaragua and El Salvador. At couplet 29 both options lead to males with parameres with a triangular to elongate sub-triangular apices (C. brevis) or blunt sub-triangular apices (C. sexpunctata and C. tutilina in the next couplet). Male C. pan can be indentified at this couplet by having parameres with elongate rectangular apices (caudal view) and parameres distinctly bent in lateral view.

Female C. pan will key out to couplet 16 in Ratcliffe and Cave‟s (2006) key to adult female Cyclocephala of Honduras, Nicaragua and El Salvador.

18

Couplet 16 separates species by body size and relative size of elytral maculae. Downstream, the couplets separate C. sexpunctata from C. tutilina and C. brevis from C. batesi Delgado and Castañeda,

1994. Cyclocephala pan falls in between the body size range given for couplet 16 and possesses variable elytral maculae. Female C. pan can be distinguished from females of these species by the unique form of the epipleron. Female C. pan have an epipleuron that is dilated between abdominal sternites 1 and 2 into a large flange produced at a right angle at its base from the elytral margin. In ventral view there is a small, distinct notch at the level of abdominal sternite 2.

Cyclocephala letiranti was described from 7 specimens collected at Monte Verde Forest Reserve in Costa Rica (Young 1992). At this locality, C. letiranti is considered sympatric with C. sexpunctata

(with which it is very similar morphologically) (Young 1992). The allotype female of C. letiranti

(deposited at the University of Nebraska State Museum) is actually a female of C. sexpunctata (Ratcliffe

2003). I examined a female paratype specimen of C. letiranti Young (deposited at the Instituto Nacional de Biodiversidad, Costa Rica). Based on the diagnostic form of the female epipleuron, I determined it to be a female C. sexpunctata. This paratype specimen has the following label data:

COSTA RICA: Puntarenas. Monte Verde Forest Res. V-19-21-1988, 1500 m. B. Ratcliffe & M. Jameson.

Based on these two misidentifications it is probable that there are no female type specimens of

C. letiranti. Ratcliffe (2003) described the female epipleuron of C. letiranti but did not offer an image of this structure. Below the female epipleuron of C. letiranti is shown for the first time (Fig. 2; Fig. 3).

Female C. letirani can be distinguished from female C. sexpunctata by having the epipleuron dilated into a large, broad flange that is widest at the apex of the metacoxa. The epipleural flange of C. sexpunctata is similar in shape but is smaller and is widest between abdominal sternites 1 and 2.

19

Figure 2. Ventral view of female epipleural flange of C. letiranti from Costa Rica, Puntarenas (Monte Verde Forest Reserve).

Figure 3. Lateral view of female epipleural flange of C. letiranti from Costa Rica, Puntarenas (Monte Verde Forest Reserve).

20

4.2 THE MORPHOLOGY AND SPATIAL DISTRIBUTION OF MORPHOTYPES

The current species concepts of C. sexpunctata and C. brevis sensu Ratcliffe (2003) and Ratcliffe and Cave 2006 encompass what I consider to be four morphotypes (herein referred to as morphotypes 1-

4). Four male paramere morphologies were characterized. One of the paramere morphologies (see discussion of morphotype 1) increases the amount of variation circumscribed by Ratcliffe (2003) and

Ratcliffe and Cave‟s (2006) concept of C. sexpunctata. Four distinct ventral morphologies of the female epipleural pillow were found in association with these male genitalia types. The ventral form of the epipleural pillow presented below has not been described previously and is a new, informative character for the genus Cyclocephala and for the tribe Cyclocephalini.

For example, the differences in this structure between taxonomically unproblematic species indicate that this character has systematic significance for the genus Cyclocephala. Cyclocephala tutilina has been collected from flowers of the same Dieffenbachia species as morphotype 3 in Henri Pittier

National Park (App. 3) (Seres and Ramirez 1995). The ventral form of the epipleural pillow in C. tutilina differs from morphotype 3 at this locality in that it is straight, long ridge (Fig. 53) rather than having two ridges with the medial ridge strong and straight and the lateral ridge weaker and angled (Fig. 37). This structure in C. brittoni (Fig. 52) is much different from the other pillows I have observed. The ventral form of the epipleural pillow in C. brittoni is distinctly swollen and raised with several small, wavy ridges oriented towards the base of the elytron (Fig. 52). There is certainly more diversity of form in this structure and it should be examined in more species of Cyclocephala and in the other genera of the

Cyclocephalini.

21

4.2.1 MORPHOTYPE 1

DIAGNOSIS

Morphotype 1 is separated from morphotypes 3 and 4 by having the pronotum with punctures sparse on disc and moderately dense on lateral portions. Body size ranging from 14 – 18.5 mm. The most commonly observed maculae phenotype in morphotype 1 is different than the other morphotypes so it has some utility for identification. Examination of the male parameres is the most reliable way to identify males of morphotype 1. The parameres are thick along their length to the apex (Fig. 6; Fig. 8). The apex of the parameres is sub-triangular and blunt (Fig. 5; Fig. 7). The combination of these paramere characters distinguishes morphotype 1 fom morphotype 3 and 4. Parameres of this morphotype most closely resemble those of morphotype 2. The parameres remain straight to the apex in morphotype 1 while they are distinctly deflexed downward at the apex in morphotype 2.

Females of morphotype 1 can be distinguished from morphotypes 2 and 3 by having the epipleuron (in ventral view) expanded into a broadly rounded flange at the level of abdominal sternites 1-

2 (Fig. 9; Fig. 10). The ventral morphology of the epipleural pillow can be used to separate females of this morphotype from morphotypes 2 and 3. Morphotype 1females have a single ridge or fold, slightly curved for its length and distinctly removed from the elytral margin (Fig. 12). This ridge approaches the elytral margin in morphotype 3 and is straight in morphotype 4. The ventral form of the epipleural pillow is the same in morphotypes 1 and 2. Morphotype 1 females have the elytral flange slightly thickened in lateral view (Fig. 11) while it is distinctly thickened in morphotype 2.

22

Figure 4. Dorsal habitus of morphotype 1 female and male.

Figure 5. Caudal view Figure 6. Lateral view

Figures 5 – 6. Caudal and lateral views of parameres of a Morphotype 1 male from El Salvador, Ahuachapán (Parque Nacional El Imposible, Cancha San Benito).

23

Figure 7. Caudal View Figure 8. Lateral view

Figures 7 – 8. Caudal and lateral views of parameres of a morphotype 1 male from Mexico, Chiapas (Finca Irlanda).

Figure 9. Ventral view of female epipleural flange of morphotype 1 from Honduras, Yoro (Sinai, 5.3 km NW of Sn. Fco. Campo).

24

Figure 10. Ventral view of female epipleural flange of morphotype 1 from Honduras, Yoro (Pico Pijol National Park).

Figure 11. Lateral view of female epipleural flange of morphotype 1 from Honduras, Yoro (Sinai, 5.3 km NW of Sn. Fco. Campo).

25

Figure 12. Ventral form of female epipleural pillow of morphotype 1 from Honduras, Yoro (Sinai, 5.3 km NW of Sn. Fco. Campo).

DISTRIBUTION

Morphotype 1 is distributed from the transverse volcanic belt of middle Mexico in the north to

Honduras in the south. It is common in Honduras and Guatemala. A single male specimen was observed from western El Salvador. Morphotype 1 occurs north of the Isthmus of Tehuantepec in the Mexican states of Chiapas, Hidalgo and Veracruz (Fig. 13). Morphotype 1 specimens have been collected at elevations ranging from 100 m to 2831 m. The majority of collection records (71 %) are from high- elevation sites above 1000 m (Tab. 7).

26

Figure 13. The distribution of morphotype 1 in Mexico, Guatemala, Honduras and El Salvador.

TABLE 7

ELEVATIONAL DISTRIBUTION OF MORPHOTYPE 1*

Elevation (m) Number of Specimen Records (n = 156) 0-200 m 5 400-600 m 4 650-850 m 9 875-1000 m 27 1008-1200 m 23 1300-1500 m 68 1550-1772 m 18 Above 1800 m 2 * The majority of collection records (71 %) are from high-elevation sites above 1000 m

El SALVADOR (1). AHUACHAPÁN (1): Parque Nacional El Imposible, Cancha San Benito (1).

GUATEMALA (88). BAJA VERAPAZ (31): Biotipo del Quetzal (3), Purulhá (1), Este de Purulhá (1),

Purulhá, Biotopin (2), Purulhá, Finca Saboj (4), Purulhá, 5 km E (4), Purulhá, 6 km E (1), Purulhá,

Posada del Quetzal (3), Salama (1), Tres Cruces, Saboj (11), ESCUINTLA (1): Palin, 3 miles East (1);

HUEHUETENANGO (9): Barillas, Chiblac (3), Barillas, Malpais (4), Barillas, Nuevo (1),

Laguna Maxbal (1); IZABAL (22): Cerro San Gil, Camina Las Torres (2), Cerro San Gil, Camina Las

27

Torres, mirador (1), Cerro San Gil, Carboneras Biological Station (2), Cerro San Gil, Nacimiento San Gil

(1), Cerro San Gil, Samaria (1), Cerro San Gil, Santo Tomas de Castille (1), Morales, Sierra de Caral (1),

Pto. Barrias, Las Escobas (2), S.E. Morales, near Negro Norte (9), Sierra de Caral, Finca La Firmeza (2);

QUETZALTENANGO (6): Colomba, Costa Cuca, El Choba, Finca La Florida (1), Costa Cuca (1), El

Palmar, Finca El Faro (4); QUICHÉ (1): Uspantan, Norte de aldea Laj Chimel, Cuatro Chorros (1): SAN

MARCOS (3): La Reforma (1), Norte La Feria, Cloud Forest (2); ZACAPA (15): Above La Union (9),

La Union (6).

HONDURAS (57). CORTÉS (1): Cusuco National Park, Orion (1); FRANCISCO MORAZÁN (1): El

Zamorano (1); OLANCHO (7): La Muralla National Park (5), La Muralla National Park, 14 km North of

La Union (2); SANTA BÁRBARA (5): El Volcán, 21 km NW of Trinidad (1), Montana La Cumbre (4);

YORO (43): Pico Pijol National Park (5), Pico Pijol National Park, Linda Vista (32), Sinai, 5.3 km NW of

Sn. Fco. Campo (7).

MEXICO (18). CHIAPAS (4): Cacaohatan, Puente Shujubal, Luz Flous Cafetal (1), Finca Irlanda (1),

Pacific Slope, Cordilleras (1), Puente Rio Huixtla, Montepio, Selva Med. Peren. Luz Fluor (1);

GUERRERO (1): Mochitlan, Acahuizolta (1); HIDALGO (9): Chapulhuacán (5), 3 mi. N. Chapulhuacán,

Hwy. 85 (4); PUEBLA (1): 5.8 mi. NE Teziutlán (1); VERACRUZ (3): Catemaco, Pipipan, Parque de la

Flora y Fauna Silvestre Tropical (1), 3 km S Xalapa (2).

TEMPORAL DISTRIBUTION (162). January (2), February (1), March (5), April (15), May (42), June

(49), July (22), August (10), September (7), October (5), November (3), December (1). This temporal distribution indicates that adult emergence is concentrated at the onset of the rainy season (May-June).

28

4.2.2 MORPHOTYPE 2

DIAGNOSIS

Morphotype 2 is separated from morphotypes 3 and 4 by having the pronotum with punctures sparse on disc and moderately dense on lateral portions. Body size ranging from 15.5 – 19 mm. Dorsal maculae phenotype in morphotype 2 shows broad overlap with morphotypes 3 and 4 and is not useful for identification. Examination of the male parameres is the most reliable way to identify males of morphotype 2. The parameres are thick along their length to the apex (Fig. 16; Fig. 18). The apex of the parameres is sub-triangular and blunt (Fig. 15; Fig. 17). The combination of these paramere characters distinguishes this morphotype from morphotypes 3 and 4. Parameres of this morphotype most closely resemble those of morphotype 1. The parameres are distinctly deflexed at the apex in morphotype 2 wheras they are straight in morphotype 1.

Females of morphotype 2 can be distinguished from morphotypes 3 and 4 by having the epipleuron (in ventral view) expanded into a broadly rounded flange at the level of abdominal sternites 1-

2 (Fig. 19; Fig. 20). The ventral morphology of the epipleural pillow can be used to separate females of morphotype 2 from morphotype 3 and 4. Morphotype 2 females have a single ridge or fold, slightly curved for its length and distinctly removed from the elytral margin (Fig. 22). This ridge approaches the elytral margin in morphotype 3 and is straight in morphotype 4. The ventral form of the epipleural pillow is the same in morphotypes 2 and 1. Morphotype 2 females have the elytral flange distinctly thickened in lateral view (Fig. 21) while it is slightly thickened in northern morphs.

29

Figure 14. Dorsal habitus of morphotype 2 female and male.

Figure 15. Caudal view Figure 16. Lateral view

Figures 15-16. Caudal and lateral views of parameres of a morphotype 2 male from Costa Rica, Guanacaste (Rio San Lorenzo, R. F. Cord., Tenorio).

30

Figure 17. Caudal view Figure 18. Lateral view

Figures 17-18. Caudal and lateral views of parameres of a morphotype 2 male from Costa Rica, Puntarenas (Est. La Casona Res. Biol. Monteverde).

Figure 19. Ventral view of female epipleural flange of morphotype 2 from Costa Rica, Puntarenas (Monteverde Forest Reserve).

31

Figure 20. Ventral view of female epipleural flange of morphotype 2 from Panama, Chiriquí (Santa Clara).

Figure 21. Lateral view of female epipleural flange of morphotype 2 from Panama, Chiriquí (Finca La Suiza, 5.3 km N. Los Planes).

32

Figure 22. Ventral form of female epipleural pillow of morphotype 2 from Costa Rica, Puntarenas (Monteverde Forest Reserve).

DISTRIBUTION

Morphotype 2 is narrowly distributed in montane forest of Costa Rica and western Panama (Fig.

23). Morphotype 2 specimens have been collected at elevations ranging from 700 to 2500 m. The majority of collection records (92 %) are from high-elevation sites above 1000 m (Tab. 8).

33

Figure 23. The distribution of morphotype 2 in Costa Rica and Panama.

TABLE 8

ELEVATIONAL DISTRIBUTION OF MORPHOTYPE 2*

Elevation (meters) Number of Specimen Records (n = 270) 700-800 m 11 884-1000 m 11 1050-1250 m 103 1268-1450 m 77 1500-1720 m 64 2500 m 4 *The majority of collection records (92 %) are from high-elevation sites above 1000 m

COSTA RICA (174). (9): Bajos del Toro Amarillo (1), San Ramon, Rio S. Lorencito (8);

CARTAGO (47): Chirripo Indian Res., 5 mi SE (4), Embalse el Llano, Rio Macho (1), Quebrada

Segunda Ref. Nac. Fauna Silv. Tapanti (17), Ref. Nac. Tapanti (19), Reserva Tapanti, Rio Grande de

Orosi (2), SE side Irazu Volcano (4); GUANACASTE (58): Derrumbe, Est. Cacao lado oeste del V.

Cacao (3), Derrumbe, Estac. Mengo, W side Volcan Cacao (11), Est. Cacao, SO Vol. Cacao (6), Est.

Mengo, SW side Volcan Cacao (4), Est. Pitilla, 9 km S. Sta. Cecilia (2), Rio San Lorenzo, R. F. Cord.,

Tenorio (22), Rio San Lorenzo, (9) Sector Las Pailas, P.N. Guanacaste (1); HEREDIA

34

(1): 10 km N Vara Blanca nr. Cascada de la Paz (1); PUNTARENAS (43): Est. Biol. Los Alturas, Coto

Brus (3) Est. La Casona Res. Biol. Monteverde (19), Fca. Cafrosa, Est. Las Mellizas, P.N. Amistad (5),

Monteverde Forest Reserve (10), Monteverde Forest Reserve, Campbell‟s (4), R. Coton, 1 km E de Las Alturas, (1), San Vito, Los Alturas (1); SAN JOSÉ (16): Est. Zurqui, P.N. Barillo

Carillo, antes del Tunel (2), Parque del Este (13), P.N. Barillo Carillo, Est. Zurqui-Tunel (1).

PANAMA (106). BOCAS DEL TORO (2): Continental divide trail, above La Fortuna (2); CHIRIQUÍ

(104): Boquete (3), 6 km N Boquete, Cerro Pate (3), Cerro Punta (4), 2.5 km W Cerro Punta (7), 3 km W

Cerro Punta (2), Continental divide trail, above Lago Fortuna (1), Finca La Suiza (1), Finca La Suiza, 5.3 km N Los Planes (1), Fortuna (5), Gualaca, IHRE Vivero, 11 km N Los Planes (13), Gualaca, Windy Pass

7 Km N Los Planes (5), La Fortuna, Quebrada AI Trail (1), Palo Alto Valley, 1.5 km E Boquete (4),

Renacimiento, Hartmann's Finca (3), Renacimiento, Hartmann's Finca N Sta. Clara (10), Renacimiento,

Hartmann's Finca N. Sta. Clara, Ojo de Agua (15), Renacimiento, Santa Clara (24), Reserva Fortuna, continental divide trail (2).

TEMPORAL DISTRIBUTION (279). January (5), February (3), March (6), April (17), May (70), June

(66), July (47), August (7), September (42), October (4), November (12), December (0). This temporal distribution indicates that adult emergence is concentrated at the onset of the rainy season (May-June) with a smaller second peak at the beginning of fall rains (September).

35

4.2.3 MORPHOTYPE 3

DIAGNOSIS

Morphotype 3 is separated from morphotypes 1 and 2 by having the pronotum with punctures evenly distributed. Body size ranging from 14 – 17.5 mm. Dorsal maculae phenotype in morphotype 3 displays broad overlap with morphotypes 2 and 4 and is not useful for identification. Examination of the male parameres is the most reliable way to identify males of morphotype 3. The parameres are slender along their length to the apex (Fig. 24; Fig. 26; Fig 35). The apex of the parameres is sub-triangular and elongate (Fig. 25; Fig. 27) to triangular and elongate (Fig. 34). The combination of these paramere characters distinguishes this morphotype from morphotypes 1 and 2. Parameres of this morphotype most closely resemble those of morphotype 4. The parameres of morphotype 3 have the baso-ventral tooth weakly produced at approximately a right angle from its base (Fig. 24; Fig. 26; Fig 35). Morphotype 4 has the baso-ventral tooth strongly produced at approximately a 45 degree angle from its base.

Females of morphotype 3 can be distinguished from morphotype 1 and 2 by having the epipleuron (in ventral view) expanded into a rounded flange between abdominal sternites 1-2 (Fig. 29;

Fig. 30; Fig 32; Fig 33). This morphotype has the distal edge (relative to base of the elytron) of the epipleural flange weakly to strongly concave where it meets the elytral margin. This distal edge of the eipipleural flange is convex in morphotypes 1 and 2. In lateral view the epipleural flange is thin in morphotypes 3 and 4 and distinctly thickened in morphotype 1 and 2. The internal morphology of the epipleural pillow can be used to separate females of morphotype 3 from the other morphotypes.

Morphotype 3 females have a single ridge or fold, slightly curved for its length which approaches the elytral margin at an acute angle (Fig. 29; Fig. 32; Fig. 33). The intensity of this ridge varies but its angle towards the elytral margin is constant (Fig. 29). Morphotypes 1, 2 and 4 do not possess this strongly angled epipleural pillow ridge.

A population of morphotype 3 from Venezuela (Aragua) displays an epipleural flange that is more broadly rounded (Fig. 36) and in ventral view resembles the flange of morphotype 1 and 2.

Internally, there are two ridges with the medial ridge strong and straight. The lateral ridge is weaker and

36 angled (Fig. 37). Females from this locality are associated with males that have the apices of the parameres triangular and elongate (Fig. 34). This population is unique among all examined specimens of the C. sexpunctata species complex in having some individuals with ventral segments completely melanized. The legs, metacoxae, metepimera and metasternum of this population are often solid black

(Fig. 36). This population may represent a fifth morphotype, but I have grouped it with morphotype 3 until I can examine more specimens.

Figure 24. Dorsal habitus of morphotype 3 female and male.

37

Figure 25. Caudal view. Figure 26. Lateral view.

Figures 25-26. Caudal and lateral views of parameres of a morphotype 3 male from Ecuador, Pichincha (Maquipucuna For. Res., 50 km NW Quito).

Figure 27. Caudal view Figure 28. Lateral view

Figures 27-28. Caudal and lateral views of parameres of a morphotype 3 male from Nicaragua, Jinotega (Cerro Kilambé, Camp 6-Las Torres).

Figure 29. Ventral view of female epipleural flange morphotype 3 from Costa Rica, Guanacaste (Est. Pitilla, 9 km S Santa Cecilia, P.N. Guanacaste).

38

Figure 30. Ventral view of female epipleural flange of morphotype 3 from Costa Rica, Puntarenas (Est. Sirena, Corcovado N.P.).

Figure 31. Lateral view of female epipleural flange of morphotype 3 from Costa Rica, Puntarenas (Est. Sirena, Corcovado N.P.).

39

Figure 32. Figure 33.

Figures 32-33. Ventral form of female epipleural pillows of morphotype 3 from Costa Rica, Puntarenas, San Vito, Las Cruces (left) and Est. Sirena, Corcovado N.P. (right).

Figure 34. Caudal view Figure 35. Lateral view

Figures 34-35. Caudal and lateral views of parameres of a morphotype 3 male from Venezuela, Aragua (Parque Nacional Henri Pittier).

40

Figure 36. Ventral view of female epipleural flange of morphotype 3 from Venezuela, Aragua (Parque Nacional Henri Pittier).

Figure 37. Ventral form of female epipleural pillow of morphotype 3 from Venezuela, Aragua (Parque Nacional Henri Pittier).

41

DISTRIBUTION

Morphotype 3 is the most broadly distributed morphotype (Fig. 38; Fig. 39) and is distributed from eastern Honduras in the north to northern South America in the south. Morphotype 3 specimens have been collected at elevations ranging from near sea level (0-100 m) to 1800 m. The majority of collection records (80%) are from low to medium elevations (Tab. 9).

Figure 38. The distribution of morphotype 3 in Honduras, Nicaragua and Costa Rica.

42

Figure 39. The distribution of morphotype 3 in Colombia, Ecuador, Brazil, Suriname and Venezuela.

TABLE 9

ELEVATIONAL DISTRIBUTION OF THE MORPHOTYPE 3*

Elevation (meters) Number of Specimen Records (n = 184) 0-200 m 53 200-366 m 9 400-600 m 24 620-800 m 61 820-1000 m 15 1050-1200 m 17 1300-1330 m 4 1800 m 1 * The majority of collection records (80%) are from low to medium elevations below 900 m

BRAZIL (3). AMAZONAS (1): Reserva Campina 5, 60 km N Manaus (1); RONDONIA (2): 62 km S

Ariquemes, Faz Rancho Grande (2).

COLOMBIA (2): ANTIOGUIA (1): nr. Yarumal (1); VALLE DEL CAUCA (1): Anchicaya Dam, 70 km E Buenaventura (1).

COSTA RICA (151). ALAJUELA (19): Est. Eladios, Ref. Peñas Blancas, Res. Biol. Monteverde (10),

Est. Laguna Pocosol, Res. Biol. Monteverde (1), Est. San Ramon Oeste (1), Fca. San Gabriel, 2 km SW

43

Dos Rios (1), Rio San Lorencito, Res. For. San Ramon, 5 km N Col. Palmarena (1), San Ramon, Rio S.

Lorencito (5); GUANACASTE (54): Est. Maritza, lado O Vol. Orosi (1), Est. Pitilla, 9 km S Santa

Cecilia, P.N. Guanacaste (48), Rio San Lorenzo, R. F. Cord., Tenorio (3), Rio San Lorenzo, Tierras

Morenas (2); HEREDIA (26): Est. El Ceibo, Braulio N. P, Heredia (15), Est. Magsaysay, P.N.

Braulio Barrillo (4), Finca La Selva, Pto. Viejo, Sarapiquí (1), La Selva Biological Station (6); LIMÓN

(13): Cerro Tortuguero (1), Est. Hitoy Cerere, Res. Biol. Hitoy Cerere (10), Res. Biol. Hitoy Cerere, Valle

La Estrella (1), 3 km W Limón (1); PUNTARENAS (33): Est. Sirena, Corcovado N.P. (25), Las Cruces

Biological Station (1), Rancho Quemado, Península de (2), San Vito, Las Cruces (5); SAN JOSÉ (2):

Est. Carrillo, P.N. Baulio Carrillo (2).

ECUADOR (3): PICHINCHA (3): Maquipucuna For. Res., 50 km NW Quito (3).

HONDURAS (1). OLANCHO (1): Montaña del Malacate (1).

NICARAGUA (2): JINOTEGA (1): Cerro Kilambé, Camp 6-Las Torres (1); RAA NORTE (1): Cerro

Saslaya, Camp 3 (1).

PANAMA. (2). COLÓN (2): Santa Rita Ridge (2).

SURINAME. (2). BROKOPONDO (2): Brownsberg Natuurpark, Mazaroni Plateau

VENEZUELA (17). ARAGUA (17): Bosques nublados cercanos a la Estacion Biologica de Rancho

Grande, Parque Nacional Henri Pittier (2), Parq. Nac. Henri Pittier, Portochuelo Pass (9), Parq. Nac.

Henri Pittier, Est. Biol. Rancho Grande (1), 10 km S Rancho Grande (5).

TEMPORAL DISTRIBUTION (182). January (24), February (9), March (17), April (12), May (30),

June (19), July (20), August (5), September (6), October (12), November (11), December (17). This temporal distribution indicates that adult emergence is staggered throughought the year, but this will vary depending on location.

44

4.2.4 MORPHOTYPE 4

DIAGNOSIS

Morphotype 4 is separated from morphotypes 1 and 2 by having the pronotum with punctures evenly distributed. Body size ranging from Length 13 – 16.5 mm. Dorsal maculae phenotype in morphotype 3 displays broad overlap with morphotypes 2 and 3 and is not useful for identification.

Examination of the male parameres is the most reliable way to identify males of morphotype 4. The parameres are slender along their length to the apex (Fig. 42; Fig. 44). The apex of the parameres is triangular and squat (Fig. 41; Fig. 43). The apex of the parameres distinguishes this morphotype from males of morphotype 1 and 2. Parameres of this morphotype most closely resemble those of morphotype

3. The parameres of morphotype 4 have the baso-ventral tooth strongly produced at approximately a 45 degree angle from its base (Fig. 42; Fig. 44). Morphotype 3 males have the basal tooth weakly produced from the base at a right angle.

Morphotype 4 females can be distinguished from morphotypes 1 and 2 by having the epipleuron

(in ventral view) expanded into a rounded flange between abdominal sternites 1-2 (Fig. 45; Fig 46). This morphotype has the distal edge (relative to base of the elytron) of the epipleural flange weakly to strongly concave where it meets the elytral margin. This distal edge of the eipipleural flange is convex in morphotypes 1 and 2. In lateral view the epipleural flange is thin in morphotype 4 and thickened in morphotypes 1 and 2 (Fig. 47). The ventral form of the epipleural pillow can be used to separate females of morphotype 4 from morphotypes 1, 2, and 3. Morphotype 4 females have a single ridge or fold, straight for its length which is parallel to the elytral margin (Fig. 48). The intensity of this ridge varies but its angle towards the elytral margin is constant (Fig. 49).

45

Figure 40. Dorsal habitus of morphotype 4 female and male.

Figure 41. Caudal view Figure 42. Lateral view

Figures 41-42. Caudal and lateral views of parameres of a morphotype 4 male from Panama, Former Canal Zone (Madden Forest Preserve).

46

Figure 43. Caudal view. Figure 44. Lateral view.

Figures 43-44. Caudal and lateral views of parameres of a morphotype 4 male from Costa Rica, Limón (Manzanillo, RNFS Grandoca y Manzanillo).

Figure 45. Ventral view of female epipleural flange of morphotype 4 from Panama, Former Canal Zone (Barro Colorado Island).

47

Figure 46. Ventral view of female epipleural flange of morphotype 4 from Panama, Panama (El llano-Carti Rd., km 8).

Figure 47. Lateral view of female epipleural flange of morphotype 4 from Panama, Panama (El llano-Carti Rd., km 8).

48

Figure 48. Figure 49.

Figures 48-49. Ventral form of female epipleural pillow of morphotype 4 from Panama (Barro Colorado Island) (left) and Costa Rica, Puntarenas (Buenos Aires, La Amistad, Sector Altamira) (Right).

DISTRIBUTION

Morphotype 4 is distributed from Costa Rica south to Colombia (Fig. 50). Morphotype 4 specimens have been collected at elevations ranging from near sea level (0-100 m) to 1450 m. The majority of collection records (83 %) are from low elevation sites (Tab. 10).

49

Figure 50. The distribution of morphotype 4 in Costa Rica, Panama and Colombia.

TABLE 10

ELEVATIONAL DISTRIBUTION OF MORPHOTYPE 4*

Elevation (meters) Number of Specimen Records (n = 116) 0-200 m 40 300-500 m 41 700-900 16 1212-1450 19 *The majority of collection records (83 %) are from low elevation sites below 900 m

COLOMBIA (10). BOYACÁ (1): La Lechera, Rio Opon N. Tunja (1); FORMER SANTANDER

STATE (6): Rio Opon, a tributary of Rio Magdalena (6); Rio Suarez (3).

COSTA RICA (18). HEREDIA (1): El Plastico, Horquetas de Sarapiqui (1); LIMÓN (6): Manzanillo,

RNFS Grandoca y Manzanillo (6); PUNTARENAS (11): Buenos Aires, La Amistad, Sector Altamira (6);

Est. Altamira, Buenos Aires (3), San Vito, las Cruces (2).

PANAMA (93). BOCAS DEL TORO (4): Miramar (4); CHIRIQUÍ (14): Dist. Renacimiento, Santa

Clara (13); COLÓN (20): Btwn. Gatun and Pina (2), Ft. Sherman, Pavon Hill (1), Portobelo (1), Rio

Guanche Bridge, 1 km E (5), Santa Rita Ridge (11); DARIEN (3): Cana (2), Cana, ACON Station (1);

FORMER CANAL ZONE (14): Barro Colorado Island (3), Madden Forest Preserve (1), Pipeline Road

(1), Skunk Hollow, 6 mi. NW Gatun Locks (9); PANAMA (37): Cerro Azul, INRENARE Station (1),

Cerro Jefe, 2 km SE (2), El llano- Carti Rd (2), El llano- Carti Rd., km 8 (23), El llano- Carti Rd., km 12

(2), Soberanía National Park (1), Soberanía National Park, Pipeline Rd. 9 km mark (2), Soberanía

National Park, Pipeline Rd., 2 km W Gamboa (2), Soberanía National Park Pipeline Rd. km 2.4 (1),

Soberanía National Park Pipeline Rd., Rio Limbo (1); VERAGUAS (1): Alto de Piedra above Santa Fe

(1).

TEMPORAL DISTRIBUTION. (120). January (1), February (1), March (3), April (9), May (49), June

(25), July (15), August (3), September (0), October (7), November (7), December (1). This temporal distribution indicates that adult emergence is concentrated at the onset of the rainy season

50

4.2.5 SYMPATRY OF THE MORPHOTYPES

Sympatry of C. sexpunctata and C. brevis (based on male parameres) at specific collecting localities has been a noted previously (Ratcliffe 2003). The large sample of C. sexpunctata and C. brevis sensu Ratcliffe (2003) in this study allowed for the detection of patterns in sympatry across the distribution of these beetles. Most of the sympatry was attributable to the widespread morphotype 3 (Tab.

11). Morphotype 3 is sympatric with all other morphotypes in at least one locality. No intermediate male paramere morphologies were observed in sympatric populations. The sample size was smaller for female epipleural pillows than male parameres. The stability of the ventral form of the epipleural pillow in sympatric populations has not been thoroughly evaluated.

TABLE 11

LOCALITIES OF SYMPATRY BETWEEN MORPHOTYPES

Specific Locality Morphotypes Detected Honduras, Olancho: Montaña del Malacate Morphotypes 1 and 3 Costa Rica, Puntarenas: San Vito, Las Cruces Morphotypes 3 and 4 Costa Rica, Alajuela: Monte Verde Area Morphotypes 2 and 3 Costa Rica, Alajuela: San Ramon, Rio S. Lorencito Morphotypes 2 and 3 Costa Rica, Guanacaste: Est. Pitilla Morphotypes 2 and 3 Costa Rica, Guanacaste: Rio San Lorenzo, R. F. Morphotypes 2 and 3 Cord., Tenorio Costa Rica, Guanacaste: Rio San Lorenzo, Tierras Morphotypes 2 and 3 Morenas Panama, Former Canal Zone: Barro Colorado Morphotypes 3 and 4 Island Panama, Colón: Santa Rita Ridge Morphotypes 3 and 4

4.2.6 Discussion

Epipleural dialations and flanges are useful for species-level identification in many cyclocephaline genera (Endrödi 1985; Ratcliffe 2003; Ratcliffe and Cave 2006). The role of these structures in adult cyclocephaline biology is poorly understood despite their taxonomic importance.

Mating habits have been noted from Cyclocephala although these are not detailed at the level of genitalic, elytral or claw interactions. Images offer clues to the role of sexually dimorphic characters (male protarsal claws and female elytral epipleura) in Cyclocephala. Figure 51 shows a male C. colasi grasping a female

51 with his enlarged protarsal claw on the lateral edge of the female elytra in the corresponding position of epipleural dilations (Fig. 51, see arrow).

Figure 51. Mating scarab beetles (Cyclocephala colasi) on the sterile male florets of Philodendron solimoesense in French Guiana. Arrow indicates position of male protarsal claw and female epipleuron. (from http://5e.plantphys.net/article.php?ch=e&id=503.) (photo credited to R. Seymour.)

Male protarsal claws probably make contact with the ventral portions of the female elytra when in this copulatory position (Fig. 51). Based on their position, the ventral elytral ridges and folds of the epipleural pillow are most likely the point of contact for male claws. In addition to the diagnostic forms of the epipleural pillow, the pillow also possess a dark red color indicating that the composition of this area is different than the rest of the elytra (e.g., Fig. 37). This may indicate additional sclerotization of the structure, providing an auxiliary “lock and key” for prezygotic mating isolation. The ventral form of the epipleural pillow may be an artifact of developmental processes that generate epipleural dilations and flanges.

Cyclocephala species in the Neotropics have been observed to aggregate and mate inside of the flowers that they visit. Often there is more than one cyclocephaline species present in an inflorescence

(Gottsberger 1988). It has been hypothesized that floral scents determine the community cyclocephaline

52 visitors (Gottsberger and Amaral 1994; Beath 1999). There are no direct of indirect observations of hybridization of Cyclocephala species that mate in the same flowers at the same time. Interactions between male legs and female elytra could serve as a pre-copulatory isolating mechanism between congenerics mating in close proximity to each other.

The pattern of variation in the ventral morphology of the epipleural pillow is different between C. sexpunctata and C. brevis sensu Ratcliffe (2003). This structure is stable in C. sexpunctata (Fig. 12, morphotype 1; Fig. 22, morphotype 2) but varies from nearly absent to straight (Fig. 48; Fig 49, morphotype 4) to distinctly angled (Fig. 32; Fig. 33, morphotype 3) in C. brevis sensu Ratcliffe (2003). females. The current species concept of C. brevis sensu Ratcliffe (2003) now circumscribes variation in male and female characters. It is not clear why only the male parameres would vary in C. sexpunctata sensu Ratcliffe (2003) (morphotypes 1 and 2) while both male and female characters are variable in C. brevis sensu Ratcliffe (morphotypes 3 and 4). It is also the case that males of the C. sexpunctata species complex have nearly identical protarsal claws.

Figure 52. Ventral form of female epipleural pillow of C. brittoni from Panama, Former Canal Zone (Skunk Hollow).

53

Figure 53. Ventral form of female epipleural pillow of C. tutilina from Venezuela, Aragua (Henri Pittier National Park).

4.3 MACULAE PHENOTYPES

A broad spectrum of maculae phenotypes was observed in the C. sexpunctata species complex.

Between 12 to 17 maculae phenotypes are characterized for each morphotype. I report the phenotypes in order of their relative frequency (most frequent to least frequent) in the observed specimen sample.

Morphotype 1 displays 12 maculae phenotypes (Fig. 54). The most common phenotype (phenotype A; 46

%) displays pronotal maculae and four elytral spots with the apical two maculae contiguous (Fig. 55).

Morphotype 2 displays 17 maculae phenotypes (Fig. 56). The most common phenotype (phenotype A; 64

%) displays no pronotal maculae and four distinctly separated elytral maculae (Fig. 57). Morphotype 3 displays 16 maculae phenotypes (Fig. 58). The most common phenotype (phenotype A; 50 %) displays no pronotal maculae and four distinctly separated elytral maculae (Fig. 59). Morphotype 4 displays 16 maculae phenotypes (Fig. 60). The most common phenotype (phenotype A; 54 %) displays no pronotal maculae and four distinctly separated elytral maculae (Fig. 61).

54

4.3.1 Morphotype 1

Phenotype A Phenotype B Phenotype C

Phenotype D Phenotype E Phenotype F

Phenotype H Phenotype I Phenotype J

55

Phenotype K Phenotype L Phenotype M

Figure 54. Maculae phenotypes of morphotype 1.

50 45 40 35 30 n = 97 25

20 Frequency 15 10 5 0 A B C D E F G H I J K L M

Maculae Phenotype

Figure 55. Frequency of dorsal maculae phenotypes in morphotype 1.

56

4.3.2 Morphotype 2

Phenotype A Phenotype B Phenotype C

Phenotype D Phenotype E Phenotype F

Phenotype G Phenotype H Phenotype I

57

Phenotype J Phenotype K Phenotype N

Phenotype O Phenotype P Phenotype Q

Phenotype R Phenotype S

Figure 56. Maculae phenotypes of morphotype 2.

58

200

180

160

140 n = 269 120

100

Frequency 80

60

40

20

0 A B C D E F G H I J K L M N O P Q R S Maculae Phenotypes

Figure 57. Frequency of dorsal maculae phenotypes in morphotype 2.

59

4.3.3 Morphotype 3

Phenotype A Phenotype B Phenotype C

Phenotype D Phenotype E Phenotype F

Phenotype G Phenotype H Phenotype I

60

Phenotype J Phenotype K Phenotype L

Phenotype M Phenotype N Phenotype O

Phenotype P

Figure 58. Maculae phenotypes of morphotype 3. (arrows indicate obscure maculae)

61

120

100

80 n = 205

60 Frequency 40

20

0 A B C D E F G H I J K L M N O P Maculae Phenotypes

Figure 59. Frequency of dorsal maculae phenotypes in morphotype 3.

62

4.3.4 Morphotype 4

Phenotype A Phenotype B Phenotype C

Phenotype D Phenotype E Phenotype F

Phenotype G Phenotype H Phenotype I

63

Phenotype J Phenotype K Phenotype L

Figure 60. Maculae phenotypes of morphotypes 4. (arrows indicate obscure maculae)

70

60

50 n = 107 40

30 Frequency

20

10

0 A B C D E F G H I J K L Maculae Phenotype

Figure 61. Frequency of dorsal maculae phenotypes in low-elevation C. brevis morphotypes.

64

4.3.5 Discussion

A “dark morph” of C. sexpunctata occurs from Mexico to Honduras and reappears in Venezuela

(Ratcliffe 2003). Based on this research, C. sexpunctata sensu Ratcliffe (2003) (morphotypes 1 and 2 herein) does not occur in Venezuela. In Venezuela, it is likely that the “dark morph” refers to C. tutilina which occurs in Venezuela and has two transverse maculae on the pronotum. The “dark morph” from

Mexico and Honduras refers to morphotype 1 characterized herein.

However, there is evidence that the presence and size of dorsal maculae varies geographically.

Morphotype 1 almost always possesses pronotal maculae. This trait is much rarer south of Honduras but it does appear sporadically in Costa Rica and Panama. Pronotal maculae presence or absence also differs depending on the morphotype considered.

In morphotype 1 the trait for pronotal maculae is nearly fixed. The second most common phenotypes of morphotypes 2 and 3 possess pronotal maculae. Only one observed specimen of morphotype 4 possesses pronotal maculae. This specimen is from Santa Rita Ridge (Panama, Colón), a locality where it is sympatric with morphotype 3. I consider dorsal maculae patterns to be too variable for reliable identification of specimens of the C. sexpunctata species complex south of Nicaragua. This high variability in dorsal maculae patterns is in contrast to the more stable patterns observed in other species of the C. sexpunctata species group. Cyclocephala letiranti, C. pan, C. brittoni and C. krombeini do not have pronotal maculae. C. kuntzeniana and C. tutilina always possess pronotal maculae. This trait is variably present or absent in C. sexpunctata, C. brevis sensu Ratcliffe (2003) and C. zodion (Ratcliffe 2003).

65

4.4 Molecular Analysis

Twenty cyclocephaline CO1 sequences were obtained and analyzed (App. 1). Sequences were obtained for morpotypes 1, 2, and 3. Specimens of morphotype 4 or the potential morphotype 5 did not yield amplifiable DNA. These sequences aligned unambiguously to generate a 628 bp matrix (App. 2).

Four single base pair inserts are present in the sequence alignment. Two single base pair inserts are present at positions 60 and 74 for voucher MRM 33 (App. 2). A single base pair insert is present at position 402 for voucher MRM 31 (App. 2). A single base pair insert is present at position 452 for voucher DRC 12 (App. 2). A single base pair deletion is present at position 440 for voucher MRM 6

(App. 2). Parsimony analysis of the matrix generated nine equally parsimonious trees of 765 steps (Fig.

62). A strict consensus (50 % majority) of these nine trees yielded a tree of 706 steps (Fig. 63).

66

Figure 62. One of nine equally parsimonious trees generated from CO1 sequence data.

67

Figure 63. Strict consensus tree generated from nine equally parsimonious trees

4.4.1 Discussion

Parsimony analyses of CO1 sequences yieled ambiguous results. There are many polytomies in the consensus tree (Fig. 63). For example, taxa in the outgroup genus Phyllophaga do not form a clade

(Fig. 63). However, the consensus tree does support a relationship between morphotype 1 and morphotype 2. Much of the sequence data generated using the primers Ron and Pat was left unanalyzed

68 after alignment with sequences generated using Jerry and Pat. The sequence data lost from the 5‟ region of the CO1 locus contained synapomorphic characters that would have improved the topology of the consensus tree. Polyphyly of C. sexpunctata sensu Ratcliffe (2003) is supported by the consensus tree though the monophyly of C. brevis cannot be established with these data.

Causes of species-level polyphyly inferred from mitochondrial gene trees include lack of phylogenetic information, flawed taxonomy, hybridization events, gene duplications and incomplete lineage sorting (Funk and Omland 2003). Species-level polyphyly and paraphyly of nominal species based on gene trees is a common phenomenon, having been reported in an estimated 23% of investigated species (Funk and Omland 2003). Taxonomically well sampled gene trees often reveal alleles that are more closely related to congenerics than conspecifics (Funk and Omland 2003). When interpreting gene trees it is useful to consider that terminal taxa are products of largely uncoupled selective and neutral evolutionary forces (Winker 2009).

Cyclocephala is interesting in this regard because it is a large, relatively geologically recent genus with many groups of nearly externally identical species. The case could be made that species diversity in

Cyclocephala is due to strong selective forces acting on primarily sexual characteristics (as evidenced by the diagnostic forms of male parameres and female epipleura between species). In cases of slight morphological differences between species within Cyclocephala, and perhaps in other cyclocephaline genera, we should not expect to see profound evidence of neutral molecular divergence.

69

4.5 Checklist of Floral Associations for the Cyclocephalini

One-hundred and twelve publications reporting cyclocephaline floral associations were surveyed from 1798 to 2010. Based on species-specific records, 88 cyclocephaline species from nine or 10 genera

(depending on the identity of the cyclocephaline reported by Gibbs et al. (1977)) were reported in association with the flowers of at least 138 species representing 49 genera and 15 families (App. 3; Tab.

16). This subset of literature reported 26 undetermined, generic-level cyclocephaline floral associations

(at least one taxon for an association was identified to species). Floral associations that are less specific or ambiguous were also reported (end of App. 3). These included records for Scarabaeidae, Dynastinae and beetles on flowers that seem to fit the general pattern of cyclocephaline floral visitation. Non-specific records were included in the checklist with the hope that they may be reevaluated with additional data.

These types of data were based on 18 publications that reported 32 non-species specific associations

(App. 3).

Synonyms of four cyclocephaline species names were reported in the surveyed literature; these invalid names were updated based on current taxonomy (Tab. 12). One unresolved cyclocephaline name was reported in the surveyed literature (Tab. 13). This name, Cyclocephala inpunctata, was reported by

Gottsberger (1986; 1988) and was not reported by Gottsberger after 1988. This name is unavailable

(neither valid nor invalid) and was likely recorded in error. Based on published locality data for the floral association, images of the beetle (Gottsberger 1988; Fig. 4a, Fig. 5a-d) and subsequently published records, I consider this species to be Cyclocephala quatuordecimpunctata Mannerheim, 1829 (pers. comm. with B. C. Ratcliffe, April 2011). Synonyms of 20 plant species names were reported in the surveyed literature; these invalid names were updated based on current taxonomy (Tab. 14).

Seven unresolved plant names were reported from label data and in the surveyed literature (Tab.

15). Two of these names, Philodendron atlanticum and Dieffenbachia longivaginata, were unavailable manuscript names of Thomas Croat and Michael Grayum. These species were identified as Philodendron ligulatum Schott and Dieffenbachia tonduzii Croat & Grayum (pers. comm. with T. Croat and M.

Grayum, April 2011). Xanthosoma macrorrhizas was an unavailable name reported by Valerio (1984).

70

This species may be the cultivated, naturalized non-native species Alocasia macrorrhizos (L.) G. Don

(pers. comm. with T. Croat, April 2011). Eight floral association records for C. sexpunctata were deemed misidentified based on current taxonomy. These beetles were determined as C. brevis sensu Ratcliffe

(2003) (morphotype 3 herein) (App. 3). Voucher specimens with host plant data were identified to morphotype to examine floral visitation trends in the C. sexpunctata species complex (Tab. 17).

TABLE 12

CYCLOCEPHALINE SYNONYMS REPORTED IN FLORAL ASSOCIATION LITERATURE

Valid Name Synonym References Reporting Synonym (Reported Name) Cyclocephala amazona Cyclocephala signata (Fabricius, -Urpí and Solís 1980; (Linnaeus, 1767) 1781) Mora-Urpí 1982; Gottsberger 1986 Cyclocephala brevis Höhne, Cyclocephala pubescens Valerio 1984; Valerio 1988 1847 Burmeister, 1847 Cyclocephala epistomalis Bates, Cyclocephala mollis Endrödi, Prance 1980 1888 1963 Cyclocephala mafaffa Cyclocephala maffafa [sic] Ponchel 2006 Burmeister, 1847 grandis Burmeister, 1847

TABLE 13

UNRESOLVED CYCLOCEPHALINE NAMES REPORTED IN FLORAL ASSOCIATION LITERATURE

Valid Name Reported Name References Reporting Name Cyclocephala Cyclocephala inpunctata Gottsberger 1986; Gottsberger quatuordecimpunctata 1988 Mannerheim, 1829

TABLE 14

PLANT SYNONYMS REPORTED IN FLORAL ASSOCIATION LITERATURE

Plant Family Valid Name Synonym References Reporting (Reported Name) Synonym warmingiana Annona pygmaea Gottsberger 1986; Mello-Silva & Pirani (Warm.) Warm. Gottsberger 1989 Apocynaceae Mandevilla longiflora Macrosiphonia Gottsberger 1986 (Desf.) Pichon longiflora (Desf.) Mül. Arg. Araceae Monstera adansonii Monstera jacquinii Ratcliffe 2003 Schott var. adansonii Schott

71

TABLE 14 (continued)

Philodendron Philodendron selloum Gottsberger 1986; bipinnatifidum Schott ex C. Koch Gottsberger and Endl. Amaral1984; Gottsberger and Silberbauer-Gottsberger 1991 Philodendron venosum Philodendron Grayum 1984 (Willd. ex Schult. & karstenianum Schott Schult.f.) Croat Xanthosoma mexicanum Xanthosoma pilosum K. Beath 1998 Liebm. Koch & Augustin Xanthosoma Xanthosoma violaceum Morón 1997 sagittifolium (L.) Schott Schott Xanthosoma striatipes Caladium striatipes Schrottky 1910; (Kunth & C. D. Bouché) (Kunth & C. D. Bouché) Gottsberger 1986; Madison Schott Gottsberger 1989 Xanthosoma wendlandii Xanthosoma hoffmanni Morón 1997 (Schott) Standl. [sic] (Schott) Schott speciosa Mart. Orbignya phalerata Anderson et al. 1988 Mart. Attalea spectabilis Mart. Orbignya spectabilis Küchmeister et al. 1992 (Mart.) Burret coloradonis L. Bactris porschiana Beach 1984; H. Bailey Burret Ratcliffe 2003 Bactris hirta var. Bactris hirta var. Henderson et al. 2000 pectinata (Mart.) spruceana (Trail) Govaerts A.J.Hend. Bactris hondurensis Bactris wendlandiana Bullock 1981; Ratcliffe Standl. Burret 1992a Bactris maraja Mart. Bactris monticola Barb. Listabarth 1996 Rodr. Phytelephas Palandra aequatorialis Balslev and Henderson aequatorialis Spruce (Spruce) O. F. Cook 1987 lurida (Miers) Holopyxidium jaranum Prance 1976 S. A. Mori Huber ex Ducke Magnoliaceae Magnolia ovata (A. St.- Talauma ovata A. St.- Gibbs et al. 1977; Hil.) Spreng. Hil, 1824 Gottsberger 1986; Gottsberger 1989 Nymphaea glandulifera Nymphaea blanda var. Cramer et al. 1975 Rodschied fenzliana (Lehm.) Casp. amazonica Victoria regia Lindl. von Bayern 1897; (Poepp.) J. C. Sowerby Knuth et al. 1904; Gessner 1960; Gessner 1962; Martínez 1968

72

TABLE 15

MANUSCRIPT NAMES AND UNRESOLVED PLANT NAMES REPORTED IN FLORAL ASSOCIATION LITERATURE

Plant Family Valid Name Reported Name References Reporting Name Annonaceae Malmea manausensis Gottsberger et al. 1998 Maas & Miralha Araceae Dieffenbachia tonduzii Dieffenbachia Label data of H. Young Croat & Grayum longivaginata Croat & (pers. comm. with T. B. Grayum ined. Croat and M. Grayum, May 2011) Philodendron ligulatum Philodendron Grayum 1984; Label Schott atlanticum Croat & data of H. Young (pers. comm.. with T. B. Grayum Croat and M. Grayum, May 2011 Philodendron Philodendron Ramírez 1989; Ramirez ptarianum Stey. ptarianum Stey. var. 1992 rugosum Bunt. or

Philodendron rugosum Bogner & G.S.Bunting Alocasia macrorrhizos Xanthosoma Valerio 1984; Label (L.) G. Don macrorrhizas data of unaccredited (pers. comm. with T. B. collector Croat, May 2011) Arecaceae Cryosophila albida Henderson 1984; Bartlett Silberbauer-Gottsberger 1990 variabilis Gottsberger 1986 Mart. & Zucc.

TABLE 16

GENERIC LEVEL SUMMARY OF CYCLOCEPHALINE FLORAL ASSOCIATIONS BASED ON MOST SPECIFIC DATA

Cyclocepha- Plant Higher Number of Number of Number of Number of line taxa taxa plant species cyclocepha- non-species non-species specific line species specific plant specific records specific records cyclocepha- records line records Arriguttia Araceae 0 1 sp. 1 0 Martínez

73

TABLE 16 (continued)

Nymphaeaceae (1 genus; 1 sp.)

Victoria Lindl. 1 sp. 1 sp. 0 0

Aspidolea Araceae Bates (1 genus; 1 sp.)

Montrichardia 1 sp. 1 sp. 0 0 H. Crüger

Arecaceae (1 genus; 1 sp.)

Oenocarpus 1 sp. 1 sp. 0 0 Mart.

Augoderia Magnoliaceae Burmeister (1 genus; 1 sp.)

Magnolia L. 1 sp. 1 sp. 0 0

Chalepides Nymphaeaceae Casey (1 genus; 1 sp.)

Victoria Lindl. 1 sp. N/A 0 1

Cyclocephala Annonaceae Dejean (5 genera; 23 spp.)

Annona L. 13 spp. 14 spp. 0 4 Cymbopetalum 3 spp. 3 spp. 1 0 Benth. Duguetia A. 3 spp. 1 sp. 0 1 St.-Hil. Malmea R. E. 2 spp. 2 spp. 0 0 Fr. Porcelia Ruiz 0 0 1 1 & Pav.

Apocynaceae (1 genus; 1 sp.)

Mandevilla 1 sp. 1 sp. 0 0 Lindl.

74

TABLE 16 (continued)

Cyclocephala Araceae Dejean (12 genera; 53 spp.)

Alocasia 1 sp. 1 sp. 0 0 (Schott) G. Don Caladium 1 sp. 3 spp. 1 0 Vent. Colocasia 1 sp. 2 spp. 1 0 Schott Dieffenbachia 6 spp. 10 spp. 3 1 Schott Gearum N. E. 1 sp. 1 sp. 0 0 Br. Monstera 1 sp. 2 spp. 1 0 Adanson Montrichardia 2 spp. 7 spp. 0 0 H. Crüger Philodendron 28 spp. 23 spp. 5 2 Schott Rhodospatha 0 1 sp. 2 1 Poeppig Syngonium 1 sp. 1 sp. 1 1 Schott Taccarum 1 sp. 1 sp. 0 0 Brongniart ex Schott Xanthosoma 9 spp. 15 spp. 3 2 Schott

Arecaceae (12 genera; 27 spp.)

Acrocomia 1 sp. 2 spp. 0 0 Mart. 1 sp. 2 spp. 0 1 Barfod Astrocaryum 2 spp. 3 spp. 1 0 G. Mey. Attalea Kunth 8 spp. 10 spp. 0 1 Bactris Jacq. 5 spp. 6 spp. 0 3 ex Scop. Cryosophila 1 sp. 1 sp. 0 0 Blume Elaeis Jacq. 1 sp. 1 sp. 0 1

75

TABLE 16 (continued)

Cyclocephala Oenocarpus 2 spp. 4 spp. 0 1 Dejean Mart. Phytelephas 3 spp. 3 spp. 0 0 Ruiz & Pav. Socratea H. 1 sp. 1 sp. 1 0 Karst. Syagrus Mart. 1 sp. 1 sp. 0 1 Wettinia 1 sp. 1 sp. 0 1 Poepp.

Cactaceae 0 2 sp. 2 0

Calophyllaceae (1 genus; 1 sp.)

Kielmeyera 1 sp. 2 sp. 0 0 Mart. & Zucc.

Cyclanthaceae (3 genera; 4 sp.)

Aspludia 1 sp. 1 sp. 1 0 Harling Carludovica 2 spp. 0 0 2 Ruiz & Pav. Cyclanthus 1 sp. 4 spp. 0 0 Poit. ex A. Rich.

Lecythidaceae (3 genera; 3 spp.)

Corythophora 1 sp. 1 sp. 0 0 R. Knuth Eschweilera 1 sp. 1 sp. 1 0 Mart. ex DC. Lecythis Loefl. 1 sp. 1 sp. 0 0

Leguminosae (2 genera; 2 spp.)

Acacia Mill. 1 sp. 1 sp. 0 0 Pithecellobium 1 sp. 1 sp. 1 0 Mart.

76

TABLE 16 (continued)

Cyclocephala Magnoliaceae Dejean (1 genus; 3 spp.)

Magnolia L. 3 spp. 4 spp. 0 1

Malvaceae (1 genus; 1 sp.)

Hibiscus L. 1 sp. 1 sp. 0 0

Moraceae (1 genus; 1 sp.)

Ficus L. 1 sp. 1 sp. 1 0

Myrtaceae (1 genus)

Psidium L. 0 2 2 0

Nymphaeaceae (2 genera; 7 sp.)

Nymphaea L. 5 sp. 4 sp. 1 0 Victoria Lindl. 1 sp. 3 sp. 0 0

Solanaceae (1 genus; 1 sp.)

Brugmansia 1 sp. 1 sp. 0 0 Pers.

Dyscinetus Annonaceae Harold (1 genus; 1 sp.)

Annona L. 1 sp. 1 sp. 0 0

Erioscelis Araceae Burmeister (5 genera; 15 spp.)

Dieffenbachia 1 sp. 1 sp. 0 0 Schott Montrichardia 1 sp. 1 sp. 0 0 H. Crüger

77

TABLE 16 (continued)

Philodendron 11 spp. 3 sp. 0 0 Schott Syngonium 1 sp. 1 sp. 0 0 Schott Xanthosoma 1 sp. 1 sp. 0 0 Schott

Mimeoma Arecaceae Casey

Astrocaryum 2 sp. 2 sp. 0 0 G. Mey. Bactris Jacq. 3 spp. 2 spp. 1 0 ex Scop.

Peltonotus Araceae Burmeister (2 genera; 2 spp.)

Amorphophall 1 sp. 1 sp. 0 0 us Blume ex Decaisne Epipremnum 1 sp. 1 sp. 0 0 Schott

Ruteloryctes Nymphaeaceae Arrow (1 genus; 1 sp.)

Nymphaea L. 1 sp. 1 sp. 0 0

TABLE 17

HOST PLANT DATA FOR THE C. SEXPUNCTATA SPECIES COMPLEX

Morphotype Host Plant Locality Reference Morphotype 1 (Araceae) MEXICO: Veracruz Label data of Capistran (Catemaco, Pipiapan, Parque de la Flora y Fauna Silvestre Tropical) Alt. 393 m Xanthosoma robustum MEXICO: Chiapas Morón 1997; (Cacahoatán), Guerrero Label data of delgado (Mochitlán, Achauizolta) Alt. 450-650 m Xanthosoma MEXICO: Chiapas Morón 1997 sagittifolium (Cacahoatán) Alt. 450-550 m

78

TABLE 17 (continued)

Xanthosoma sp. GUATEMALA: Label data of E. Cano Quetzaltenango (El Palmar near Finca El Faro) Alt. 878 m Xanthosoma MEXICO: Chiapas Morón 1997 wendlandii (Cacahoatán) Alt. 450-550 m Morphotype 2 Alocasia macrorrhizos COSTA RICA: San Jose Label data of (Parque del Este) unaccredited collector Alt. 1348 m "Elephant Ear" PANAMA: Chiriqui (La Label data Ashe & Xanthosoma sp., Fortuna, Quebrada Al Brooks Caladium sp. or Trail) Alocasia sp. Alt. 1250 m Philodendron COSTA RICA: San Jose Label data of tripartitum (Parque del Este) unaccredited collector Alt. 1348 m Xanthosoma sp. COSTA RICA: Alajuela Label data of A. Solis (San Ramon, Rio S. Lorencito) Alt. 800 m Xanthosoma COSTA RICA: Alajuela Valerio 1988 wendlandii (Alajuela), Herédia (Santo Domingo) Alt. 500-1100 m Morphotype 3 Dieffenbachia COSTA RICA: Herédia Young 1990; Beath nitidipetiolata (La Selva) 1999 Alt. 80 m Dieffenbachia seguine VENEZUELA: (Bosques Label data of Seres and nublados cercanos a la Ramirez Estacion Biologica de Rancho Grande, Parque Nacional Henri Pittier) Alt. 1100 m Philodendron COSTA RICA: Herédia Label data of H. Young ligulatum (La Selva) Alt. 80 m Philodendron COSTA RICA: Herédia Beath 1998 platypetiolatum (La Selva) Alt. 80 m Philodendron pterotum COSTA RICA: Herédia Croat 1997 (La Selva) Alt. 80 m Socratea sp. VENEZUELA: (Parque Seres and Ramirez 1995 Nacional Henri Pittier) Alt. 1100 m

79

TABLE 17 (continued)

Xanthosoma sp. VENEZUELA: (Bosques Label data of Seres and nublados cercanos a la Ramirez Estacion Biologica de Rancho Grande, Parque Nacional Henri Pittier) Alt. 1100 m Xanthosoma undipes VENEZUELA: (Parque Seres and Ramirez 1995 Nacional Henri Pittier) Alt. 1100 m Morphotype 4 Cymbopetalum sp. PANAMA: Colón (Btwn. Label data of N. A. Gatun and Pina) Murray Alt. 39 m Philodendron sp. PANAMA: Colón (1 km Label data of Ratcliffe E of Rio Guanche and Jameson Bridge) Alt. 20 m

4.5.1 Discussion

Adult Neotropical cyclocephalines are generalist floral visitors and are usually associated with thermogenic flowers of the families Araceae, Annonaceae, Arecaceae, , Magnoliaceae, and

Nymphaeaceae. The only evidence of a narrow, species-specific interaction comes from observations of

Cyclocephala jalapensis Casey, 1915 on the endemic species Magnolia schiedeana Schltl. in Veracruz,

Mexico (Dieringer and Delgado 1994; Dieringer and Espinosa 1994). Within the Cyclocephalini,

Cyclocephala has the broadest taxonomic diversity of floral associations having been recorded on the flowers of at least 129 species representing 46 genera and 14 families. Most floral visitation records for

Cyclocephala are geographically narrow even for beetle species with large distributions.

A few well documented host associations for Cyclocephala species offer an opportunity to evaluate the specificity of floral visitation for the genus. Cyclocephala amazona (L., 1797) has been recorded on the flowers of 10 species in eight genera representing four families. These records range geographically from northern South America (French Guiana and Colombia) to Central America (Costa

Rica and Panama). In Costa Rica C. amazona has been recorded from palms (Bactris and Cryosophila), cyclanths (Cyclanthus), and custard apples (Annona). In Panama and Colombia C. amazona has been recorded from palms (Astrocaryum, Attalea and Phytelephas). In French Guiana C. amazona has been

80 recorded on an aroid (Montrichardia). This geographical variation in floral associations indicates a broad generalist strategy in which C. amazona opportunistically visits whatever thermogenic flower is present in its environment.

In contrast, C. quatuordecimpunctata has been recorded on the flowers of seven species in the genus Annona (Annonaceae). All of these records are from the Brazilian states of Brasília, Goiás, Mato

Grosso, Minas Gerais and São Paulo. Other cyclocephaline genera show narrower family level floral assocations. Erioscelis and Peltonotus have only been recorded from Araceae. Mimeoma has only been recorded from Arecaceae. Ruteloryctes has only been recorded from Nymphaeaceae.

The floral association records for the C. sexpunctata species complex are particularly muddled.

Only two auhors, B. C. Ratcliffe and C. E. Valerio, recognized the difference between C. brevis and C. sexpunctata sensu Ratcliffe (2003). This makes it difficult to discuss floral associations for the

Cyclocephala species complex. Table 17 summarizies what information I have been able to extract from my own determinations, detailed label data and the floral association literature.

My reevaluation of floral association data for the C. sexpunctata species complex highlights the need for multiple voucher specimens with detailed data that are deposited in public institutions. At least eight floral association records for morphotype 3 (C. brevis sensu Ratcliffe 2003, C. pubescens before

2003) were misidentified and published as C. sexpunctata (Young 1990; Seres and Ramirez 1995; Croat

1997; Beath 1998; Beath 1999). It is likely that more floral association records for the C. sexpunctata species group are not consistent with current taxonomy. I remain skeptical of associations reported from areas of known sympatry between the morphotypes. For example, floral associations reported from around the Monteverde, Costa Rica area are potentially in error. Cyclocephala letiranti, morphotype 2 and morphotype 3 co-occur at this locality. The visitor of D. longispatha on Barro Colorado Island remains ambiguous (Beath 1999). Morphotypes 3 and 4 are sympatric at this locality and I have not seen voucher specimens to confirm the identity of these beetles.

This high confidence dataset (Tab. 17) reveals each morphotype characterized herein has a different profile of host plant associations. Morphotype 1 has only been collected from Xanthosoma.

81

Morphotype 2 is a common visitor of Xanthosoma and has also been recorded from Philodendron. The broadly distributed morphotype 3 has been collected from Dieffenbachia and Philodendron. Specimens of the potential morphotype 5 (currently lumped with morphotype 3) have been collected from the palm genus Socratea and Xanthosoma in Venezuela. Morphotype 4, which has the least host plant data, has been collected from custard apples (Cymbopetalum sp.) and Philodendron in Panama. These unique host associations corroborate the morphological and spatial data, thus providing additional evidence that morphotypes 1-4 are cryptic species. The spatial distribution of host plant association records along elevational gradients largely coincides with the elevational data from the larger specimen sample that comprised the morphological data set.

82

5 CONCLUSIONS

This study represented the first attempt to characterize cryptic species in the genus Cyclocephala.

Detailed morphological data, spatial and distribution data, molecular data and host plant association data can now be weighed separately and together to verify the existence of cryptic Cyclocephala floral visitors.

I aimed to address whether:

1) Monophyletic lineages (species) can be circumscribed based on morphological and

phenotypic data.

2) Monophyletic lineages (species) can be circumscribed based on spatial analyses and the

distribution of corroborative host plant associations.

3) Monophyletic lineages can be circumscribed using DNA sequence data.

4) The tools identified in 1-3 can be used to diagnose cryptic species of Cyclocephala.

Some of the morphological diversity characterized for morphotypes 1-4 herein had been previously recognized and circumscribed under the species C. sexpunctata and C. brevis. Never before had a large sample, encompassing the entire known range of these beetle species, been examined side by side. I consider that the closeness of the male parameres, poor understanding of female sexual characters and small sample sizes contributed to the taxonomic confusion surrounding the species C. sexpunctata and C. brevis. This study applied the phylogenetic species concept of Wheeler and Platnick (2000): “A species is the smallest aggregation of (sexual) populations or (asexual) lineages diagnosable by a unique combination of character states”. I think the morphotypes of C. sexpunctata and C. brevis described herein fulfill the criteria of the phylogenetic species concept (Wheeler and Platnick 2000). In reference to the first hypothesis, monophyletic lineages (species) can be circumscribed based on morphological data.

Characters most important for identifying these species are the form of the male parameres in caudal and lateral views and ventral form of the female epipleural pillow.

The form of the male parameres of morphotypes 1-4 is stable. The relative length, thickness at the apex, degree of deflexion and length of the apex and the degree of the production of the baso-ventral tooth of the parameres are correlated traits (i.e., paramere characters of the shaft, apex and base are

83 always consistent in distinct morphotypes). The discovery of a new, diagnostic female character that can be associated with male specimens bolsters the argument that these morphotypes are separate species. It is the case that in the morphologically similar species of the C. sexpunctata species group that covariance in male (paramere) and female (epipleuron characters) are indicative of species-level lineages.

While dorsal maculae are not diagnostic for species indentification, in this specimen sample each morphotype possesses a unique range of maculae phenotypes. This greatly reduces the variation in dorsal maculae phenotype circumscribed by C. sexpunctata and C. brevis sensu Ratcliffe (2003). In insects, the mechanisms that cause intraspecific differences in cuticle melanization are poorly understood. It has been hypothesized that the degree of melanization in L. affects individual fitness

(Parkash et al. 2009). Experimental data indicate that more melanized individuals of D. melanogaster are dessication resistant (Parkash et al. 2009). Variation in the dorsal patterning of C. sexpunctata was hypothesized to be a phenotypically plastic response to different levels of soil moisture during larval development (García-Luna et al. 2002). These hypotheses can not currently be tested within the genus

Cyclocephala but they could be an interesting area of future research.

The morphotypes have distinctly different distributions and spatial ranges in the environment.

Morphotypes 1 and 2, which are the most morphologically similar, are allopatric with a large distributional break across Nicaragua. Both of these morphotypes are most commonly collected at elevations above 1000 m. Morphotype 3 has the broadest geographic and elevational distribution of all the morphotypes. Morphotype 3 was found to be sympatric with morphotypes 1, 2, and 4 at specific localities and this certainly contributed to misidentifications detected in the floral association literature.

Morphotype 4 is common only in the low-land forests of Panama in areas around the former Canal Zone.

Host plant data was associated with well defined morphotypes for the first time. All of the published host associations for C. sexpunctata could not be evaluated, but patterns still emerged. The morphotypes visit different host and they do so at elevations typical for their larger distributional sample. Future studies of Araceae floral visitors should integrate these data into their sampling design.

84

Elevational transect sampling methods at specific localities can be used to further detect differences in floral visitors from low, middle and high altitudes.

These findings indicate that it is possible circumscribe lineages (species) based on spatial analyses and the distribution of corroborative host plant associations. While host plant associations are non-specific, each of the morphotypes of C. sexpunctata and C. brevis visit a different spectrum of flower species. There is a sharp distribution break across Nicaragua between morphotype 1 and morphotype 2. A similar range break has been observed between the nearly identical species C. amazona (L., 1767) and C. multiplex Casey, 1915 (pers. comm., B. C. Ratcliffe, July 2011). Elevation is an important factor determining the presence and absence at a specific locality of the similar species C. mafaffa Burmeister,

1847 and C. deceptor (Casey, 1915) (pers. comm., B. C. Ratcliffe, July 2011). These observations and the data of this study indicate that habitat differences (e.g., tropical moist forest or lower montane wet forest) along elevational and latitudinal gradients are important for determining the distribution of Cyclocephala species. Similar patterns might partly determine the distribution of host plant species visited by cyclocephalines.

Mitochondrial CO1 sequence data indicate that the C. sexpunctata sensu Ratcliffe (2003) and

Ratcliffe and Cave (2006) is polyphyletic. The monophyly of C. brevis could not be addressed with the current dataset. Additional sequence data should be added for a more robust relationship hypothesis with more resolution between terminal taxa. The molecular analysis does support an affinity between morphotype 1 and morphotype 2. I think that the shared form of the female epipleural pillow supports this hypothesized relationship between morphotype 1 and morphotype 2. The analyzed CO1 fragment recovered very little phylogenetic structure for out group cyclocephaline taxa. The cyclocephalines display pronounced sexual dimorphism and species in the group are characterized by the unique form of male and female sexual structures. Selective forces on morphological traits may be more important for phylogenetic reconstruction in cyclocephalines than neutral evolutionary processes.

It was not possible to circumscribe monophyletic lineages based on my molecular dataset.

Addition of more data will clarify the relationships between the morphotypes. It is also possible that

85 processes such as incomplete lineage sorting and hybridization resulted in the phylogenetic hypothesis herein. There exists very little molecular data for Cyclocephala and it is not currently possible to test these hypotheses. Incomplete lineage sorting is an intriguing possibility. A large amount of the species diversity in Cyclocephala is concentrated in northern South America and southern Central America.

Species raditions in Cyclocephala could be geologically recent (~3 million years ago) taxon making incomplete lineage sorting a potentially important process occurring thoughout the genus.

I think that monophyletic lineages (species) can be circumscribed within C. sexpunctata and C. brevis using the dataset of this study. The morphological data fit the model for species diagnosability in the genus Cyclocephala. These morphological data, coupled with strong spatial and distributional differences in host plant visitation, indicate that morphotypes 1-4 should be elevated to species status.

However, due to the high number of synonyms in this species complex, I can not confidently apply valid names to the morphotypes. For now, I choose to maintain the classification of Ratcliffe (2003) and

Ratcliffe and Cave (2006) for C. sexpunctata and C. brevis until type specimens of these species and their synonyms can be examined.

86

REFERENCES

87

REFERENCES

Anderson, A. B., W. L. Overal and A. Henderson. 1988. Pollination ecology of a forest-dominant palm (Orbignya phalerata Mart.) in northern Brazil. Biotropica 20 (3): 192-205.

Anderson, R. S. and L. D. Gómez-P. 1997. Systenotelus, a remarkable new genus of weevil (Coleoptera: Curculionidae) associated with Carludovica (Cyclanthaceae) in Costa Rica and Panamá. Revista de Biología Tropical 45 (2): 887-904.

Armbruster, W. S., A. L. Herzig and T. P. Clausen. 1992. Pollination of two sympatric species of Dalechampia (Euphorbiaceae) in Suriname by male euglossine bees. American Journal of Botany 79 (12): 1374-1381.

Arrow, G. J. 1902. Notes and descriptions of some Dynastidae from tropical America, chiefly supplementary to the „Biologia Centrali-Americana.‟ Annals and Magazine of Natural History (series 7) 10: 137-147.

Arrow, G. J. 1903. Description of a few new species of Coleoptera from Sapucay, Paraguay. Proceedings of the Zoological Society of London 2: 255-258.

Arrow, G. J. 1910. On the lamellicorn beetles of the genus Peltonotus with descriptions of four new species. Annals and Magazine of Natural History (series 8) 5: 153-157.

Arrow, G. J. 1911. Notes on the coleopterous subfamily Dynastinae, with descriptions of new genera and species. Annals and Magazine of Natural History (series 8) 8: 151-176.

Balslev, H. and A. Henderson. 1987. A new Ammandra (Palmae) from Ecuador. Systematic Botany 12 (4): 501-504.

Bates, H. W. 1888. Pectinicornia and Lamellicornia, Family Dynastidae. In, Godman, F. D. and O. Salvin (editors), Biologia Centrali-Americana. Insecta, Coleoptera, Volume 2, pt. 2: 296-342.

Bates, H. W. 1891. Coleoptera, pp. 7-39. In, Whymper, E., Supplementary Appendix to Travels Amongst the Great Andes of the Equator. John Murray, London. 147 pp..

Bawa, K. S., S. H. Bullock, D. R. Perry, R. E. Coville and M. H. Grayum. 1985b. Reproductive biology of tropical lowland rainforest trees. II. Pollination systems. American Journal of Botany 72 (3): 346-356.

Bawa, K. S., D. R. Perry and J. H. Beach. 1985a. Reproductive biology of tropical lowland rainforest trees. I. Sexual systems and incompatibility mechanisms. American Journal of Botany 72 (3): 331-345.

Beach, J. H. 1982. Beetle pollination of (Cyclanthaceae). American Journal of Botany 69: 1074-1081.

Beach, J. H. 1984. The reproductive biology of the peach or “pejibaye” palm (Bactris gasipaes) and a wild congener (B. porschiana) in the Atlantic lowlands of Costa Rica. Principes 28 (3): 107-119.

Beath, D. N. 1998. Pollination Ecology of the Araceae. http://www.aroid.org/pollination/beath/index.php.

88

Beath. D. N. 1999. Dynastine scarab beetle pollination in Dieffenbachia longispatha (Araceae) on Barro Colorado Island (Panama) compared with La Selva Biological Station (Costa Rica). Aroideana 22: 63-71.

Bernal, R. and F. Ervik. 1996. Floral biology and pollination of the dioecious plam Phytelephas seemannii in Colombia: an adaptation to staphylinid beetles. Biotropica 28 (4): 682-696.

Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng., R. Meier, K. Winker, K. K. Ingram and I. Das. 2006. Crytic species as a window on diversity and conservation. Trends in Ecology and Evolution 22 (3): 148-155.

Blair, C. P., W. G. Abrahamson, J. A. Jackman and L. Tyrrell. 2005. Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle. Evolution 59 (2): 304-316.

Bogner, J. 2008. The genus Bognera Mayo & Nicolson (Araceae). Aroideana 31: 3-14.

Bullock, S. H. 1981. Notes on the phenology of inflorescences and pollination of some rain forest palms in Costa Rica. Principes 25 (3): 101-105.

Burmeister, H. 1847. Handbuch der Entomologie, Vol. 5. T. C. F. Enslin, Berlin. 584 pp.

Búrquez, A., J. Sarukhán K. and A. L. Pedroza. 1987. Floral biology of a primary rainforest palm, Astrocaryum mexicanum Liebm. Botanical Journal of the Linnean Society 94: 407-419.

Campbell, J. A. and E. N. Smith. 2000. A new species of arboreal pitviper from the Atlantic versant of northern Central America. Revista de Biología Tropical 48 (4): 1001-1013.

Casey, T. L. 1915. A review of the American species of Rutelinae, Dynastinae and Cetoniinae. Memoirs on the Coleoptera 11: 1-347.

Cavalcante, T. R. M. 2000. Polinização manual e natural da gravioleira (Annona muricata L.). M. S. dissertation. Universidad Federal de Viçosa.

Cavalcante, T. R. M., R. V. Naves, E. V. Franceschinelli and R. P. da Silva. 2009. Polinização de frutos em araticum. Bragantia, Campinas 68 (1): 13-21.

Chen, H. Y., W. S. Yeng, P. C. Boyce, W. M. Hung and M. C. K. Yok. 2011. Studies of Homalomeneae (Araceae) of Borneo VII: Homalomena debilicrista, a new species from Malaysian Borneo, and observations of its pollination mechanics. Plant Diversity and Evolution 129 (1): 77-87.

Cook, O. F. 1927. New genera and species of ivory palms from Colombia, Ecuador and Peru. Journal of the Washington Academy of Sciences 17 (9): 218-230.

Cramer, J. M., A. D. J. Meese and P. A. Tuenissen. 1975. A note on the pollination of nocturnally flowering species of Nymphaea. Acta Botanica Neerlandica 24: 489-490.

Croat, T. B. 1981. A revision of Syngonium (Araceae). Annals of the Missouri 68 (4): 565-651.

89

Croat, T. B. 1997. A revision of Philodendron subgenus Philodendron (Araceae) for Mexico and Central America. Annals of the Missouri Botanical Garden 84: 311-704.

Croat, T. B. 2004. Revision of “Dieffenbachia” (Araceae) of Mexico, Central America, and the West Indies. Annals of the Missouri Botanical Garden 91 (4): 668-772.

Dechambre, R. P. 1979. Missions Entomologiques en Guyane et au Bresil (Coleoptera, Dynastidae). Revue Française d‟Entomologie 1 (4): 160-168.

Dechambre, R. P. 1980. Six nouvelles espèces de Cyclocephala. Revue Francaise d‟Entomologie (Nouvelle-Serie) 2 (1): 42-49.

Dejean, P. F. M. A. 1821. Catalogue de la collection de Coléoptères de M. le Baron Dejean. Paris. 136 pp.

Delgado, L. and H. Castañeda. 1994. A new species and new records of Cyclocephala from Guatemala (Coleoptera: Melolonthidae). Journal of the New York Entomological Society 102: 456-459.

Dieringer, G. and L. Delgado. 1994. Notes on the biology of Cyclocephala jalapensis (Coleoptera: Scarabaeidae): an endemic of eastern Mexico. The Southwestern Entomologist 19 (4): 309-311.

Dieringer, G. and J. E. Espinosa S. 1994. Reproductive Ecology of Magnolia schiedeana (Magnoliaceae), a threatened cloud forest tree species in Veracruz, Mexico. Bulletin of the Torrey Botanical Club 121 (2): 154-159.

Dieringer, G., L. Cabrera R., M. Lara, L. Loya and P. Reyes-Castillo. 1999. Beetles pollination and floral thermogenicity in Magnolia tamaulipana (Magnoliaceae). International Journal of Plant Sciences 160 (1): 64-71.

Dieringer G., P. Reyes-Castillo, M. Lara, L. Cabrera R. and L. Loya. 1998. Endothermy and floral utilization of Cyclocephala caelestis (Coleoptera: Scarabaeoidae: Melolonthidae): a cloud forest endemic beetle. Acta Zoologica Mexicana 73: 145-153.

Endrödi, S. 1963. Neue Cyclocephala-Arten. Annales Historico-Naturales Musei Nationalis Hungarici (pars Zoologica) 55: 323-333.

Endrödi, S. 1964. Eine Relhe von neuen Cyclocephala-Arten (Col., Melolonthidae, Dynastinae). Folia Entomologica Hungarica 17: 433-470.

Endrödi, S. 1966. Monographie der Dynastinae (Coleoptera, Lamellicornia). I. Teil. Entomologische Abhandlungen 33: 1-460.

Endrödi, S. 1969. Einige neue Cyclocephalini und . Acta Zoologica Hungarica 15: 21-42.

Endrödi, S. 1975. Cyclocephala hardyi sp. n. Folia Entomologica Hungarica (N.S.) 28: 281-284.

Endrödi, S. 1980. Sechs neue Dynastinen-Arten aus Amerika und Borneo (Coleoptera: Dynastinae). Folia Entomologica Hungarica 41: 37-42.

90

Endrödi, S. 1985. The Dynastinae of the World. Dr. W. Junk Publisher, Dordrecht. 800 pp., 46 plates.

Erichson, W. F. 1847. Conspectus insectorum coleopterorum quae in Republica Peruana observata sunt. Archiv für Naturgeschichte 13: 67-185.

Ervik, F. 1992. Notes on the phenology and pollination of the dioecious palms Mauritia flexuosa (Calamoideae) and Aphandra natalia (Phytelephantoideae) in Ecuador. pp. 7-12. In, Barthlott, W., C. M. Naumann, K. Schmidt-Loeske and K. L. Schuchmann (eds.). -plant interactions in tropical environments : results of the annual meeting of the German Society for Tropical Ecology held at Bonn, February 13-16, 1992.

Ervik, F. and J. T. Knudsen. 2003. Water lilies and scarabs: faithful partners for 100 million years? Biological Journal of the Linnean Society 80: 539-543.

Ervik, F., L. Tollsten and J. T. Knudsen. 1999. Floral scent chemistry and pollination ecology in phytelephantoid palms (Arecaceae). Plant Systematics and Evolution 217: 279-297.

Fabricius, J. C. 1775. Systema Entomologiae. Leipzig. 832 pp.

Fabricius, J. C. 1798. Supplementum Entomologiae Systematicae. Proft and Storch, Hafniae. 572 pp.

Funk, D. J. and K. E. Omland. 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution and Systematics. 34: 397-423.

García-Luna, D., M.Á. Morón and C.V. Rojas-Gómez. 2002. Variación en los patrones de pigmentación en tres especies de Cyclocephala Burmeister (Coleoptera: Melolonthidae: Dynastinae). Folia Entomologica Mexicana 41(2): 129-148.

García-Robledo, C., G. Kattan, C. Murcia and P. Quintero-Marín. 2004. Beetle pollination and of Xanthosoma daguense (Araceae) in an Andean cloud forest in Colombia. Journal of Tropical Ecology 20 (4): 459-469.

García-Robledo, C., P. Quintero-Marín and F. Mora-Kepfer. 2005. Geographic variation and succession of communities in inflorescences and infructescences of Xanthosoma (Araceae). Biotropica 37: 650-656.

Gessner, F. 1962. A abertura das flôres de Victoria regia, em relação à luz. Boletim do Museu Paranense Emílio Goeldi 17: 1-13.

Gibernau, M. 2003. Pollinators and visitors of aroid inflorescences. Aroideana 26: 66-83.

Gibernau, M. and D. Barabé. 2002. Pollination ecology of Philodendron squamiferum (Araceae). Canadian Journal of Botany 80: 316-320.

Gibernau, M., B. Barabé and B. Labat. 2000. Flowering and pollination of Philodendron melinonii (Araceae) in French Guiana. Plant Biology 2 (3): 331-334.

91

Gibernau, M., D. Barabé, P. Cerdan and A. Dejean. 1999. Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. International Journal of Plant Science 160: 1135-1143.

Gibernau, M., D. Barabé, D. Labat, P. Cerdan and A. Dejean. 2003. Reproductive Biology of Montrichardia arborescens (Araceae) in French Guiana. Journal of Tropical Ecology 19 (1): 103-107.

Gibbs, P. E., J. Semir and N. D. da Cruz. 1977. Floral biology of Talauma ovata St. Hil. (Magnoliaceae). Ciéncia e Cultura 29 (12): 1437-1441.

Global Gazetteer Version 2.2. http://www.fallingrain.com/world/index.html. Falling Rain Genomics, Inc.

Goldwasser, L. P. 1987. I. Branching patterns, generating rules, and astrogenetic trajectories in Bugula (Cheilostomata, Bryozoa). II. Mutualism and its ecological and evolutionary consequences. Ph. D. Dissertation, University of California-Berkeley.

Goldwasser, L. 2000. Scarab beetles, elephant ear (Xanthosoma robustum), and their associates. In, Natkarni, N. M. and N. T. Wheelwright (editors), Monteverde. Ecology and Conservation of a Tropical Cloud Forest. Oxford University Press, Oxford. 268-271.

Gonçalves, E. G. and A. C. D. Maia. 2006. New evidence of pollination in Gearum brasiliense (Araceae: Spathicarpeae). Aroideana 29: 148-151.

Gottsberger, G. 1986. Some pollination strategies in Neotropical Savannas and Forests. Plant Systematics and Evolution 152: 29-45.

Gottsberger, G. 1988. The reproductive biology of primitive angiosperms. Taxon 37 (3): 630-643.

Gottsberger, G. 1989. Beetle pollination and flowering rhythm of Annona spp. (Annonaceae) in Brazil. Entwicklungsgeschichte und Systematik der Planzen 167: 165-187.

Gottsberger, G. 1991. Pollination of some species of the Carludovicoideae, and remarks on the origin and evolution of Cyclanthaceae. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 113: 221-235.

Gottsberger, G. 1999. Pollination and evolution in neotropical Annonaceae. Plant Species Biology 14: 143-152.

Gottsberger, G. and A. Amaral. 1984. Pollination strategies in Brazilian Philodendron species. Berichte der Deutschen Botanischen Gesellschaft 97: 391-410.

Gottsberger, G., A. C. Webber and M. Hildenbrand. 1998. Nutritious tissues in flowers of Annonaceae. Annonaceae Newsletter 12: 25-26.

Gottsberger, G. and I. Silberbauer-Gottsberger. 1988. Pollination strategies of Annona species from the cerrado vegetation in Brazil. Lagascalia 15 (extra): 665-672.

Gottsberger, G. and I. Silberbauer-Gottsberger. 1991. Olfactory and visual attraction of Erioscelis emarginata (Cyclocephalini, Dynastinae) to the inflorescences of Philodendron selloum (Araceae). Biotropica 23 (1): 23-28.

92

Gottsberger, G. and I. Silberbauer-Gottsberger. 2006. Life in the Cerrado: a South American Tropical Seasonal Ecosystem. Vol. 2. Pollination and Seed Dispersal. Reta Verlag, Ulm, Baden-Württemberg, Germany. 385 pp.

Grayum, M. H. 1984. Palynology and phylogeny of the Araceae. Botany Ph. D. Dissertation, University of Massachusetts, Amherst.

Grayum, M. H. 1986. Correlations between pollination biology and pollen morphology in the Araceae, with some implications for angiosperm evolution. pp. 313-327. In, Blackmore, S. and I. K. Ferguson (eds.), Pollen and Spores: Form and Function. Linnean Society Symposium Series No. 12. Academic Press. pp 443.

Grayum, M. H. 1990. Evolution and phylogeny of the Araceae. Annals of the Missouri Botanical Garden 77 (4): 628-697.

Grayum, M. H. 1996. Revision of Philodendron subgenus Pteromischum (Araceae) for Pacific and Tropical America. Systematic Botany Monographs 47: 1-233.

Grimm, R. 2009. Peltonotus nasutus Arrow, 1910 und Phaeochrous-Arten als Bestäuber von Amorphophallus paeoniifolius (Araceae) in Thailand (Coleoptera: Scarabaeidae). Entomologische Zeitschrift mit Insekten-Börse 119 (4): 167-168.

Hardon, J. J. 1969. Interspecific hybrids in the genus Elaeis II. Vegetative growth and yield of F1 hybrids E. guineensis x E. oleifera. Euphytica 18: 380-388.

Harold, E. 1869. Abänderungen vergebener Namen. Coleopterologische Hefte 5: 122-125.

Henderson, A. 1984. Observations on pollination of Cryosophila albida. Principes 28: 120-126.

Henderson, A. 1986. A review of pollination studies in the Palmae. Botanical Review 52 (3): 221-259.

Henderson, A., R. Pardini, J. F. dos Santos Rebello, S. Vanin and D. Almeida. 2000. Pollination of Bactris (Palmae) in an Amazon Forest. Brittonia 52 (2): 160-171.

Herbst, J. F. W. 1790. Natursystem aller bekannten in- und ausländischen Insecten; nach dem Ritters Carl von Linné bearbeitet; von C. G. Jablonsky forgesetz von J. F. W. Herbst. Käfer. J. Pauli, Berlin. Volume 3: 1-324.

Heyne, A. and O. Taschenberg. 1907. Die Exotischen Käfer in Wort und Bild. G. Reusche, Leipzig. 262 pp, 39 plates.

Hirthe, G. and S. Porembski. 2003. Pollination of Nymphaea lotus (Nymphaeaceae) by rhinoceros beetles and bees in the northeastern Ivory Coast. Plant Biology 5 (6): 670-676.

Höhne, W. 1923. Neue Cyclocephalen (Col. Dyn.). Deutsche Entomologische Zeitschrift 1923: 345-373.

Jameson, M. L. and K. Wada. 2004. Revision of the genus Peltonotus Burmeister (Coleoptera: Scarabaeidae: Dynastinae) from southeastern Asia. Zootaxa 502: 1-66.

93

Kirby, W. 1827 [1828]. A description of some coleopterous insects in the collection of the Rev. F. W. Hope. The Zoological Journal, vol. III. 520-525.

Kirsch, T. F. W. 1870 [1871]. Beiträge zur Käferfauna von Bogotá. Berliner Entomologische Zeitschrift 14 (1870): 337-378 (pages misnumbered, first one as 353).

Krajcik, M. 2005. Dynastinae of the World: Checklist (Coleoptera: Scarabaeidae: Dynastinae). Animma X. Supplement 2. Plzeň.

Knuth, P. E. O. W., O. Appel and E. Loew. 1904. Handbuch der Blütenbiologie, unter Zugrundelegung von Herman Müllers Werk: “Die Befruchtung der Blumen durch Insekten.” Vol. 3. W. Engelmann. Leipzig.

Krell, F.-T., G. Hirthe, R. Seine and S. Porembski. 2003. Rhinoceros beetles pollinate water lilies in Africa (Coleoptera: Scarabaeidae: Dynastinae; Magnoliidae: Nymphaeceae). Ecotropica 9: 103-106.

Kress, W. J. and J. H. Beach. 1994. reproductive systems, pp 161-182. In, La Selva: Ecology and Natural History of a Neotropical Rainforest. McDade, L., K. S. Bawa, H. A. Hespenheide and G. S. Hartshorn (eds.). The University of Chicago Press. pp. 486.

Küchmeister, H., A. C. Webber, I. Silberbauer-Gottsberger and G. Gottsberger. 1998. A Polinização e sua relação com a termogênese em espécies de Arecaceae e Annonaceae da Amazônia central. Acta Amazonica 28 (3): 217-245.

Küchmeister, H, G. Gottsberger and I. Silberbauer-Gottsberger. 1992. Pollination biology of Orbignya spectabilis, a „monoecious‟ Amazonian palm. pp. 67-76. In, Barthlott, W., C. M. Naumann, K. Schmidt- Loeske and K. L. Schuchmann (eds.). Animal-plant interactions in tropical environments : results of the annual meeting of the German Society for Tropical Ecology held at Bonn, February 13-16, 1992.

Laporte, F. L. 1840. Histoire Naturelle des Insectes Coleoptérès. Avec une introduction Renferment l’Anatomie et la Physiologie des Animaux articulés, par M. Brullé, Vol. 2. P. Duménil, Paris. 564 pp.

Linnaeus, C. 1767. Systema Naturae, Volume 1, pars 2, edito duodecima reformata. Stockholm. Pp. 533- 1327.

Listabarth, C. 1992. A survey of pollination strategies in the Bactrinidinae (Palmae). Bulletin de l‟Institut Francais d‟Études Andines 21 (2):699-714.

Listabarth, C. 1996. Pollination of Bactris by Phyllotrox and Epurea. Implications of the palm breeding beetles on pollination at the community level. Biotropica 28(1): 69-81.

Maas, P. J. M., L. Y. Th. Westra and L. W. Chatrou. 2003. Duguetia (Annonaceae). Flora Neotropica 88: 1-274.

Madison, M. 1979. Protection of developing in neotropical Araceae. Aroideana 2 (2): 52-61.

Madison, M. 1981. Notes on Caladium (Araceae) and its allies. Selbyana 5: 342-377.

94

Maia, A. C. D. and C. Schlindwein. 2006. Caladium bicolor (Araceae) and Cyclocephala celata (Coleoptera, Dynastinae): A well-established pollination system in the northern Atlantic rainforest of , Brazil. Plant Biology 8: 529-534.

Maia, A. C. D., C. Schlindwein, D. M. A. F. Navarro and M. Gibernau. 2010. Pollination of Philodendron acutatum (Araceae) in the Atlantic forest of northeastern Brazil: a single scarab beetle species guarantees high fruit set. International Journal of Plant Science 171 (7): 740-748.

Mannerheim, C. V. von. 1829. Description de quarante nouvelles espèces de scarabéides du Brésil avec figures. Nouveaux Mémoires de la Société Impériale des Naturalistes de Moscou 1: 29-80.

Marsteller, S., D. C. Adams, M. L. Collyer and M. Condon. 2009. Six cryptic species on a single species of host plant: morphometric evidence for possible reproductive character displacement. Ecological 34: 66-73.

Martínez, A. 1955. Un novo genero y especie de escarabeido dinastino. Mitteilungen der Münchener Entomologischen Gesellschaft 45: 242-249.

Martínez, A. 1960. Un nuevo genero de Cyclocephalini. Ciencia 20: 97-98.

Martínez, A. 1968. Notas sobre Cyclocephalini Americanos con descripción de dos nuevas especies (Col. Scarab., Dynast.). Ciencia 26 (5): 185-191.

Molbo, D., C. A. Machado, J. G. Sevenster, L. Keller and E. A. Herre. 2003. Cryptic species of fig- pollinating wasps: Implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. Proceedings of the National Academy of Science 100 (10): 5867-5872.

Momose, K., T. Yumoto, T. Nagamitsu, M. Kato, H. Nagamasu, S. Sakai, R. D. Harrison, T. Itioka, A. A. Hamid and T. Inoue. 1998. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. American Journal of Botany 85 (10): 1477-1501.

Mora-Urpí, J. and E. M. Solís. 1980. Polinzación en Bactris gasipaes H. B. K. (Palmae). Revista de Biología Tropical 28: 153-174.

Mora-Urpí, J. 1982. Polinización en Bactris gasipaes H. B. K. (Palmae): Nota Adicional. Revista de Biología Tropical 30: 174-176.

Morón, M. A. 1977. Descripción del macho de Cyclocephala picta Burm. 1847 (Coleoptera: Melolonthidae, Dynastinae). Anales del Instituto de Biología de la Universidad Nacional Autónoma de México (serie Zoología) 48 (1): 133-140.

Morón, M. A. 1997. Notas sobre Cyclocephala Latreille (Coleoptera: Melolonthidae, Dynastinae) associadas con Xanthosoma Schott (Araceae) en Chiapas, México. Giornale Italiano di Entomologia 8: 399-407.

National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/.

95

Núñez, L. A., R. Bernal and J. T. Knudsen. 2005. Diurnal palm pollination by mystropine beetles: is it weather-related? Plant Systematics and Evolution 254: 149-171.

Núñez-Avellaneda, L. A. and R. Rojas-Robles. 2008. Biología reproductiva y ecología de la polinización de la palma milpesos Oenocarpus bataua en los Andes Colombianos. Caldasia 30 (1): 101-125.

Núñez-Avellaneda, L. A. and J. C. Neita. 2009. Rol de los escarabajos Cyclocephalini (Dynastinae: Scarabaeidae) en la polinización de palmas silvestres en Colombia. In, Hernández-Ortiz, V., C. Deloya and P. R. Castillo (editors), Memorias VIII Reuníon Latinoamericana de Escarabaeidología (Coleoptera: ): 16-17.

Ohaus, F. 1910. Neue südamerikanische Dynastiden (Col.). Deutsche Entomologische Zeitschrift 1910: 671-690.

Olivier, A. G. 1789. Entomologie, ou Historie Naturelle des Insectes, avec leurs Caractèrs Génériques et Specifiques, leur Description, leur Synonymie, et leur Figure Enluminée. Coleoptérès, Vol. 1 (genera separately paged). Paris.

Pellmyr, O. 1985. Cyclocephala: visitor and probable pollinator of Caladium bicolor (Araceae). Acta Amazonica 15: 269-272.

Ponchel, Y. 2006. The Dynastidae of the world. Biologie et collecte de quelques dynastides. http://dynastidae.voila.net/biologie.html.

Ponchel, Y. 2010. Note sur Cyclocephala virgo Dechambre, 1999 et mise point sur trios espèces de Dynastidae récemment decrites de Guyane (Coleoptera Dynastidae). L‟Entomologiste 66 (3): 171-172.

Prance, G. T. 1976. The pollination and androphore structure of some Amazonian Lecythidaceae. Biotropica 8 (4): 235-241.

Prance, G. T. and A. B. Anderson. 1976. Studies of the floral biology of neotropical Nymphaeaceae 3. Acta Amazonica 6 (2): 163-170.

Prance, G. T. and J. R. Arias. 1975. A study of the floral biology of (Poepp.) Sowerby (Nymphaeaceae). Acta Amazonica 5 (2): 109-139.

Prance, G. T. 1980. A note on the pollination of Nymphaea amazonum Mart. And Zucc. (Nymphaeaceae). Brittonia 32 (4): 505-507.

Prell, H. 1934. Beiträge zur Kenntnis der Dynastinen (XII). Bescreibungen und Bemerkungen. Entomologische Zeitschrift 47: 162-164, 186-188, 194-195.

Ramírez, N. 1989. Biologia de polinizacion en una comunidad arbustiva tropical de la alta Guayana Venezolana. Biotropica 21 (4): 319-330.

Ramírez, N. 1992. Especificidad de los sistemas de polinizacion en una comunidad arbustiva de la Venezolana. Ecotropicos 5 (1): 1-19.

96

Ramirez, N. and Y. Brito. 1992. Pollination biology in a palm swamp community in the Venezuelan central plains. Botanical Journal of the Linnean Society 110: 277-302.

Ratcliffe, B. C. 1977. Four new species of Neotropical Cyclocephalini (Coleoptera: Scarabaeidae). Acta Amazonica 7 (3): 429-434.

Ratcliffe, B. C. 1992a. Nine new species and 11 country records of Cyclocephala (Coleoptera: Scarabaeidae: Dynastinae) from Panama and Costa Rica. The Coleopterists Bulletin 46 (3): 216-235.

Ratcliffe, B. C. 1992b. New species and country records of Brazilian Cyclocephala (Coleoptera: Scarabaeidae: Dynastinae). Tidschrift voor Entomologie 136: 179-190.

Ratcliffe, B. C. 2003. The Dynastine scarab beetles of Costa Rica and Panama (Coleoptera: Scarabaeidae: Dynastinae). Bulletin of the University of Nebraska State Museum 16: 1-506.

Ratcliffe, B. C. and L. Delgado. 1990. New species and notes of Cyclocephala from Mexico (Coleoptera: Scarabaeidae: Dynastinae). Folia Entomologica Mexicana 80: 41-57.

Ratcliffe, B. C. and M. A. Morón. 1997. Dynastinae. pp. 53-98. In, Morón, M. A., B. C. Ratcliffe and C. Deloya, Atlas de los Escarabajos de México. Coleoptera: Lamellicornia. Vol. 1. Familia Melolonthidae. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) and Sociedad Mexicana de Entomologia, Mexico, D. F. 280 p.

Ratcliffe, B. C. and R. D. Cave. 2002. New species of Cyclocephala from Honduras and El Salvador. The Coleopterists Bulletin 56 (1): 152-157.

Ratcliffe, B. C. and R. D. Cave. 2006. The Dynastine scarab beetles of Honduras, Nicaragua and El Salvador (Coleoptera: Scarabaeidae: Dynastinae). Bulletin of the University of Nebraska State Museum 21: 1-424.

Rickson, F. R., M. Cresti and J. H. Beach. 1990. Plant cells which aid in pollen digestion within a beetle‟s gut. Oecologia 82: 424-426.

Scariot, A. O., E. Lieras and J. D. Hay. 1991. Reproductive biology of the palm Acrocomia aculeata in central Brazil. Biotropica 23 (1): 12-22.

Schatz, G. E. 1985. A new Cymbopetalum (Annonaceae) from Costa Rica and Panama with observations on natural hybridization. Annals of the Missouri Botanical Graden 72 (3): 535-538.

Schatz, G. E. 1987. Systematic and ecological studies of Central American Annonaceae. Ph. D. Thesis, University of Wisconsin-Madison. 503 p.

Schatz, G. E. 1990. Some aspects of pollination biology in Central American forests. pp. 69- 84. In, Bawa, K. S. and M. Hadley (eds.), Reproductive Ecology of Tropical Forest Plants. Unesco and The Parthenon Publishing Group, Paris. 421 pp.

Schrottky, C. 1908. Blumen und Insekten in Paraguay. Zeitschrift für wissenschlaftliche Insektenbiologie 4: 22-26.

97

Schrottky, C. 1910. Die Befruchtung von Philodendron und Caladium durch einen Käfer (Erioscelis emarginata). Zeitschrift für wissenschlaftliche Insektenbiologie 6: 67-68.

Schlumpberger, B. O. and R. A. Raguso. 2008. Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoth attraction. Oikos 117: 801-814.

Seres, A. and N. Ramírez. 1995. Biologia floral y polinizacion de algunas Monocotiledoneas de un Bosque Nublado Venezolano. Annals of the Missouri Botanical Garden 82 (1): 61-81.

Seymour, R. S. and P. D. G. Matthews. 2006. The role of thermogenesis in the pollination biology of the Amazon waterlily Victoria amazonica. Annals of Botany 98 (6): 1129-1135.

Seymour, R. S., C. R. White and M. Gibernau. 2009. Endothermy of dynastine scarab beetles (Cyclocephala colasi) associated with pollination biology of a thermogenic arum lily (Philodendron solimoesense). The Journal of Experimental Biology 212: 2960-2968.

Sharp, D. 1877. Description of some new species of beetles (Scarabaeidae) from Central America. Journal of the Linnean Scoiety of London (Zoology) 13: 129-138.

Silberbauer-Gottsberger, I. 1990. Pollination and evolution in palms. Phyton (Horn, Austria) 30 (2): 213- 233.

Silberbauer-Gottsberger, I., G. Gottsberger and A. C. Webber. 2003. Morphological and functional flower characteristics of new and old world Annonaceae with respect to their mode of pollination. Taxon 52 (4): 701-718.

Silberbauer-Gottsberger, I., R. A. Gottsberger and G. Gottsberger. 1997. Flowering rhythm and pollination in a hybrid population of Annona in a small cerrado area in Mato Grosso, Brazil. Annonaceae Newsletter 11: 55-60.

Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu and P. Flook. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87 (6): 651-701.

Smith, M. A., N. E. Woodley, D. H. Janzen, W. Hallwachs and P. D. N. Hebert. 2000. DNA barcodes reveal cryptic host-specificity with the presumed polyphagous members of a genus of parasitoid (Diptera: Tachinidae). Proceedings of the National Academy of Science 103 (10): 3657-3662.

Smith, A. B. T. 2006. A review of the family-group names for the superfamily Scarabaeoidea (Coleoptera) with corrections to nomenclature and a current classification. The Coleopterists Bulletin 60: 144-204.

Stechauner-Rohringer, R. and L. C. Pardo-Locarno. 2010. Redescriptión de inmaduros, ciclo de vida, distribución e importancia agrícola de Burmeister (Coleóptera: Melolonthidae: Dynastinae) en Colombia. Boletin Cientifico Centro de Museos – Museo de Historia Natural 14 (1): 203- 220.

Swofford, D. L. 1991. PAUP: Phylogenetic Analysis Using Parsimony, version 3.1.

98

The Plant List. 2010. Version 1. http://www.theplantlist.org.

Therese von Bayern. 1887. Meine Reise in die Brasilianischen Tropen. D. Remmer. Berlin.

Thompson, J. D., D. G. Higgins and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22 (22): 4673-4680.

Tropicos. Missouri Botanical Garden. http://www.tropicos.org.

Valla, J. J. and D. R. Cirino. 1972. Biologia floral del Irupé, D.‟Orb (Nymphaeaceae). Darwiniana 17: 477-500.

Valerio, C. E. 1984. Insect visitors of the inflorescence of the aroid Dieffenbachia oerstedii (Araceae) in Costa Rica. Brenesia 22: 139-146.

Valerio, C. E. 1988. Notes on phenology and pollination of Xanthosoma wendlandii (Araceae) in Costa Rica. Revista de Biología Tropical 36 (1): 55-61.

Villalta, R. 1988. Estudio de la biologia floral e identificacion de agentes polinizadores de guanábana (Annona muricata L.) en la zona atlantica de Costa Rica. Thesis. Heredia, Costa Rica, Universidad Nacional. 61 pp.

Voeks, R. A. 2002. Reproductive ecology of the piassava palm (Attalea funifera) of , Brazil. Journal of Tropical Ecology 18: 121-136.

Webber, A. C. 1981. Biologia floral de algumas Annonaceae na região de Manaus A. M. Masters Thesis, Instituto Nascional de Pesquiras da Amazonia, Manaus.

Webber, A. C. and G. Gottsberger. 1993. Floral biology and pollination of Cymbopetalum euneurum in Manaus, Amazonia. Annonaceae Newsletter 9: 25-28.

Warming, E. 1883. Tropische Fragmente. I. Die Bestäubung von Philodendron bipinnatifidum Schott. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 4: 328-340.

Wheeler, Q. D. and N. I. Platnick. 2000. The phylogenetic species concept. pp. 55-69. In, Wheeler, Q. D. and Meier, R. (eds.), Species concepts and Phylogenetic Theory: A Debate. Columbia University Press, New York. 244 p.

Wiersema, J. H. 1987. A monograph of the Nymphaea subgenus Hydrocallis (Nymphaeaceae). Systematic Botany Monographs 16: 1-112.

Winker, K. 2009. Reuniting phenotype and genotype in biodiversity research. BioScience 59 (8): 657- 665.

Young, H. J. 1986. Beetle pollination of Dieffenbachia longispatha (Araceae). American Journal of Botany 73 (6): 931-944.

Young, H. J. 1987. Aroid observations: Philodendron rothschuhianum. Aroideana 10: 22.

99

Young. H. J. 1988a. Differential importance of beetle species pollinating Dieffenbachia longispatha (Araceae). Ecology 69 (3): 832-844.

Young, H. J. 1988b. Neighborhood size in a beetle pollinated tropical aroid: effects of low density and asynchronous flowering. Oecologia 76 (3): 461-466.

Young, H. J. 1990. Pollination and reproductive biology of an understory neotropical aroid. pp. 151-164. In, Bawa, K. S. and M. Hadley (eds.), Reproductive Ecology of Tropical Forest Plants. Unesco and The Parthenon Publishing Group, Paris. 421 pp.

Young, R. M. 1992. A new Cyclocephala from a Costa Rican cloud forest (Scarabaeidae: Dynastinae). The Coleopterists Bulletin 46(1): 52-55.

100

APPENDICES

101

APPENDIX 1

MOLECULAR VOUCHER SPECIMEN AND SEQUENCE DATA

Phyllophaga hirticula isolate MP221 cytochrome oxidase subunit I (CoxI) gene, partial cds; mitochondrial GenBank: GQ457160.1

GTAGAAAGAGGGGCTGGTACAGGTTGAACTGTATACCCCCCTCTATCTTCTAACATTGCCCA TAGAGGGGCTTCAGTAGATTTAGCTATTTTCAGCCTTCACCTGGCAGGAATCTCTTCAATTCT AGGTGCTGTGAATTTTATTACAACTGTTATTAATATACGTTCTACAGGCATAACTTTTGATCG AATACCCCTTTTTGTTTGATCAGTAGCTCTAACTGCCCTACTTCTTCTTTTATCTCTTCCTGTA CTAGCTGGTGCAATTACTATACTTTTAACAGACCGAAATATTAATACTTCATTCTTTGACCCA GCAGGAGGAGGAGATCCTATTTTATACCAACATCTATTTTGATTTTTTGGGCACCCTGAAGT ATACATTTTAATTCTCCCCGGGTTTGGGATAATTTCTCACATTATTAGACAAGAAAGTAGGA AAAAGGAAACTTTTGGAACTTTAGGAATAATTTATGCAATAATAGCAATTGGTCTTTTAGGA TTTATTGTTTGAGCACATCATATATTTACAGTGGGAATAGATGTGGATACTCGTGCCTATTTC ACTTCTGCAACTATAATTATTGCAGTTCCTACTGGAATTAAAATTTTCAGTTGATTAGCTACA CTTCATGGTTCCCAACTAAATTATTCCCCCTCTTTACTTTGAACTTTAGGCTTTGTATTTTTAT TTACAGTGGGGGGTTTAACTGGAGTAGTATTGGCCAATTCTTCAATTGATATCATTCTCCATG ACACATACTATGTGGTAGCCCATTTTCACTATGTTTTATCTATAGGAGCAGTATTTGCTATTA TAGCGGGATTTGTTCATTGATTCCCTTTATTTACTGGGTTAACCTTAAATAGAAAATTCTTAA AAATTCAATTTCTAGGAATATTTATTGGAGTAAACATAACATTTTTCCCTCAACATTTTCTTG GTTTAAGGGGAATACCACGACGATACTCTGACTACCCAGATGCTTATACCACATGAAATGTA ATTTCTTCAATCGGATCTCTAATTTCATTAGTAAGAATTATTGTATTTCTATTTATTATTTGAG ATAGAATAACTTCCTTTCGAAAAAGGTTAATACCTTTAAGAATAACTACTTCTATCGAATGA TTCCAATTAATACCACCA

Phyllophaga profunda isolate MP1825 cytochrome oxidase subunit I (CoxI) gene, partial cds; mitochondrial GenBank: GQ457181.1

GTAGAAAGAGGGGCTGGTACAGGTTGAACTGTATACCCCCCTTTATCATCTAATATCGCCCA TAGAGGAGCTTCAGTTGATTTAGCTATTTTCAGCCTTCACCTAGCAGGAATCTCCTCAATTCT CGGAGCTGTAAATTTTATTACAACTGTTATTAATATACGTTCTACAGGTATAACTTTTGATCG AATACCCCTTTTTGTTTGATCAGTAGCCTTAACTGCCCTACTTCTTCTTCTGTCTCTTCCCGTA TTAGCTGGCGCAATTACTATACTTTTAACAGACCGAAATATTAATACTTCATTTTTTGACCCA GCAGGGGGAGGAGATCCTATTTTATACCAACATTTATTTTGATTTTTTGGTCACCCTGAAGTA TACATTCTTATTCTCCCAGGATTTGGAATAATTTCTCATATTATTAGACAAGAAAGAAGGAA AAAGGAAACTTTTGGAACTTTAGGAATAATTTATGCAATGATAGCAATTGGTCTTTTAGGAT TTATTGTTTGAGCACATCATATATTTACAGTAGGAATGGACGTAGATACTCGTGCCTATTTCA CTTCAGCAACTATAATTATTGCAGTTCCTACTGGAATTAAAATTTTTAGTTGATTAGCAACAC TTCATGGCTCCCAACTAAATTATTCCCCTTCCTTACTTTGAACTTTAGGCTTTGTATTTTTATT TACAGTAGGGGGTTTAACTGGGGTAGTATTAGCTAATTCTTCAATTGATATTATTCTACATGA CACATATTACGTAGTAGCCCACTTTCACTATGTTTTGTCTATAGGGGCAGTATTTGCTATTAT AGCAGGATTTGTTCATTGATTCCCTTTATTTACTGGGCTAACCTTAAATAGAAAATTCTTAAA AATTCAATTTCTAGGAATATTTATTGGAGTAAACATAACATTTTTCCCTCAACATTTTCTAGG TTTAAGAGGTATACCACGACGATACTCCGATTACCCAGATGCTTACACTACATGAAACGTAA TTTCTTCAATCGGGTCACTAATTTCATTAGTAAGAATTATTGTATTTCTATTTATTATTTGAGA TAGAATAACTTCTTTTCGAAAAAGACTGATACCCCTGAGAATAACCACTTCTATCGAATGAT TTCAATTAATACCACCAGCTGAACATA

102

APPENDIX 1 (continued)

Phyllophaga balia isolate MP100 cytochrome oxidase subunit I (CoxI) gene, partial cds; mitochondrial GenBank: GQ457139.1

GTAGAAAGGGGGGCTGGTACAGGTTGAACTGTTTACCCCCCATTATCTGCCAATATCGCCCA TAGAGGTGCTTCTGTAGATTTAGCAATTTTTAGCCTGCACCTGGCGGGAATCTCATCAATCTT GGGGGCTGTAAATTTTATTACTACTGTTATTAATATACGCTCTACGGGAATAACCTTTGATCG AATACCTCTCTTTGTTTGATCAGTAGCTTTAACTGCCTTGCTTCTTCTTCTATCTCTTCCTGTA TTAGCCGGCGCAATTACTATACTTTTAACAGATCGAAACATTAATACCTCATTCTTTGACCCT GCCGGAGGAGGAGACCCTATTCTATACCAACATTTATTTTGATTTTTCGGACATCCTGAAGTT TATATTTTAATTCTCCCCGGATTCGGAATAATCTCCCATATTATTAGCCAAGAAAGAAGAAA AAAGGAAACCTTTGGTACTTTAGGTATAATCTATGCAATAATAGCAATTGGCCTTTTAGGAT TTATTGTATGGGCACACCATATATTTACTGTCGGGATAGATGTAGATACACGGGCCTACTTC ACTTCTGCAACTATGATTATTGCCGTTCCAACTGGAATTAAAATTTTCAGATGATTAGCTACA CTTCACGGCTCTCAACTTAACTACTCTCCTTCTTTACTTTGAGCCTTAGGTTTTGTATTTTTAT TTACAGTAGGGGGACTAACTGGAGTAGTATTGGCTAATTCTTCAATTGATATCATTCTTCATG ATACATACTATGTAGTAGCCCATTTTCACTATGTTTTATCTATAGGAGCAGTATTTGCTATTA TAGCGGGATTTGTTCATTGATTCCCCTTATTTACTGGATTAGCCCTAAATAGAAAATTCCTGA AAATTCAATTTTTAGGAATATTTATTGGAGTAAACATAACATTTTTCCCACAACATTTCCTAG GTTTAAGTGGGATACCACGACGATACTCCGATTATCCTGATGCATATACTACATGAAATGTA ATTTCATCAATTGGATCTNTAATCTCTTTAGTAAGTATTATTGTATTCCTATTTATTATTTGAG ATAGAATAACCTCCTTTCGTAAAAGATTAATACCTTTAAGAATAACTACTTCTATTGAATGAT TCCAATTAATACCCCCAGCTGAACATA

Phyllophaga bipartita isolate MP301 cytochrome oxidase subunit I (CoxI) gene, partial cds; mitochondrial GenBank: GQ457142.1

GTAGAAAGGGGAGCAGGCACAGGTTGAACTGTATACCCCCCTCTATCCTCCAATATTGCCCA TAGAGGTGCCTCAGTTGATTTAGCTATTTTTAGCCTTCATTTAGCAGGAATCTCATCAATCCT GGGAGCTGTAAATTTCATCACAACTGTTATTAACATACGTTCTACAGGAATAACTTTTGATC GAATACCCCTTTTTGTTTGATCAGTAGCTCTAACTGCCTTACTTCTTCTCCTATCCCTTCCCGT ATTAGCTGGTGCTATTACTATACTTTTAACAGATCGAAATATTAATACCTCATTCTTTGACCC AGCAGGAGGGGGAGACCCCATTCTATACCAACATTTATTTTGATTTTTTGGGCACCCTGAAG TATACATTTTAATTCTCCCTGGATTTGGAATAATCTCCCACATTATTAGACAAGAAAGAAGA AAAAAAGAAACCTTCGGAACTCTAGGAATAATTTATGCAATAATAGCAATTGGCCTTTTAGG ATTTATTGTGTGAGCACATCACATATTTACTGTGGGAATGGACGTGGATACACGGGCCTATT TCACTTCAGCAACTATAATTATTGCAGTTCCTACTGGAATTAAAATTTTCAGCTGATTAGCAA CACTTCATGGATCTCAGTTAAATTATTCCCCCTCTTTACTTTGAGCTTTAGGGTTTGTATTTTT ATTTACAGTGGGGGGTTTAACTGGAGTAGTTTTAGCTAATTCTTCAATTGATATCATTCTTCA TGATACATACTATGTAGTAGCCCATTTTCATTATGTTTTATCCATAGGGGCAGTATTTGCTAT TATAGCAGGATTTGTCCATTGATTTCCCTTATTTACTGGGCTAGCCTTAAATAGGAAATTCTT AAAAATTCAATTTCTAGGAATATTTATTGGAGTTAACATAACATTTTTTCCCCAACATTTTTT AGGATTAAGTGGAATACCACGACGATATTCTGACTACCCCGATGCATATACCACATGAAATG TAGTTTCATCAATCGGATCTTTAATTTCTTTAGTAAGTATTATTGTATTTCTATTTATTATTTG AGATAGAATAACTTCCTTTCGAAAAAGATTAATACCTTTAAGAATAACTACTTCTATTGAAT GATTCCAACTAATGCCACCAGCTGAACAT

103

APPENDIX 1 (continued)

Phyllopertha horticola clone JT26 cytochrome c oxidase subunit I (COI) gene, partial cds; mitochondrial GenBank: DQ295283.1

GTAGAAAATGGTGCAGGAACAGGTTGAACAGTGTATCCCCCACTATCAGCTAATATTGCCCA TAGAGGAGCTTCAGTTGATTTAGCTATTTTTAGATTACATTTAGCTGGAATTAGCTCTATTCT AGGAGCAGTTAATTTTATCACAACAGTAATTAATATACGATCTACTGGAATAACCTTTGATC GAATACCTTTATTTGTATGATCTGTGGTATTAACAGCCCTTCTACTTTTACTTTCTCTTCCCGT TTTAGCAGGTGCTATCACTATATTATTAACTGACCGAAATATTAATACTTCCTTTTTTGATCC AGCTGGAGGAGGTGACCCTATTCTATACCAACATTTATTTTGATTTTTTGGACACCCAGAAGT TTACATTTTAATTCTCCCTGGTTTTGGAATAATTTCCCATATTATTAGGCAAGAAAGAAGAAA AAAGGAAACATTTGGAACTTTAGGTATAATTTATGCTATAATAGCAATTGGATTACTTGGAT TTATTGTATGAGCACACCATATATTTACAGTTGGAATAGATGTTGATACCCGAGCTTACTTTA CCTCAGCTACAATAATTATTGCAGTACCTACAGGAATCAAAATTTTTAGATGACTTGCAACT TTACATGGATCTCAACTTAATTATTCACCTTCATTACTTTGAGCTCTTGGCTTTGTATTTTTAT TTACAGTTGGAGGACTTACTGGAGTAATTTTAGCAAATTCATCAATTGATATTATTTTACATG ATACATATTATGTTGTAGCACATTTCCATTATGTCCTTTCAATAGGAGCTGTATTTGCTATTA TAGCAGGATTTGTACACTGATTTCCATTATTTACAGGTTTAGTTATAAACACAAAATTCCTTA AAATTCAATTTATTACCATATTTATTGGTGTTAATTTAACATTTTTCCCACAACATTTTTTAGG ATTAAGGGGTATACCACGACGATACTCTGATTACCCAGATGCTTACACTACATGAAACATTA TTTCTTCTATTGGATCATTAATTTCATTAGTAAGAATTTTATTTTATTATTTACTATTTGAGAT AGCTTCGTTTCTATACGAAAAAGAATTGCACCTCTAAGATTACCAACATCTATTGAATGACT GCAAAATATACCTCCT

Voucher DRC 1 Label Data: Honduras: Olancho Determination: Cyclocephala sparsa Arrow, 1902 Depository: UNSM

AATTCTCCCGGGATTTGGAATAATTTCTCACATTATTAGACAAGAAAGAAGAAAAAATGAA ACCTTCGGAACATTAGGAATAATTTATGCTATGATAGCTATTGGTCTTTTAGGATTTATCGTT TGAGCTCATCATATATTTACTGTTGGAATGGATGTTGATACACGAGCCTATTTTACATCAGCC ACAATAATTATTGCTGTCCCTACTGGTATTAAAATTTTTAGATGATTAGCAACACTTCATGGG TCACAATTAAATTATTCACCCTCTCTACTTTGAGCTTTAGGGTTTGTTTTCTTATTTACTGTAG GAGGACTCACAGGAGTAATTTTAGCTAATTCTTCTATTGATATTATTCTTCATGATACATATT ATGTCGTTGCTCATTTTCATTATGTATTATCCATAGGGGCAGTATTTGCTATCATAGCTGGAT TTATTCATTGATTTCCCTTATTCACTGGATTATCTATAAATAGAAAATTTTTGAAAATTCAAT TTCTTATTATATTTATTGGAGTAAATACAACTTTTTTCCCTCAACACTTTTTAGGATTAAGTGG TATACCCCGACGTTACTCTGACTATCCAGATATATACACTTCATGAAATGTAATTTCTTCAAT CGGAAGATTAATTTCACTAGTAAGAATTTTTATTTTATTATTTATTATTTGAGAAAGATTAGT TTCTATACGTAAATCTATTGCTACTCTAAATATACCGTCTTCTATTGAATGATTACAAAAATT ACCCCCTGCTGAACAT

Voucher DRC 12 Label Data: Honduras: Octotepeque, Jun 01 Determination: Ancognatha sellata Arrow, 1911 Depository: UNSM

104

APPENDIX 1 (continued)

TCCCACATTATTANNCNAGAAAGAAGAAAAAATGAAACATTTGGGACACTCGGAATAATCT ATGCTATGATAGCAATTGGGCTATTAGGATTTATCGTGTGGGCCCATCATATGTTCACGGTA GGAATAGACGTCGATACACGAGCTTACTTTACATCCGCTACTATAATTATTGCAGTTCCCAC AGGAATTAAAATTTTTAGGTGACTCGCTACTCTTCATGGGTCTCAACTAAACTACTCCCCCTC TCTTCTTTGAGCTTTGGGGTTTGTTTTTTTATTTACTGTAGGGGGATTAACTGGAGTAATTCTA GCTAATTCTTCTATTGATATTATTCTCCATGATACCTACTATGTAGTTGCCCATTTCCACTATG TCTTATCAATAGGCGCAGTATTTGCTATTATAGCAGGATTTATCCATTGATTTCCATTATTTA CTGGACTTTCAATAAATAATAAATTTTTAAAAATTCAATTTATTATCATATTTATTGGTGTAA ATACAACATTTTTCCCACAGCATTTTTCTAGGATTAAGAGGAATACCCCGTCGTTACTCTGAC TATCCAGATATATATACTACATGAAATGTAATTTCATCTATTGGAAGATTAATTTCATTAGTT AGAATTTTTATTCTCTTATTTATTATTTGAGAAAGATTTGTTTCCATACGAAAAACTCTTGCC CCTTTAAATATACCTTCTTCTATGAATGNNNNCAAAAATTACCCC

Voucher DRC 18 Label Data: Honduras: Olancho, Jul 02 Determination: Mimeoma acuta Arrow, 1902 Depository: UNSM

TCTCATATTATTAGGCAAGAAAGAAGAAAAAATGAAACTTTTGGAACTTTAGGAATAATTTA TGCAATAATAGCTATTGGTTTATTAGGATTTATTGTATGAGCTCATCATATATTTACAGTAGG AATAGACGTAGATACCCGAGCTTATTTTACATCAGCTACTATAATTATTGCAGTACCAACAG GTATTAAAATTTTTAGATGGTTAGCCACACTTCATGGGTCACAATTAAATTATTCCCCTTCCC TTCTTTGAGCATTAGGATTTGTATTCTTATTCACCGTAGGTGGTTTAACAGGAGTAATTTTAG CAAATTCATCTATTGATATCATTTTACATGACACCTATTATGTAGTTGCTCATTTTCATTATGT TTTATCAATAGGAGCAGTATTTGCTATTATAGCAGGTTTTATCCACTGATTCCCTTTATTTACT GGATTATCTATAAATAATAAATTTTTAAAAATTCAATTTATTACTATATTTATCGGTGTTAAT ACAACATTTTTCCCCCAACATTTCTTAGGATTGGGAGGTATACCACGGCGTTATTCTGATTAC CCAGATATATATACTACATGAAATGTTATTTCTTCTATTGGAAGATTAATTTCTCTAGTAAGA ATTTTTATTTTTCTATTTATTATTTGAGAAAGATTAACTTCTATACGAAAAACTCTTTCATCAT TAAATATACCCTCATCTATGAATGNNACAAAAATACCCC

Voucher MRM 2 Label Data: Panama: Chiriqui, Santa Clara Environment. VI-5-2002 Determination: Morphotype 2 Depository: UNSM

TTCCCATATTATTANACAAGAAAGAAGAAAAAATGAAACATTTGGCACATTAGGTATAATTT ATGCTATAATAGCCATTGGACTATTAGGATTTATTGTATGAGCTCATCATATATTCACAGTTG GAATAGATGTTGATACACGAGCCTATTTTACTTCCGCTACAATAATTATTGCAGTTCCTACTG GAATTAAAATTTTTAGTTGATTAGCCACTCTCCACGGATCTCAATTAAATTACTCTCCCTCAC TTCTTTGAGCCTTAGGATTTGTTTTTTTATTTACCGTAGGAGGACTAACAGGCGTAATTTTAG CTAATTCTTCTATTGATATTATTTTACATGATACTTACTATGTTGTTGCCCATTTTCACTATGT GTTATCAATAGGGGCTGTATTTGCTATTATAGCAGGATTTGTTCACTGATTTCCCTTATTCAC AGGTTTATCTATAAATAGAAAATTTTTAAAAATTCAATTTATTATTATATTTATTGGAGTAAA TACAACCTTTTTTCCTCAACATTTTTTAGGATTAAGAGGCATACCTCGACGTTATTCCGATTA CCCAGATATATACACAACATGAAACGTAATTTCATCTATTGGCAGATTAATCTCTTTGGTTAG GATTTTTATTTTCTTATTTATTATTTGAGAAAGATTTATCTCTATACGAAAAACTTTATCCCCT TTAAGAATACCTTCTTCTATTGAATGANTACAAAAACTTCCAC

105

APPENDIX 1 (continued)

Voucher MRM 6 Label Data: Panama: Chiriqui, Santa Clara Environment. VI-5-2002 Determination: Morphotype 2 Depository: UNSM

CTCATATTATTAGCCAAGAAAGAAGAAAAAATGAAACATTTGGGACTTTAGGAATAATTTAT GCAATAATAGCAATTGGTCTCTTAGGTTTTATTGTATGAGCACATCATATATTCACCGTAGGT ATAGATGTGGATACTCGGGCTTATTTTACTTCTGCTACTATAATTATTGCTGTTCCTACAGGA ATTAAAATTTTTAGTTGACTTGCCACTCTACATGGATCTCAGCTAAATTATTCACCCTCACTT CTATGAGCATTAGGTTTTGTATTTCTCTTTACAGTAGGAGGGTTAACTGGAGTTATTCTAGCT AATTCATCAATTGATATTATTCTACATGATACTTACTATGTAGTAGCTCACTTCCATTACGTT TTATCTATAGGAGCTGTTTTTGCTATTATAGCAGGATTTATTCATTGATTCCCTCTATTCNCTG GACTTTCAATAAATAATAAATTTTTAAAAATNAATTTATCATTATATTTATCGGGGTTAATAC AACCTTTTTTCGCAACATTTTTTAGGACTAAGAGGAATACCCCGTCGTTATTCTGATTACCCA GACATATACACTGCATGAAATGTAATTTCATCTATTGGAAGATTAATTTCTTTAGTTAGAATT TTTATCTTTCTTTTTATTGTTTGAGAAAGATTTTCATCAATACGAAAAACCCTTTCCCCATTAA GAATACCC

Voucher MRM 8 Label Data: Honduras: La Paz, Res. Biol. Guajiquiro VI-20-2001 Determination: Cyclocephala sororia Bates, 1888 Depository: UNSM

TNNATTTCTCATATTATTAGCCAAGAAAGAAGAAAAAATGAAACATTTGGNACNTTTAGGA ATAATTTATGCTATAATAGCAATTGGACTCTTAGGATTTATTGTATGAGCCCATCATATATTC ACCGTAGGAATAGATGTGGATACTCGGGCTTATTTTACTTCTGCTACTATAATTATTGCTGTT CCTACAGGAATTAAAATTTTTAGTTGACTTGCTACTCTTCATGGATCTCAGCTAAATTATTCA CCCTCACTTCTATGAGCTTTAGGTTTTGTATTTCTCTTTACAGTAGGAGGATTAACTGGAGTT ATTCTAGCTAATTCATCAATTGATATTATTCTACATGATACTTACTATGTAGTAGCTCACTTC CATTACGTTTTATCTATAGGAGCTGTTTTTGCTATTATAGCAGGATTTATTCATTGATTCCCTT TATTCACTGGACTTTCAATAAATAATAAATTTTTAAAAATCCAATTTATCATTATATTTATCG GAGTTAATACAACCTTTTTTCCNCAACATTTTTTAGGACTAAGAGGAATACCTCGTCGTTATT CTGATTATCCAGACATATACACAGCATGAAATGTAATTTCATCTATTGGAAGATTAATTTCTT TAGTTAGAATTTTTATCTTTCTTTTTATTNTTTGAGAAAGATTTTCATCAATACGAAAAACCC TTTCCCCATTAAGAATACCCTCATCAANGA

Voucher MRM 10 Label Data: Panama: Panama, Cerro Campana 700 m, V-2002 Determination: Cyclocephala zodion Ratcliffe, 1992 Depository: UNSM

TCTCATATTATTAGCCAAGAAAGAAGAAAAAATGAAACATTTGGGACTTTAGGAATAATTTA TGCAATAATAGCAATTGGTCTCTTAGGTTTTATTGTATGAGCACATCATATATTCACCGTAGG TATAGATGTGGATACTCGGGCTTATTTTACTTCTGCTACTATAATTATTGCTGTTCCTACAGG AATTAAAATTTTTAGTTGACTTGCCACTCTACATGGATCTCAGCTAAATTATTCACCCTCACT TCTATGAGCATTAGGTTTTGTATTTCTCTTTACAGTAGGAGGGTTAACTGGAGTTATTCTAGC TAATTCATCAATTGATATTATTCTACATGATACTTACTATGTAGTAGCTCACTTCCATTACGT TTTATCTATAGGAGCTGTTTTTGCTATTATAGCAGGATTTATTCATTGATTCCCTCTATTCACT

106

APPENDIX 1 (continued)

GGACTTTCAATAAATAATAAATTTTTAAAAATCCAATTTATCATTATATTTATCGGGGTTAAT ACAACCTTTTTTCCGCAACATTTTTTAGGACTAAGAGGAATACCCCGTCGTTATTCTGATTAC CCAGACATATACACTGCATGAAATGTAATTTCATCTATTGGAAGATTAATTTCTTTAGTTAGA ATTTTTATCTTTCTTTTTATTGTTTGAGAAAGATTTTCATCAATACGAAAAACCCTTTCCCCAT TAAGAATACCCTCATCAATTGAATGGNNACAAAAGCTTCCTC

Voucher MRM 11 Label Data: Panama: Panama, Cerro Campana 700 m, V-2002 Determination: Cyclocephala sp. Depository: UNSM

TTCACTCACTCTTCTTCTCTCAAGAAGAATAGTAGAAAACGGGGCAGGGACTGGGTGAACTG TCTACCCTCCTCTATCATCTAATATTGCTCATAGAGGAGCTTCTGTAGATCTTGCTATTTTTAG TTTACATTTAGCAGGTATTTCTTCAATTCTAGGAGCTGTAAATTTTATTACTACAGTTATTAA TATACGATCAACAGGTATAACATTTGATCGAATACCGTTATTTGTGTGATCAGTTATATTAAC TGCTATTTTACTTCTTCTTTCTCTCCCTGTTTTAGCTGGAGCTATCACTATATTATTAACAGAC CGAAATATTAATACAACTTTTTTCGACCCTGCCGGAGGGGGTGACCCTATTCTTTACCAACAT TTGTTTTGATTTTTTGGACACCCTGAAGTTTATATTTTAATTCTACCAGGATTTGGTATAATTT CTCATATTATTAGCCAAGAAAGAAGAAAAAATGAAACATTTGGGACTTTAGGAATAATTTAT GCAATAATAGCAATTGGTCTCTTAGGTTTTATTGTATGAGCACATCATATATTCACCGTAGGT ATAGATGTGGATACTCGGGCTTATTTTACTTCTGCTACTATAATTATTGCTGTTCCTACAGGA ATTAAAATTTTTAGTTGACTTGCCACTCTACATGGATCTCAGCTAAATTATTCACCCTCACTT CTATGAGCATTAGGTTTTGTATTTCTCTTTACAGTAGGAGGGTTAACTGGAGTTATTCTAGCT AATTCATCAATTGATATTATTCTACATGATACTTACTATGTAGTAGCTCACTTCCATTACGTT TTATCTATAGGAGCTGTTTTTGCTATTATAGCAGGATTTATTCATTGATTCCCTCTATTCACTG GACTTTCAATAAATAATAAATTTTTAAAAATCCAATTTATCATTATATTTATCGGGGTTAATA CAACCTTTTTTCCGCAACATTTTTTAGGACTAAGAGGAATACCCCGTCGTTATTCTGATTACC CAGACATATACACTGCATGAAATGTAATTTCATCTATTGGAAGATTAATTTCTTTAGTTAGAA TTTTTATCTTTCTTTTTATTGTTTGAGAAAGATTTTCATCAATACGAAAAACCCTTTCCCCATT AAGAATACCCTCATCAATTGAATGGTTACAAAAGCTTCCTCCTGCTGAACAT

Voucher MRM 12 Label Data: Panama: Panama, Cerro Campana 700 m, V-2002 Determination: Morphotype 3 Depository: UNSM

AATTTCTCATATTATTAGCCAAGAAAGAAGAAAAAATGAAACATTTGGGACTTTAGGAATA ATTTATGCAATAATAGCAATTGGTCTCTTAGGTTTTATTGTATGAGCACATCATATATTCACC GTAGGTATAGATGTGGATACTCGGGCTTATTTTACTTCTGCTACTATAATTATTGCTGTTCCT ACAGGAATTAAAATTTTTAGTTGACTTGCCACTCTACATGGATCTCAGCTAAATTATTCACCC TCACTTCTATGAGCATTAGGTTTTGTATTTCTCTTTACAGTAGGAGGGTTAACTGGAGTTATT CTAGCTAATTCATCAATTGATATTATTCTACATGATACTTACTATGTAGTAGCTCACTTCCAT TACGTTTTATCTATAGGAGCTGTTTTTGCTATTATAGCAGGATTTATTCATTGATTCCCTCTAT TCACTGGACTTTCAATAAATAATAAATTTTTAAAAATCCAATTTATCATTATATTTATCGGGG TTAATACAACCTTTTTTCCGCAACATTTTTTAGGACTAAGAGGAATACCCCGTCGTTATTCTG ATTACCCAGACATATACACTGCATGAAATGTAATTTCATCTATTGGAAGATTAATTTCTTTAG TTAGAATTTTTATCTTTCTTTTTATTGTTTGAGAAAGATTTTCATCAATACGAAAAACCCTTTC CCCATTAAGAATACCCTCATCAATTGAATGGTTACAAAAGCTTCCTCC

107

APPENDIX 1 (continued)

Voucher MRM 15 Label Data: Guatemala: Suchitepequez, Patulul, Los Terrales Private Reserve VII-8-2009 Determination: Morphotype 1 Depository: UNSM

GGGGCAGGAACAGGTTGAACTGTTTACCCCCCTCTATCATCTAATATTGCTCATAGAGGAGC TTCAGTAGACTTAGCCATTTTTAGTCTTCATTTAGCTGGAATTTCTTCTATTCTAGGTGCAGTA AATTTTATTACAACAGTGATTAATATGCGATCAACAGGAGTAACTTTTGATCGAATACCCTT ATTTGTATGATCAGTTATACTAACAGCTATTTTACTTTTATTATCACTTCCTGTTTTAGCTGGT GCAATTACTATATTATTAACAAATCGAAACATTAATACAACATTTTTTGATCCTGCTGGGGG AGGGGATCCTATTCTTTACCAACATTTATTTTGATTTTTTGGACATCCTGAAGTTTACATTTTA ATTCTACCAGGCTTTGGTATAATTTCCCATATTATAGACAAGAAAGAAGAAAAAATGAAACA TTTGGAACATTAGGTATAATTTATGCTATAATAGCCATTGGACTATTAGGATTTATTGTATGA GCTCATCATATATTCACAGTTGGAATAGACGTTGATACACGAGCCTATTTTACTTCAGCTACA ATAATTATTGCAGTTCCTACTGGAATTAAAATTTTTAGTTGATTAGCCACTCTTCATGGATCC CAATTAAATTACTCCCCCTCGCTTCTTTGAGCCTTAGGATTTGTTTTTTTATTTACCGTGGGAG GACTAACAGGTGTAATTTTAGCTAATTCCTCTATTGATATTATTTTACATGATACTTACTACG TTGTTGCTCATTTTCACTATGTGTTATCAATAGGGGCTGTATTTGCTATTATAGCAGGATTTG TTCACTGATTTCCCCTATTCACAGGTTTATCTATAAATAGAAAATTTTTAAAAATCCAATTTA TTATTATATTTATTGGAGTAAATACAACCTTTTTTCCTCAACATTTTTTAGGATTAAGAGGTA TGCCTCGACGTTATTCCGATTATCCAGATATATACACAACATGAAACGTAATTTCATCTATTG GTAGATTAATCTCTTTAGTTAGAATTTTTATTTTCTTATTTATTATTTGAGAAAGATTTATCTC TATACGAAAAACTTTATCCCCTTTAAGAATACCTTCTTCTATTGAATGATTACAAAAACTTCC ACCTGCNGAACA

Voucher MRM 31 Label Data: Ecuador: Carnar 2 KM E Cochancy III-28-2000 Determination: Morphotype 3 Depository: UNSM

ATTTGGTATAATTTCTCATATTATTAGCCAAGAAAGAAGAAAAAATGAAACATTTGGGACTT TAGGAATAATTTATGCAATAATAGCAATTGGTCTCTTAGGTTTTATTGTATGAGCACATCATA TATTCACCGTAGGTATAGATGTGGATACTCGGGCTTATTTTACTTCTGCTACTATAATTATTG CTGTTCCTACAGGAATTAAAATTTTTAGTTGACTTGCCACTCTACATGGATCTCAGCTAAATT ATTCACCCTCACTTCTATGAGCATTAGGTTTTGTATTTCTCTTTACAGTAGGAGGGTTAACTG GAGTTATTCTAGCTAATTCATCAATTGATATTATTCTACATGATACTTACTATGTAGTAGCTC ACTTCCATTACGTTTTATCTATAGGAGCTGTTTTTGCTATTATAGCAGGATTTATTCATTGATT CCCTCTATTCACTGGACTTTCAATAAATAATAAATTTTTAAAAATCCAATTTTATCATTATAT TTATCGGGGTTAATACAACCTTTTTTCCGCAACATTTTTTAGGACTAAGAGGAATACCCCGTC GTTATTCTGATTACCCAGACATATACACTGCATGAAATGTAATTTCATCTATTGGAAGATTAA TTTCTTTAGTTAGAATTTTTATCTTTCTTTTTATTGTTTGAGAAAGATTTTCATCAATACGAAA AACCCTTTCCCCATTAAGAATACCCTCATCAATTGAATGGTTACAAAAGCTTCCTCCTGCNN AACATAG

Voucher MRM 32 Label Data: Nicaragua: Jinotega Cerro Kilambe Camp 2 1400 m IV-23/30-2001 Determination: Morphotype 3

108

APPENDIX 1 (continued)

Depository: UNSM

GATTTGGTATAATTTCTCATATTATTAGCCAAGAAAGAAGAAAAAATGAAACATTTGGGACT TTAGGAAAATTTATGCAATAATAGCAATTGGTCTCTTAGGTTTTATTGTATGAGCACATCATA TATTCACCGTAGGTATAGATGTGGATACTCGGGCTTATTTTACTTCTGCTACTATAATTATTG CTGTTCCTACAGGAATTAAAATTTTTAGTTGACTTGCCACTCTACATGGATCTCAGCTAAATT ATTCACCCTCACTTCTATGAGCATTAGGTTTTGTATTTCTCTTTACAGTAGGAGGGTTAACTG GAGTTATTCTAGCTAATTCATCAATTGATATTATTCTACATGATACTTACTATGTAGTAGCTC ACTTCCATTACGTTTTATCTATAGGAGCTGTTTTTGCTATTATAGCAGGATTTATTCATTGATT CCCTCTATTCACTGGACTTTCAATAAATAATAAATTTTTAAAAATCCAATTTATCATTATATT TATCGGGGTTAATACAACCTTTTTTCCGCAACATTTTTTAGGACTAAGAGGAATACCCCGTCG TTATTCTGATTACCCAGACATATACACTGCATGAAATGTAATTTCATCTATTGGAAGATTAAT TTCTTTAGTTAGAATTTTTATCTTTCTTTTTATTGTTTGAGAAAGATTTTCATCAATACGAAAA ACCCTTTCCCCATTAAGAATACCCTCATCAATTGAATGGTTACAAAAGCTTCCTCCTGCNNA ACATAG

Voucher MRM 33 Label Data: Nicaragua: Jinotega Cerro Kilambe Camp 2 1400 m IV-23/30-2001 Determination: Morphotype 3 Depository: UNSM

TTCTGACTCTTGCCCCCTTCACTCACTCTTCTTCTCTCAAGAAGAATAGTAGAAAACGGGGCA GGGACTGGGTGAACTGTCTACCCTCCTCTATCATCTAATATTGCTCATAGAGGAGCTTCTGTA GATCTTGCTATTTTTAGTTTACATTTAGCAGGTATTTCTTCAATTCTAGGAGCTGTAAATTTTA TTACTACAGTTATTAATATACGATCAACAGGTATAACATTTGATCGAATACCGTTATTTGTGT GATCAGTTATATTAACTGCTATTTTACTTCTTCTTTCTCTCCCTGTTTTAGCTGGAGCTATCAC TATATTATTAACAGACCGAAATATTAATACAACTTTTTTCGACCCTGCCGGAGGGGGTGACC CTATTCTTTACCAACATTTGTTTTGATTTTTTGGACACCCTGAAGTTTATATTTTAATTCTACC AGGATTTGGTATAATTTCTCATATTATTAGCCAAGAAAGAAAAAAAAAATGAAACATTTGGG ACTTTAGGAATAATTTATGCAATAATAGCAATTGGTCTCTTAGGTTTTATTGTATGAGCACAT CATATATTCACCGTAGGTATAGATGTGGATACCTCGGGCTTATTTTTACTTCTGCTACTATAA TTATTGCTGTTCCTACAGGAATTAAAATTTTTAGTTGACTTGCCACTCTACATGGATCTCAGC TAAATTATTCACCCTCACTTCTATGAGCATTAGGTTTTGTATTTCTCTTTACAGTAGGAGGGT TAACTGGAGTTATTCTAGCTAATTCATCAATTGATATTATTCTACATGATACTTACTATGTAG TAGCTCACTTCCATTACGTTTTATCTATAGGAGCTGTTTTTGCTATTATAGCAGGATTTATTCA TTGATTCCCTCTATTCACTGGACTTTCAATAAATAATAAATTTTTAAAAATCCAATTTATCAT TATATTTATCGGGGTTAATACAACCTTTTTTCCGCAACATTTTTTAGGACTAAGAGGAATACC CCGTCGTTATTCTGATTACCCAGACATATACACTGCATGAAATGTAATTTCATCTATTGGAAG ATTAATTTCTTTAGTTAGAATTTTTATCTTTCTTTTTATTGTTTGAGAAAGATTTTCATCAATA CGAAAAACCCTTTCCCCATTAAGAATACCCTCATCAATTGAATGGTTACAAAAGCTTCCTCC T

Voucher MRM 38 Label Data: Costa Rica: San Ramon de la Union 1782 m VII-17-2003 Determination: Morphotype 2 Depository: UNSM

109

APPENDIX 1 (continued)

ATTTGGTATAATTTCTCATATTATTAGCCAAGAAAGAAGAAAAAATGAAACATTTGGGACTT TAGGAATAATTTATGCAATAATAGCAATTGGTCTCTTAGGTTTTATTGTATGAGCACATCATA TATTCACCGTAGGTATAGATGTGGATACTCGGGCTTATTTTACTTCTGCTACTATAATTATTG CTGTTCCTACAGGAATTAAAATTTTTAGTTGACTTGCCACTCTACATGGATCTCAGCTAAATT ATTCACCCTCACTTCTATGAGCATTAGGTTTTGTATTTCTCTTTACAGTAGGAGGGTTAACTG GAGTTATTCTAGCTAATTCATCAATTGATATTATTCTACATGATACTTACTATGTAGTAGCTC ACTTCCATTACGTTTTATCTATAGGAGCTGTTTTTGCTATTATAGCAGGATTTATTCATTGATT CCCTCTATTCACTGGACTTTCAATAAATAATAAATTTTTAAAAATCCAATTTATCATTATATT TATCGGGGTTAATACAACCTTTTTTCCGCAACATTTTTTAGGACTAAGAGGAATACCCCGTCG TTATTCTGATTACCCAGACATATACACTGCATGAAATGTAATTTCATCTATTGGAAGATTAAT TTCTTTAGTTAGAATTTTTATCTTTCTTTTTATTGTTTGAGAAAGATTTTCATCAATACGAAAA ACCCTTTCCCCATTAAGAATACCCTCATCAATTGAATGGTTACAAAAGCTTCCTCCTGCNNA ACATAG

Voucher MRM 44 Label Data: Peru: Oralanda Dept. Loredo Madre Selva 120 m V-10-2003 Determination: Morphotype 2 Depository: UNSM

ATTTCTCACATTATTAGACAAGAAAGAAGAAAAAATGAAACATTTGGAACATTAGGAATAA TTTATGCGATAATAGCAATTGGACTGTTAGGATTTATTGTATGAGCACATCATATATTTACAG TGGGAATAGATGTTGACACACGAGCTTATTTTACTTCAGCTACAATAATTATTGCTGTTCCTA CGGGAATTAAAATTTTCAGATGACTAGCAACTCTTCATGGATCCCAATTAAATTATTCTCCTT CACTTTTATGGGCCCTAGGATTTGTTTTTCTATTTACAGTTGGGGGTTTAACGGGAGTAATTT TAGCCAATTCTTCTATTGATATCATCTTACATGATACTTATTATGTTGTTGCTCATTTTCACTA TGTTTTATCAATAGGGGCTGTATTTGCCATTATAGCCGGATTTGTTCACTGATTCCCTCTATTT ACAGGATTATCTATAAATAGAAAATTCCTAAAAATTCAATTTATTATCATATTTATTGGAGTT AACACAACATTTTTTCCTCAACATTTCCTCGGATTAAGGGGGATACCTCGACGTTATTCTGAC TATCCTGATATATACACAACATGAAATGTAATTTCATCTATTGGCAGATTAATTTCTTTAGTG AGAATTTTTGTTTTTTTATTTATTATCTGAGAAAGATTTATTTCTATGCGAAAAACATTATCA CCATTAAGAATACCATCATCAATTGAATGATTACAAAAACTTCCAC

Voucher MRM 76 Label Data: USA: KS Kingman Co. Gerber Reserve, V-21-2010. Coll. M. R. Moore Determination: Dyscinetus morator (Fabricius, 1798) Depository: Wichita State University

CTCATATTATTAGACAAGAAAGAAGAAAAAATGAAACATTTGGAACTTTGGGTATAATTTAT GCAATAATAGCAATTGGTCTATTAGGATTTATTGTATGGGCCCATCATATATTTACAGTGGG AATAGATGTTGATACCCGAGCATATTTTACTTCTGCCACTATAATTATTGCTGTTCCAACAGG AATTAAAATTTTTAGATGACTAGCAACACTACATGGATCTCAATTAAATTACTCACCATCATT ACTTTGAGCATTNGGATTTGTATTTTTATTTACAGTAGGAGGATTAACCGGAGTTATTTTAGC TAATTCTTCAATTGACATTATCCTACATGATACATATTATGTAGTAGCCCATTTTCACTATGT CCTATCAATAGGAGCTGTATTTGCTATTATAGCAGGATTTATCCATTGATTCCCTCTATTCAC TGGATTAATAATAAATAATAAATTTTTAAAAATTCAATTTATTATTATATTTATTGGTGTTAA TACAACTTTTTTCCCACAACATTTTTTAGGGCTTAGAGGAATACCTCGACGATATTCTGATTA CCCAGACATGTATACTACATGAAACGTAATTTCATCTATTGGCAGATTAATTTCATTAGTAA

110

APPENDIX 1 (continued)

GAATTTTTATTTTCTTATTTATTATTTGAGAAAGATTTGTATCAATACGAAAAACCCTAGCTC CTCTAAGAATACCTTCATCTATTGAATGATTGCAAAAACTTCCACC

Voucher MRM 78 Label Data: USA: KS Wilson Co. Twin Cedars State Park. 37°45'119" N 98° 56' 747" W (955ft) VII-11- 2010. Coll. M. R. Moore Determination: Bland, 1863 Depository: Wichita State University

TTGGTATAATTTCTCATATTATTAGCCAAGAAAGAAGAAAAAATGAAACATTTGGGACTTTA GGAATAATTTATGCAATAATAGCAATTGGTCTCTTAGGTTTTATTGTATGAGCACATCATATA TTCACCGTAGGTATAGATGTGGATACTCGGGCTTATTTTACTTCTGCTACTATAATTATTGCT GTTCCTACAGGAATTAAAATTTTTAGTTGACTTGCCACTCTACATGGATCTCAGCTAAATTAT TCACCCTCACTTCTATGAGCATTAGGTTTTGTATTTCTCTTTACAGTAGGAGGGTTAACTGGA GTTATTCTAGCTAATTCATCAATTGATATTATTCTACATGATACTTACTATGTAGTAGCTCAC TTCCATTACGTTTTATCTATAGGAGCTGTTTTTGCTATTATAGCAGGATTTATTCATTGATTCC CTCTATTCACTGGACTTTCAATAAATAATAAATTTTTAAAAATCCAATTTATCATTATATTTA TCGGGGTTAATACAACCTTTTTTCCGCAACATTTTTTAGGACTAAGAGGAATACCCCGTCGTT ATTCTGATTACCCAGACATATACACTGCATGAAATGTAATTTCATCTATTGGAAGATTAATTT CTTTAGTTAGAATTTTTATCTTTCTTTTTATTGTTTGAGAAAGATTTTCATCAATACGAAAAAC CCTTTCCCCATTAAGAATACCCTCATCAATTGAATGGTTACAAAAGCTTCCTCCTGCTGAACA T

Voucher MRM 79 Label Data: USA: KS Wilson Co. Twin Cedars State Park. 37°45'119" N 98° 56' 747" W (955ft) VII-11- 2010. Coll. M. R. Moore Determination: LeConte, 1861 Depository: Wichita State University

CCAGGATTTGGGATAATTTCTCATATTATTAGGCAAGAAAGAAGAAAAAACGAAACATTTG GAACTTTAGGTATAATTTATGCAATAATAGCAATTGGTCTATTAGGTTTTATTGTTTGAGCTC ATCACATATTCACAGTAGGAATAGATGTGGATACCCGAGCATACTTTACATCTGCTACAATA ATTATCGCAGTTCCTACAGGAATTAAAATTTTTAGATGACTAGCCACTCTTCACGGATCTCAA TTAAATTACTCTCCATCACTTTTATGGGCTTTAGGATTTGTATTTTTATTTACAGTAGGAGGA TTAACAGGAGTAATTTTAGCTAACTCTTCAATTGATATTATTTTACATGATACATATTATGTA GTTGCTCATTTTCATTACGTATTATCTATAGGGGCAGTATTTGCAATTATAGGGGGATTTATC CACTGATTTCCATTATTTACAGGAGTATCCATAAATAATAAATTTTTAAAAATTCAGTTTATT ATTATATTTATTGGAGTTAATACTACATTTTTTCCACAACATTTTTTAGGTTTAAGCGGCATC CCCGTCGATATTCTGATTATCCTGATATATATACTGCATGGAATGTAGTCTCTTCTATCGGTA GACTAATTTCATTAGTTAGAATTTTTATTTTTTTATTTATTATCTGAGAAAGATTTGCATCAAT ACGAAAAACTATCTCTTCTCTAAATATATCATCTTCAATTGAATGACTTCAAAAATTTCCCCC AGCTGAACATAGATA

Voucher MRM 95 Label Data: Venezuela: Merida, 2 km N Estacion Santa Rosa ULA/UCV nr. La Hechicera 1700 m. 1- May-1988 Determination: Cyclocephala tutilina Burmeister, 1847 Depository: UNSM

111

APPENDIX 1 (continued)

ATTTCTCACATTATTAGACAAGAAAGAAGAAAAAATGAAACATTTGGAACATTAGGAATAA TTTATGCGATAATAGCAATTGGACTGTTAGGATTTATTGTATGAGCACATCATATATTTACAG TGGGAATAGATGTTGACACACGAGCTTATTTTACTTCAGCTACAATAATTATTGCTGTTCCTA CGGGAATTAAAATTTTCAGATGACTAGCAACTCTTCATGGATCCCAATTAAATTATTCTCCTT CACTTTTATGGGCCCTAGGATTTGTTTTTCTATTTACAGTTGGGGGTTTAACGGGAGTAATTT TAGCCAATTCTTCTATTGATATCATCTTACATGATACTTATTATGTTGTTGCTCATTTTCACTA TGTTTTATCAATAGGGGCTGTATTTGCCATTATAGCCGGATTTGTTCACTGATTCCCTCTATTT ACAGGATTATCTATAAATAGAAAATTCCTAAAAATTCAATTTATTATCATATTTATTGGAGTT AACACAACATTTTTTCCTCAACATTTCCTCGGATTAAGGGGGATACCTCGACGTTATTCTGAC TATCCTGATATATACACAACATGAAATGTAATTTCATCTATTGGCAGATTAATTTCTTTAGTG AGAATTTTTGTTTTTTTATTTATTATCTGAGAAAGATTTATTTCTATGCGAAAAACATTATCCC ATTAAGAATACCATCATCAATTGAATGATTACAAAAACTTCCAC

Voucher MRM 105 Label Data: Honduras: Olancho, La Picucha, Hotel de Lujo, 14.93368 -85.90361, 1234 m, 7-12.V.2010 R.S. Anderson Determination: Cyclocephala lunulata Burmeister, 1847 Depository: Wichita State University

CTCTTAAGATTCATTGTCTGAGCCCACCATATGTTTACTGTCGGAATAGATGTTGATACCCGG GCATATTTTACTTCCCCCACTATAATTATTGCANTTCCAACANGAATTAAAATTTTTAGATGA CTAGCCACATTGCACGGGTCCCAACTAAACTATTCCCCGTCACTACTTTGATCCATAGGATTT GTTTTCCTATTTACAGTTGGTGGACTAACTGGGGTTATTTTGGCTAATTCCTCTATTGATATTA TTCTCCATGACACATACTATGTTGTAGCACATTTTCATTACGTTTTATCAATAGGGGCTGTTT TTGCTATTATAGCAGGATTTATCCACTGATTTCCACTTTTTACTGGACTTTCTATAAATAGTA AATTTTTAAAAATTCAATTTATTATTATATTTATTGGAGTTAACTCAACATTTTTCCCTCAACA TTTCTTAGGATTAAGCGGGATACCCCGTCGGTATTCTGATTACCCCGACATATACACTACATG AAATGTAATCTCATCAATTGGAAGTTTAATTTCTTTAGTAAGAATTTTTATTTTCCTCTTTATT ATTTGAGAAAGGTTTTCTTCAATACGAAAAACCCTTTCCCCCTTAAATATACCGTCATCAATT GAANGANTACAAAAACTTCCT

112

APPENDIX 2

MITOCHONDRIAL CO1 ALIGNMENT

....|....| ....|....| ....|....| ....|....| ....|....| 10 20 30 40 50 P.hirticul CTTTTAGGAT TTATTGTTTG AGCACATCAT ATATTTACAG TGGGAATAGA P.profunda CTTTTAGGAT TTATTGTTTG AGCACATCAT ATATTTACAG TAGGAATGGA P.balia CTTTTAGGAT TTATTGTATG GGCACACCAT ATATTTACTG TCGGGATAGA P.bipartit CTTTTAGGAT TTATTGTGTG AGCACATCAC ATATTTACTG TGGGAATGGA P.horticol TTACTTGGAT TTATTGTATG AGCACACCAT ATATTTACAG TTGGAATAGA MRM10conti CTCTTAGGTT TTATTGTATG AGCACATCAT ATATTCACCG TAGGTATAGA MRM44conti CTGTTAGGAT TTATTGTATG AGCACATCAT ATATTTACAG TGGGAATAGA MRM78Conti CTCTTAGGTT TTATTGTATG AGCACATCAT ATATTCACCG TAGGTATAGA MRM11conti CTCTTAGGTT TTATTGTATG AGCACATCAT ATATTCACCG TAGGTATAGA MRM76Conti CTATTAGGAT TTATTGTATG GGCCCATCAT ATATTTACAG TGGGAATAGA MRM105Cont CTCTTAAGAT TCATTGTCTG AGCCCACCAT ATGTTTACTG TCGGAATAGA MRM79Conti CTATTAGGTT TTATTGTTTG AGCTCATCAC ATATTCACAG TAGGAATAGA MRM15conti CTATTAGGAT TTATTGTATG AGCTCATCAT ATATTCACAG TTGGAATAGA DRC1Contig CTTTTAGGAT TTATCGTTTG AGCTCATCAT ATATTTACTG TTGGAATGGA MRM32conti CTCTTAGGTT TTATTGTATG AGCACATCAT ATATTCACCG TAGGTATAGA DRC18conti TTATTAGGAT TTATTGTATG AGCTCATCAT ATATTTACAG TAGGAATAGA MRM38conti CTCTTAGGTT TTATTGTATG AGCACATCAT ATATTCACCG TAGGTATAGA MRM8contig CTCTTAGGAT TTATTGTATG AGCCCATCAT ATATTCACCG TAGGAATAGA DRC12conti CTATTAGGAT TTATCGTGTG GGCCCATCAT ATGTTCACGG TAGGAATAGA MRM33conti CTCTTAGGTT TTATTGTATG AGCACATCAT ATATTCACCG TAGGTATAGA MRM12conti CTCTTAGGTT TTATTGTATG AGCACATCAT ATATTCACCG TAGGTATAGA MRM31conti CTCTTAGGTT TTATTGTATG AGCACATCAT ATATTCACCG TAGGTATAGA MRM2contig CTATTAGGAT TTATTGTATG AGCTCATCAT ATATTCACAG TTGGAATAGA MRM6contig CTCTTAGGTT TTATTGTATG AGCACATCAT ATATTCACCG TAGGTATAGA MRM95conti CTGTTAGGAT TTATTGTATG AGCACATCAT ATATTTACAG TGGGAATAGA

....|....| ....|....| ....|....| ....|....| ....|....| 60 70 80 90 100 P.hirticul TGTGGATAC- TCGTGCCTAT TTC-ACTTCT GCAACTATAA TTATTGCAGT P.profunda CGTAGATAC- TCGTGCCTAT TTC-ACTTCA GCAACTATAA TTATTGCAGT P.balia TGTAGATAC- ACGGGCCTAC TTC-ACTTCT GCAACTATGA TTATTGCCGT P.bipartit CGTGGATAC- ACGGGCCTAT TTC-ACTTCA GCAACTATAA TTATTGCAGT P.horticol TGTTGATAC- CCGAGCTTAC TTT-ACCTCA GCTACAATAA TTATTGCAGT MRM10conti TGTGGATAC- TCGGGCTTAT TTT-ACTTCT GCTACTATAA TTATTGCTGT MRM44conti TGTTGACAC- ACGAGCTTAT TTT-ACTTCA GCTACAATAA TTATTGCTGT MRM78Conti TGTGGATAC- TCGGGCTTAT TTT-ACTTCT GCTACTATAA TTATTGCTGT MRM11conti TGTGGATAC- TCGGGCTTAT TTT-ACTTCT GCTACTATAA TTATTGCTGT MRM76Conti TGTTGATAC- CCGAGCATAT TTT-ACTTCT GCCACTATAA TTATTGCTGT MRM105Cont TGTTGATAC- CCGGGCATAT TTT-ACTTCC CCCACTATAA TTATTGCANT MRM79Conti TGTGGATAC- CCGAGCATAC TTT-ACATCT GCTACAATAA TTATCGCAGT MRM15conti CGTTGATAC- ACGAGCCTAT TTT-ACTTCA GCTACAATAA TTATTGCAGT DRC1Contig TGTTGATAC- ACGAGCCTAT TTT-ACATCA GCCACAATAA TTATTGCTGT MRM32conti TGTGGATAC- TCGGGCTTAT TTT-ACTTCT GCTACTATAA TTATTGCTGT DRC18conti CGTAGATAC- CCGAGCTTAT TTT-ACATCA GCTACTATAA TTATTGCAGT MRM38conti TGTGGATAC- TCGGGCTTAT TTT-ACTTCT GCTACTATAA TTATTGCTGT MRM8contig TGTGGATAC- TCGGGCTTAT TTT-ACTTCT GCTACTATAA TTATTGCTGT DRC12conti CGTCGATAC- ACGAGCTTAC TTT-ACATCC GCTACTATAA TTATTGCAGT MRM33conti TGTGGATACC TCGGGCTTAT TTTTACTTCT GCTACTATAA TTATTGCTGT

113

APPENDIX 2 (continued)

MRM12conti TGTGGATAC- TCGGGCTTAT TTT-ACTTCT GCTACTATAA TTATTGCTGT MRM31conti TGTGGATAC- TCGGGCTTAT TTT-ACTTCT GCTACTATAA TTATTGCTGT MRM2contig TGTTGATAC- ACGAGCCTAT TTT-ACTTCC GCTACAATAA TTATTGCAGT MRM6contig TGTGGATAC- TCGGGCTTAT TTT-ACTTCT GCTACTATAA TTATTGCTGT MRM95conti TGTTGACAC- ACGAGCTTAT TTT-ACTTCA GCTACAATAA TTATTGCTGT

....|....| ....|....| ....|....| ....|....| ....|....| 110 120 130 140 150 P.hirticul TCCTACTGGA ATTAAAATTT TCAGTTGATT AGCTACACTT CATGGTTCCC P.profunda TCCTACTGGA ATTAAAATTT TTAGTTGATT AGCAACACTT CATGGCTCCC P.balia TCCAACTGGA ATTAAAATTT TCAGATGATT AGCTACACTT CACGGCTCTC P.bipartit TCCTACTGGA ATTAAAATTT TCAGCTGATT AGCAACACTT CATGGATCTC P.horticol ACCTACAGGA ATCAAAATTT TTAGATGACT TGCAACTTTA CATGGATCTC MRM10conti TCCTACAGGA ATTAAAATTT TTAGTTGACT TGCCACTCTA CATGGATCTC MRM44conti TCCTACGGGA ATTAAAATTT TCAGATGACT AGCAACTCTT CATGGATCCC MRM78Conti TCCTACAGGA ATTAAAATTT TTAGTTGACT TGCCACTCTA CATGGATCTC MRM11conti TCCTACAGGA ATTAAAATTT TTAGTTGACT TGCCACTCTA CATGGATCTC MRM76Conti TCCAACAGGA ATTAAAATTT TTAGATGACT AGCAACACTA CATGGATCTC MRM105Cont TCCAACANGA ATTAAAATTT TTAGATGACT AGCCACATTG CACGGGTCCC MRM79Conti TCCTACAGGA ATTAAAATTT TTAGATGACT AGCCACTCTT CACGGATCTC MRM15conti TCCTACTGGA ATTAAAATTT TTAGTTGATT AGCCACTCTT CATGGATCCC DRC1Contig CCCTACTGGT ATTAAAATTT TTAGATGATT AGCAACACTT CATGGGTCAC MRM32conti TCCTACAGGA ATTAAAATTT TTAGTTGACT TGCCACTCTA CATGGATCTC DRC18conti ACCAACAGGT ATTAAAATTT TTAGATGGTT AGCCACACTT CATGGGTCAC MRM38conti TCCTACAGGA ATTAAAATTT TTAGTTGACT TGCCACTCTA CATGGATCTC MRM8contig TCCTACAGGA ATTAAAATTT TTAGTTGACT TGCTACTCTT CATGGATCTC DRC12conti TCCCACAGGA ATTAAAATTT TTAGGTGACT CGCTACTCTT CATGGGTCTC MRM33conti TCCTACAGGA ATTAAAATTT TTAGTTGACT TGCCACTCTA CATGGATCTC MRM12conti TCCTACAGGA ATTAAAATTT TTAGTTGACT TGCCACTCTA CATGGATCTC MRM31conti TCCTACAGGA ATTAAAATTT TTAGTTGACT TGCCACTCTA CATGGATCTC MRM2contig TCCTACTGGA ATTAAAATTT TTAGTTGATT AGCCACTCTC CACGGATCTC MRM6contig TCCTACAGGA ATTAAAATTT TTAGTTGACT TGCCACTCTA CATGGATCTC MRM95conti TCCTACGGGA ATTAAAATTT TCAGATGACT AGCAACTCTT CATGGATCCC

....|....| ....|....| ....|....| ....|....| ....|....| 160 170 180 190 200 P.hirticul AACTAAATTA TTCCCCCTCT TTACTTTGAA CTTTAGGCTT TGTATTTTTA P.profunda AACTAAATTA TTCCCCTTCC TTACTTTGAA CTTTAGGCTT TGTATTTTTA P.balia AACTTAACTA CTCTCCTTCT TTACTTTGAG CCTTAGGTTT TGTATTTTTA P.bipartit AGTTAAATTA TTCCCCCTCT TTACTTTGAG CTTTAGGGTT TGTATTTTTA P.horticol AACTTAATTA TTCACCTTCA TTACTTTGAG CTCTTGGCTT TGTATTTTTA MRM10conti AGCTAAATTA TTCACCCTCA CTTCTATGAG CATTAGGTTT TGTATTTCTC MRM44conti AATTAAATTA TTCTCCTTCA CTTTTATGGG CCCTAGGATT TGTTTTTCTA MRM78Conti AGCTAAATTA TTCACCCTCA CTTCTATGAG CATTAGGTTT TGTATTTCTC MRM11conti AGCTAAATTA TTCACCCTCA CTTCTATGAG CATTAGGTTT TGTATTTCTC MRM76Conti AATTAAATTA CTCACCATCA TTACTTTGAG CATTNGGATT TGTATTTTTA MRM105Cont AACTAAACTA TTCCCCGTCA CTACTTTGAT CCATAGGATT TGTTTTCCTA MRM79Conti AATTAAATTA CTCTCCATCA CTTTTATGGG CTTTAGGATT TGTATTTTTA MRM15conti AATTAAATTA CTCCCCCTCG CTTCTTTGAG CCTTAGGATT TGTTTTTTTA DRC1Contig AATTAAATTA TTCACCCTCT CTACTTTGAG CTTTAGGGTT TGTTTTCTTA MRM32conti AGCTAAATTA TTCACCCTCA CTTCTATGAG CATTAGGTTT TGTATTTCTC

114

APPENDIX 2 (continued)

DRC18conti AATTAAATTA TTCCCCTTCC CTTCTTTGAG CATTAGGATT TGTATTCTTA MRM38conti AGCTAAATTA TTCACCCTCA CTTCTATGAG CATTAGGTTT TGTATTTCTC MRM8contig AGCTAAATTA TTCACCCTCA CTTCTATGAG CTTTAGGTTT TGTATTTCTC DRC12conti AACTAAACTA CTCCCCCTCT CTTCTTTGAG CTTTGGGGTT TGTTTTTTTA MRM33conti AGCTAAATTA TTCACCCTCA CTTCTATGAG CATTAGGTTT TGTATTTCTC MRM12conti AGCTAAATTA TTCACCCTCA CTTCTATGAG CATTAGGTTT TGTATTTCTC MRM31conti AGCTAAATTA TTCACCCTCA CTTCTATGAG CATTAGGTTT TGTATTTCTC MRM2contig AATTAAATTA CTCTCCCTCA CTTCTTTGAG CCTTAGGATT TGTTTTTTTA MRM6contig AGCTAAATTA TTCACCCTCA CTTCTATGAG CATTAGGTTT TGTATTTCTC MRM95conti AATTAAATTA TTCTCCTTCA CTTTTATGGG CCCTAGGATT TGTTTTTCTA

....|....| ....|....| ....|....| ....|....| ....|....| 210 220 230 240 250 P.hirticul TTTACAGTGG GGGGTTTAAC TGGAGTAGTA TTGGCCAATT CTTCAATTGA P.profunda TTTACAGTAG GGGGTTTAAC TGGGGTAGTA TTAGCTAATT CTTCAATTGA P.balia TTTACAGTAG GGGGACTAAC TGGAGTAGTA TTGGCTAATT CTTCAATTGA P.bipartit TTTACAGTGG GGGGTTTAAC TGGAGTAGTT TTAGCTAATT CTTCAATTGA P.horticol TTTACAGTTG GAGGACTTAC TGGAGTAATT TTAGCAAATT CATCAATTGA MRM10conti TTTACAGTAG GAGGGTTAAC TGGAGTTATT CTAGCTAATT CATCAATTGA MRM44conti TTTACAGTTG GGGGTTTAAC GGGAGTAATT TTAGCCAATT CTTCTATTGA MRM78Conti TTTACAGTAG GAGGGTTAAC TGGAGTTATT CTAGCTAATT CATCAATTGA MRM11conti TTTACAGTAG GAGGGTTAAC TGGAGTTATT CTAGCTAATT CATCAATTGA MRM76Conti TTTACAGTAG GAGGATTAAC CGGAGTTATT TTAGCTAATT CTTCAATTGA MRM105Cont TTTACAGTTG GTGGACTAAC TGGGGTTATT TTGGCTAATT CCTCTATTGA MRM79Conti TTTACAGTAG GAGGATTAAC AGGAGTAATT TTAGCTAACT CTTCAATTGA MRM15conti TTTACCGTGG GAGGACTAAC AGGTGTAATT TTAGCTAATT CCTCTATTGA DRC1Contig TTTACTGTAG GAGGACTCAC AGGAGTAATT TTAGCTAATT CTTCTATTGA MRM32conti TTTACAGTAG GAGGGTTAAC TGGAGTTATT CTAGCTAATT CATCAATTGA DRC18conti TTCACCGTAG GTGGTTTAAC AGGAGTAATT TTAGCAAATT CATCTATTGA MRM38conti TTTACAGTAG GAGGGTTAAC TGGAGTTATT CTAGCTAATT CATCAATTGA MRM8contig TTTACAGTAG GAGGATTAAC TGGAGTTATT CTAGCTAATT CATCAATTGA DRC12conti TTTACTGTAG GGGGATTAAC TGGAGTAATT CTAGCTAATT CTTCTATTGA MRM33conti TTTACAGTAG GAGGGTTAAC TGGAGTTATT CTAGCTAATT CATCAATTGA MRM12conti TTTACAGTAG GAGGGTTAAC TGGAGTTATT CTAGCTAATT CATCAATTGA MRM31conti TTTACAGTAG GAGGGTTAAC TGGAGTTATT CTAGCTAATT CATCAATTGA MRM2contig TTTACCGTAG GAGGACTAAC AGGCGTAATT TTAGCTAATT CTTCTATTGA MRM6contig TTTACAGTAG GAGGGTTAAC TGGAGTTATT CTAGCTAATT CATCAATTGA MRM95conti TTTACAGTTG GGGGTTTAAC GGGAGTAATT TTAGCCAATT CTTCTATTGA

....|....| ....|....| ....|....| ....|....| ....|....| 260 270 280 290 300 P.hirticul TATCATTCTC CATGACACAT ACTATGTGGT AGCCCATTTT CACTATGTTT P.profunda TATTATTCTA CATGACACAT ATTACGTAGT AGCCCACTTT CACTATGTTT P.balia TATCATTCTT CATGATACAT ACTATGTAGT AGCCCATTTT CACTATGTTT P.bipartit TATCATTCTT CATGATACAT ACTATGTAGT AGCCCATTTT CATTATGTTT P.horticol TATTATTTTA CATGATACAT ATTATGTTGT AGCACATTTC CATTATGTCC MRM10conti TATTATTCTA CATGATACTT ACTATGTAGT AGCTCACTTC CATTACGTTT MRM44conti TATCATCTTA CATGATACTT ATTATGTTGT TGCTCATTTT CACTATGTTT MRM78Conti TATTATTCTA CATGATACTT ACTATGTAGT AGCTCACTTC CATTACGTTT MRM11conti TATTATTCTA CATGATACTT ACTATGTAGT AGCTCACTTC CATTACGTTT MRM76Conti CATTATCCTA CATGATACAT ATTATGTAGT AGCCCATTTT CACTATGTCC

115

APPENDIX 2 (continued)

MRM105Cont TATTATTCTC CATGACACAT ACTATGTTGT AGCACATTTT CATTACGTTT MRM79Conti TATTATTTTA CATGATACAT ATTATGTAGT TGCTCATTTT CATTACGTAT MRM15conti TATTATTTTA CATGATACTT ACTACGTTGT TGCTCATTTT CACTATGTGT DRC1Contig TATTATTCTT CATGATACAT ATTATGTCGT TGCTCATTTT CATTATGTAT MRM32conti TATTATTCTA CATGATACTT ACTATGTAGT AGCTCACTTC CATTACGTTT DRC18conti TATCATTTTA CATGACACCT ATTATGTAGT TGCTCATTTT CATTATGTTT MRM38conti TATTATTCTA CATGATACTT ACTATGTAGT AGCTCACTTC CATTACGTTT MRM8contig TATTATTCTA CATGATACTT ACTATGTAGT AGCTCACTTC CATTACGTTT DRC12conti TATTATTCTC CATGATACCT ACTATGTAGT TGCCCATTTC CACTATGTCT MRM33conti TATTATTCTA CATGATACTT ACTATGTAGT AGCTCACTTC CATTACGTTT MRM12conti TATTATTCTA CATGATACTT ACTATGTAGT AGCTCACTTC CATTACGTTT MRM31conti TATTATTCTA CATGATACTT ACTATGTAGT AGCTCACTTC CATTACGTTT MRM2contig TATTATTTTA CATGATACTT ACTATGTTGT TGCCCATTTT CACTATGTGT MRM6contig TATTATTCTA CATGATACTT ACTATGTAGT AGCTCACTTC CATTACGTTT MRM95conti TATCATCTTA CATGATACTT ATTATGTTGT TGCTCATTTT CACTATGTTT

....|....| ....|....| ....|....| ....|....| ....|....| 310 320 330 340 350 P.hirticul TATCTATAGG AGCAGTATTT GCTATTATAG CGGGATTTGT TCATTGATTC P.profunda TGTCTATAGG GGCAGTATTT GCTATTATAG CAGGATTTGT TCATTGATTC P.balia TATCTATAGG AGCAGTATTT GCTATTATAG CGGGATTTGT TCATTGATTC P.bipartit TATCCATAGG GGCAGTATTT GCTATTATAG CAGGATTTGT CCATTGATTT P.horticol TTTCAATAGG AGCTGTATTT GCTATTATAG CAGGATTTGT ACACTGATTT MRM10conti TATCTATAGG AGCTGTTTTT GCTATTATAG CAGGATTTAT TCATTGATTC MRM44conti TATCAATAGG GGCTGTATTT GCCATTATAG CCGGATTTGT TCACTGATTC MRM78Conti TATCTATAGG AGCTGTTTTT GCTATTATAG CAGGATTTAT TCATTGATTC MRM11conti TATCTATAGG AGCTGTTTTT GCTATTATAG CAGGATTTAT TCATTGATTC MRM76Conti TATCAATAGG AGCTGTATTT GCTATTATAG CAGGATTTAT CCATTGATTC MRM105Cont TATCAATAGG GGCTGTTTTT GCTATTATAG CAGGATTTAT CCACTGATTT MRM79Conti TATCTATAGG GGCAGTATTT GCAATTATAG GGGGATTTAT CCACTGATTT MRM15conti TATCAATAGG GGCTGTATTT GCTATTATAG CAGGATTTGT TCACTGATTT DRC1Contig TATCCATAGG GGCAGTATTT GCTATCATAG CTGGATTTAT TCATTGATTT MRM32conti TATCTATAGG AGCTGTTTTT GCTATTATAG CAGGATTTAT TCATTGATTC DRC18conti TATCAATAGG AGCAGTATTT GCTATTATAG CAGGTTTTAT CCACTGATTC MRM38conti TATCTATAGG AGCTGTTTTT GCTATTATAG CAGGATTTAT TCATTGATTC MRM8contig TATCTATAGG AGCTGTTTTT GCTATTATAG CAGGATTTAT TCATTGATTC DRC12conti TATCAATAGG CGCAGTATTT GCTATTATAG CAGGATTTAT CCATTGATTT MRM33conti TATCTATAGG AGCTGTTTTT GCTATTATAG CAGGATTTAT TCATTGATTC MRM12conti TATCTATAGG AGCTGTTTTT GCTATTATAG CAGGATTTAT TCATTGATTC MRM31conti TATCTATAGG AGCTGTTTTT GCTATTATAG CAGGATTTAT TCATTGATTC MRM2contig TATCAATAGG GGCTGTATTT GCTATTATAG CAGGATTTGT TCACTGATTT MRM6contig TATCTATAGG AGCTGTTTTT GCTATTATAG CAGGATTTAT TCATTGATTC MRM95conti TATCAATAGG GGCTGTATTT GCCATTATAG CCGGATTTGT TCACTGATTC

....|....| ....|....| ....|....| ....|....| ....|....| 360 370 380 390 400 P.hirticul CCTTTATTTA CTGGGTTAAC CTTAAATAGA AAATTCTTAA AAATTCAATT P.profunda CCTTTATTTA CTGGGCTAAC CTTAAATAGA AAATTCTTAA AAATTCAATT P.balia CCCTTATTTA CTGGATTAGC CCTAAATAGA AAATTCCTGA AAATTCAATT P.bipartit CCCTTATTTA CTGGGCTAGC CTTAAATAGG AAATTCTTAA AAATTCAATT P.horticol CCATTATTTA CAGGTTTAGT TATAAACACA AAATTCCTTA AAATTCAATT

116

APPENDIX 2 (continued)

MRM10conti CCTCTATTCA CTGGACTTTC AATAAATAAT AAATTTTTAA AAATCCAATT MRM44conti CCTCTATTTA CAGGATTATC TATAAATAGA AAATTCCTAA AAATTCAATT MRM78Conti CCTCTATTCA CTGGACTTTC AATAAATAAT AAATTTTTAA AAATCCAATT MRM11conti CCTCTATTCA CTGGACTTTC AATAAATAAT AAATTTTTAA AAATCCAATT MRM76Conti CCTCTATTCA CTGGATTAAT AATAAATAAT AAATTTTTAA AAATTCAATT MRM105Cont CCACTTTTTA CTGGACTTTC TATAAATAGT AAATTTTTAA AAATTCAATT MRM79Conti CCATTATTTA CAGGAGTATC CATAAATAAT AAATTTTTAA AAATTCAGTT MRM15conti CCCCTATTCA CAGGTTTATC TATAAATAGA AAATTTTTAA AAATCCAATT DRC1Contig CCCTTATTCA CTGGATTATC TATAAATAGA AAATTTTTGA AAATTCAATT MRM32conti CCTCTATTCA CTGGACTTTC AATAAATAAT AAATTTTTAA AAATCCAATT DRC18conti CCTTTATTTA CTGGATTATC TATAAATAAT AAATTTTTAA AAATTCAATT MRM38conti CCTCTATTCA CTGGACTTTC AATAAATAAT AAATTTTTAA AAATCCAATT MRM8contig CCTTTATTCA CTGGACTTTC AATAAATAAT AAATTTTTAA AAATCCAATT DRC12conti CCATTATTTA CTGGACTTTC AATAAATAAT AAATTTTTAA AAATTCAATT MRM33conti CCTCTATTCA CTGGACTTTC AATAAATAAT AAATTTTTAA AAATCCAATT MRM12conti CCTCTATTCA CTGGACTTTC AATAAATAAT AAATTTTTAA AAATCCAATT MRM31conti CCTCTATTCA CTGGACTTTC AATAAATAAT AAATTTTTAA AAATCCAATT MRM2contig CCCTTATTCA CAGGTTTATC TATAAATAGA AAATTTTTAA AAATTCAATT MRM6contig CCTCTATTCN CTGGACTTTC AATAAATAAT AAATTTTTAA AAATN-AATT MRM95conti CCTCTATTTA CAGGATTATC TATAAATAGA AAATTCCTAA AAATTCAATT

....|....| ....|....| ....|....| ....|....| ....|....| 410 420 430 440 450 P.hirticul T-CTAGGAAT ATTTATTGGA GTAAACATAA CATTTTTCCC TCAACATTTT P.profunda T-CTAGGAAT ATTTATTGGA GTAAACATAA CATTTTTCCC TCAACATTTT P.balia T-TTAGGAAT ATTTATTGGA GTAAACATAA CATTTTTCCC ACAACATTTC P.bipartit T-CTAGGAAT ATTTATTGGA GTTAACATAA CATTTTTTCC CCAACATTTT P.horticol T-ATTACCAT ATTTATTGGT GTTAATTTAA CATTTTTCCC ACAACATTTT MRM10conti T-ATCATTAT ATTTATCGGG GTTAATACAA CCTTTTTTCC GCAACATTTT MRM44conti T-ATTATCAT ATTTATTGGA GTTAACACAA CATTTTTTCC TCAACATTTC MRM78Conti T-ATCATTAT ATTTATCGGG GTTAATACAA CCTTTTTTCC GCAACATTTT MRM11conti T-ATCATTAT ATTTATCGGG GTTAATACAA CCTTTTTTCC GCAACATTTT MRM76Conti T-ATTATTAT ATTTATTGGT GTTAATACAA CTTTTTTCCC ACAACATTTT MRM105Cont T-ATTATTAT ATTTATTGGA GTTAACTCAA CATTTTTCCC TCAACATTTC MRM79Conti T-ATTATTAT ATTTATTGGA GTTAATACTA CATTTTTTCC ACAACATTTT MRM15conti T-ATTATTAT ATTTATTGGA GTAAATACAA CCTTTTTTCC TCAACATTTT DRC1Contig T-CTTATTAT ATTTATTGGA GTAAATACAA CTTTTTTCCC TCAACACTTT MRM32conti T-ATCATTAT ATTTATCGGG GTTAATACAA CCTTTTTTCC GCAACATTTT DRC18conti T-ATTACTAT ATTTATCGGT GTTAATACAA CATTTTTCCC CCAACATTTC MRM38conti T-ATCATTAT ATTTATCGGG GTTAATACAA CCTTTTTTCC GCAACATTTT MRM8contig T-ATCATTAT ATTTATCGGA GTTAATACAA CCTTTTTTCC NCAACATTTT DRC12conti T-ATTATCAT ATTTATTGGT GTAAATACAA CATTTTTCCC ACAGCATTTT MRM33conti T-ATCATTAT ATTTATCGGG GTTAATACAA CCTTTTTTCC GCAACATTTT MRM12conti T-ATCATTAT ATTTATCGGG GTTAATACAA CCTTTTTTCC GCAACATTTT MRM31conti TTATCATTAT ATTTATCGGG GTTAATACAA CCTTTTTTCC GCAACATTTT MRM2contig T-ATTATTAT ATTTATTGGA GTAAATACAA CCTTTTTTCC TCAACATTTT MRM6contig T-ATCATTAT ATTTATCGGG GTTAATACAA CCTTTTTTC- GCAACATTTT MRM95conti T-ATTATCAT ATTTATTGGA GTTAACACAA CATTTTTTCC TCAACATTTC

117

APPENDIX 2 (continued)

....|....| ....|....| ....|....| ....|....| ....|....| 460 470 480 490 500 P.hirticul C-TTGGTTTA AGGGGAATAC CACGACGATA CTCTGACTAC CCAGATGCTT P.profunda C-TAGGTTTA AGAGGTATAC CACGACGATA CTCCGATTAC CCAGATGCTT P.balia C-TAGGTTTA AGTGGGATAC CACGACGATA CTCCGATTAT CCTGATGCAT P.bipartit T-TAGGATTA AGTGGAATAC CACGACGATA TTCTGACTAC CCCGATGCAT P.horticol T-TAGGATTA AGGGGTATAC CACGACGATA CTCTGATTAC CCAGATGCTT MRM10conti T-TAGGACTA AGAGGAATAC CCCGTCGTTA TTCTGATTAC CCAGACATAT MRM44conti C-TCGGATTA AGGGGGATAC CTCGACGTTA TTCTGACTAT CCTGATATAT MRM78Conti T-TAGGACTA AGAGGAATAC CCCGTCGTTA TTCTGATTAC CCAGACATAT MRM11conti T-TAGGACTA AGAGGAATAC CCCGTCGTTA TTCTGATTAC CCAGACATAT MRM76Conti T-TAGGGCTT AGAGGAATAC CTCGACGATA TTCTGATTAC CCAGACATGT MRM105Cont T-TAGGATTA AGCGGGATAC CCCGTCGGTA TTCTGATTAC CCCGACATAT MRM79Conti T-TAGGTTTA AGCGGCATAC CCCGTCGATA TTCTGATTAT CCTGATATAT MRM15conti T-TAGGATTA AGAGGTATGC CTCGACGTTA TTCCGATTAT CCAGATATAT DRC1Contig T-TAGGATTA AGTGGTATAC CCCGACGTTA CTCTGACTAT CCAGATATAT MRM32conti T-TAGGACTA AGAGGAATAC CCCGTCGTTA TTCTGATTAC CCAGACATAT DRC18conti T-TAGGATTG GGAGGTATAC CACGGCGTTA TTCTGATTAC CCAGATATAT MRM38conti T-TAGGACTA AGAGGAATAC CCCGTCGTTA TTCTGATTAC CCAGACATAT MRM8contig T-TAGGACTA AGAGGAATAC CTCGTCGTTA TTCTGATTAT CCAGACATAT DRC12conti TCTAGGATTA AGAGGAATAC CCCGTCGTTA CTCTGACTAT CCAGATATAT MRM33conti T-TAGGACTA AGAGGAATAC CCCGTCGTTA TTCTGATTAC CCAGACATAT MRM12conti T-TAGGACTA AGAGGAATAC CCCGTCGTTA TTCTGATTAC CCAGACATAT MRM31conti T-TAGGACTA AGAGGAATAC CCCGTCGTTA TTCTGATTAC CCAGACATAT MRM2contig T-TAGGATTA AGAGGCATAC CTCGACGTTA TTCCGATTAC CCAGATATAT MRM6contig T-TAGGACTA AGAGGAATAC CCCGTCGTTA TTCTGATTAC CCAGACATAT MRM95conti C-TCGGATTA AGGGGGATAC CTCGACGTTA TTCTGACTAT CCTGATATAT

....|....| ....|....| ....|....| ....|....| ....|....| 510 520 530 540 550 P.hirticul ATACCACATG AAATGTAATT TCTTCAATCG GATCTCTAAT TTCATTAGTA P.profunda ACACTACATG AAACGTAATT TCTTCAATCG GGTCACTAAT TTCATTAGTA P.balia ATACTACATG AAATGTAATT TCATCAATTG GATCTNTAAT CTCTTTAGTA P.bipartit ATACCACATG AAATGTAGTT TCATCAATCG GATCTTTAAT TTCTTTAGTA P.horticol ACACTACATG AAACATTATT TCTTCTATTG GATCATTAAT TTCATTAGTA MRM10conti ACACTGCATG AAATGTAATT TCATCTATTG GAAGATTAAT TTCTTTAGTT MRM44conti ACACAACATG AAATGTAATT TCATCTATTG GCAGATTAAT TTCTTTAGTG MRM78Conti ACACTGCATG AAATGTAATT TCATCTATTG GAAGATTAAT TTCTTTAGTT MRM11conti ACACTGCATG AAATGTAATT TCATCTATTG GAAGATTAAT TTCTTTAGTT MRM76Conti ATACTACATG AAACGTAATT TCATCTATTG GCAGATTAAT TTCATTAGTA MRM105Cont ACACTACATG AAATGTAATC TCATCAATTG GAAGTTTAAT TTCTTTAGTA MRM79Conti ATACTGCATG GAATGTAGTC TCTTCTATCG GTAGACTAAT TTCATTAGTT MRM15conti ACACAACATG AAACGTAATT TCATCTATTG GTAGATTAAT CTCTTTAGTT DRC1Contig ACACTTCATG AAATGTAATT TCTTCAATCG GAAGATTAAT TTCACTAGTA MRM32conti ACACTGCATG AAATGTAATT TCATCTATTG GAAGATTAAT TTCTTTAGTT DRC18conti ATACTACATG AAATGTTATT TCTTCTATTG GAAGATTAAT TTCTCTAGTA MRM38conti ACACTGCATG AAATGTAATT TCATCTATTG GAAGATTAAT TTCTTTAGTT MRM8contig ACACAGCATG AAATGTAATT TCATCTATTG GAAGATTAAT TTCTTTAGTT DRC12conti ATACTACATG AAATGTAATT TCATCTATTG GAAGATTAAT TTCATTAGTT MRM33conti ACACTGCATG AAATGTAATT TCATCTATTG GAAGATTAAT TTCTTTAGTT MRM12conti ACACTGCATG AAATGTAATT TCATCTATTG GAAGATTAAT TTCTTTAGTT MRM31conti ACACTGCATG AAATGTAATT TCATCTATTG GAAGATTAAT TTCTTTAGTT

118

APPENDIX 2 (continued)

MRM2contig ACACAACATG AAACGTAATT TCATCTATTG GCAGATTAAT CTCTTTGGTT MRM6contig ACACTGCATG AAATGTAATT TCATCTATTG GAAGATTAAT TTCTTTAGTT MRM95conti ACACAACATG AAATGTAATT TCATCTATTG GCAGATTAAT TTCTTTAGTG

....|....| ....|....| ....|....| ....|....| ....|....| 560 570 580 590 600 P.hirticul AGAATTATTG TATTTCTATT TATTATTTGA GATAGAATAA CTTCCTTTCG P.profunda AGAATTATTG TATTTCTATT TATTATTTGA GATAGAATAA CTTCTTTTCG P.balia AGTATTATTG TATTCCTATT TATTATTTGA GATAGAATAA CCTCCTTTCG P.bipartit AGTATTATTG TATTTCTATT TATTATTTGA GATAGAATAA CTTCCTTTCG P.horticol AGAATTTTTA TTTTATTATT TACTATTTGA GATAGCTTCG TTTCTATACG MRM10conti AGAATTTTTA TCTTTCTTTT TATTGTTTGA GAAAGATTTT CATCAATACG MRM44conti AGAATTTTTG TTTTTTTATT TATTATCTGA GAAAGATTTA TTTCTATGCG MRM78Conti AGAATTTTTA TCTTTCTTTT TATTGTTTGA GAAAGATTTT CATCAATACG MRM11conti AGAATTTTTA TCTTTCTTTT TATTGTTTGA GAAAGATTTT CATCAATACG MRM76Conti AGAATTTTTA TTTTCTTATT TATTATTTGA GAAAGATTTG TATCAATACG MRM105Cont AGAATTTTTA TTTTCCTCTT TATTATTTGA GAAAGGTTTT CTTCAATACG MRM79Conti AGAATTTTTA TTTTTTTATT TATTATCTGA GAAAGATTTG CATCAATACG MRM15conti AGAATTTTTA TTTTCTTATT TATTATTTGA GAAAGATTTA TCTCTATACG DRC1Contig AGAATTTTTA TTTTATTATT TATTATTTGA GAAAGATTAG TTTCTATACG MRM32conti AGAATTTTTA TCTTTCTTTT TATTGTTTGA GAAAGATTTT CATCAATACG DRC18conti AGAATTTTTA TTTTTCTATT TATTATTTGA GAAAGATTAA CTTCTATACG MRM38conti AGAATTTTTA TCTTTCTTTT TATTGTTTGA GAAAGATTTT CATCAATACG MRM8contig AGAATTTTTA TCTTTCTTTT TATTNTTTGA GAAAGATTTT CATCAATACG DRC12conti AGAATTTTTA TTCTCTTATT TATTATTTGA GAAAGATTTG TTTCCATACG MRM33conti AGAATTTTTA TCTTTCTTTT TATTGTTTGA GAAAGATTTT CATCAATACG MRM12conti AGAATTTTTA TCTTTCTTTT TATTGTTTGA GAAAGATTTT CATCAATACG MRM31conti AGAATTTTTA TCTTTCTTTT TATTGTTTGA GAAAGATTTT CATCAATACG MRM2contig AGGATTTTTA TTTTCTTATT TATTATTTGA GAAAGATTTA TCTCTATACG MRM6contig AGAATTTTTA TCTTTCTTTT TATTGTTTGA GAAAGATTTT CATCAATACG MRM95conti AGAATTTTTG TTTTTTTATT TATTATCTGA GAAAGATTTA TTTCTATGCG

....|....| ....|....| ....|... 610 620 P.hirticul AAAAAGGTTA ATACCTTTAA GAATAACT P.profunda AAAAAGACTG ATACCCCTGA GAATAACC P.balia TAAAAGATTA ATACCTTTAA GAATAACT P.bipartit AAAAAGATTA ATACCTTTAA GAATAACT P.horticol AAAAAGAATT GCACCTCTAA GATTACCA MRM10conti AAAAACCCTT TCCCCATTAA GAATACCC MRM44conti AAAAACATTA TCACCATTAA GAATACCA MRM78Conti AAAAACCCTT TCCCCATTAA GAATACCC MRM11conti AAAAACCCTT TCCCCATTAA GAATACCC MRM76Conti AAAAACCCTA GCTCCTCTAA GAATACCT MRM105Cont AAAAACCCTT TCCCCCTTAA ATATACCG MRM79Conti AAAAACTATC TCTTCTCTAA ATATATCA MRM15conti AAAAACTTTA TCCCCTTTAA GAATACCT DRC1Contig TAAATCTATT GCTACTCTAA ATATACCG MRM32conti AAAAACCCTT TCCCCATTAA GAATACCC DRC18conti AAAAACTCTT TCATCATTAA ATATACCC MRM38conti AAAAACCCTT TCCCCATTAA GAATACCC

119

APPENDIX 2 (continued)

MRM8contig AAAAACCCTT TCCCCATTAA GAATACCC DRC12conti AAAAACTCTT GCCCCTTTAA ATATACCT MRM33conti AAAAACCCTT TCCCCATTAA GAATACCC MRM12conti AAAAACCCTT TCCCCATTAA GAATACCC MRM31conti AAAAACCCTT TCCCCATTAA GAATACCC MRM2contig AAAAACTTTA TCCCCTTTAA GAATACCT MRM6contig AAAAACCCTT TCCCCATTAA GAATACCC MRM95conti AAAAACATTA TCACCATTAA GAATACCA

120

APPENDIX 3

CHECKLIST OF FLORAL ASSOCIATIONS FOR THE CYCLOCEPHALINI

Cyclocephaline Host Plant Geographic Reference for Remarks Taxon Association Locality Association

Arriguttia brevissima (Araceae) FRENCH Ponchel 2006 (Arrow, 1911) GUIANA

Victoria amazonica BRAZIL: Pará Martínez 1968 (Poepp.) J. C. Sowerby (Nymphaeaceae)

Aspidolea fuliginea Oenocarpus bataua COLOMBIA: Nunez-Avellaneda Burmeister, 1847 Mart. Antioquia, and Rojas-Robles (Arecaceae) Chocó, Meta 2008

Aspidolea quadrata Montrichardia FRENCH Gibernau et al. Endrödi, 1980 arborescens (L.) GUIANA: 2003; Ponchel Schott Kourou, 2006 (Araceae) Sinnamary

Augoderia nitidula Magnolia ovata (A. BRAZIL: Minas Gibbs et al. 1977 Gibbs et al. Burmeister, 1847 St.-Hil.) Spreng. Gerais, São (1977) state that (Magnoliaceae) Paulo the scarab was A. or nitidula, but the figure legend Cyclocephala nr. reported the emarginata Endrödi, scarab species as 1966 Cyclocephala nr. emarginata or Endrödi, 1966. Gottsberger Cyclocephala literata (1986) reported Burmeister, 1847 the scarab species as C. literata.

Chalepides dilatatus NO DATA BRAZIL Mannerheim 1829 (Mannerheim, 1829)

121

APPENDIX 3 (continued)

Chalepides sp. Victoria cruziana ARGENTINA: Valla and Cirino A. D. Orb. Corrientes 1972 (Nymphaeaceae)

Cyclocephala NO DATA HONDURAS: Ratcliffe and Cave Ten specimens abrelata Ratcliffe and Yoro (Parque 2002; Ratcliffe of C. abrelata Cave, 2002 Nacional Pico and Cave 2006 were collected in Bonito) the flowers of an unidentified aroid or palm (Ratcliffe and Cave 2002).

Cyclocephala Phytelephas ECUADOR: Balslev and aequatoria Endrödi, aequatorialis Cãnar, Cotopaxi, Henderson 1987; 1963 Spruce Esmeraldas, Ervik et al. 1999 (Arecaceae) Manabí, Pichincha

Cyclocephala NO DATA COSTA RICA: Ratcliffe 2003 The two known alazonia Ratcliffe, Alajuela specimens of C. 2003 (Reserva alazonia are Biologica covered with Monteverde, pollen, Estacion Eladios, suggesting Peñas Blancas feeding inside of Refuge) a flower (Ratcliffe 2003).

Cyclocephala Annona muricata COSTA RICA Villalta 1988 amazona (Linnaeus, L. 1767) (Annonaceae)

Astrocaryum PANAMA Ratcliffe 2003 alatum Loomis (Arecaceae)

Attalea butyracea COLOMBIA Núnez-Avellaneda (Mutis ex. L.f.) and Neita 2009 Wess. Boer (Arecaceae)

Bactris coloradonis COSTA RICA: Beach 1984; L. H. Bailey Herédia (La Ratcliffe 2003,

122

APPENDIX 3 (continued)

(Arecaceae) Selva Biological citing pers. comm. Station) from J. Beach and H. Young

Bactris gasipaes COSTA RICA: Mora-Urpí and Kunth Herédia (La Solís 1980; Mora- (Arecaceae) Selva Biological Urpí 1982; Beach Station); Limon 1984; Gottsberger (Guápiles, 1986; Rickson et Estación al. 1990; Ratcliffe Experimental de 2003, citing pers. Los Diamantes) comm. from J. Beach and H. Young

Bactris COSTA RICA: Bullock 1981 hondurensis Standl. Herédia (La (Arecaceae) Selva Biological Station)

Cryosophila albida COSTA RICA: Henderson 1984; Bartlett Herédia (La Silberbauer- (Arecaceae) Selva Biological Gottsberger 1990 Station)

Cyclanthus COSTA RICA: Beach 1982 Beach (1982) bipartitus Poit. ex Herédia (La reported the A. Rich. Selva Biological scarab as C. nr. (Cyclanthaceae) Station) amazona. Ratcliffe (2003) recorded C. amazona from La Selva Biological Station, thus this is probably a correct identification.

Montrichardia FRENCH Ponchel 2006 arborescens (L.) GUIANA Schott (Araceae)

Phytelephas COLOMBIA: Bernal and Ervik The scarab was seemannii O. F. Chocó 1996; Ervik et al. reported as Cook 1999 Cyclocephala (Arecaceae) amazonica (L.)

123

APPENDIX 3 (continued)

(= C. amazona (L.)).

Cyclocephala Dieffenbachia COSTA RICA: Young 1986; The plant was amblyopsis Bates, nitidipetiolata Herédia (La Young 1988a; reported as D. 1888 Croat & Grayum Selva Biological Young 1988b; longispatha (Araceae) Station) Beath 1999; (Croat 2004). Young 1990; PANAMA Ratcliffe 2003

Philodendron COSTA RICA: Croat 1997, citing anisotomum Schott Herédia (La pers. comm. from (Araceae) Selva Biological H. Young Station)

Philodendron COSTA RICA: Beath 1998 platypetiolatum Herédia (La Madison Selva Biological (Araceae) Station)

Philodendron COSTA RICA: Croat 1997, citing pterotum K. Koch Herédia (La pers. comm. from and Augustin Selva Biological H. Young (Araceae) Station)

Philodendron COSTA RICA: Croat 1997, citing radiatum Schott Herédia (La pers. comm. from (Araceae) Selva Biological H. Young Station)

Philodendron COSTA RICA: Croat 1997, citing rothschuhianum Herédia (La pers. comm. from (Engl.) Croat & Selva Biological H. Young Grayum Station) (Araceae)

Philodendron COSTA RICA: Croat 1997, citing tripartitum (Jacq.) Herédia (La pers. comm. from Schott Selva Biological H. Young (Araceae) Station)

Syngonium sp. COSTA RICA: Valerio 1984 (Araceae) (Northern low lands)

Xanthosoma COLOMBIA: García-Robledo et daguense Engl. Risaralda al. 2004; García-

124

APPENDIX 3 (continued)

(Araceae) (Sanctuario de Robledo et al. Fauna y Flora 2005 Otún-Quimbaya)

Xanthosoma MEXICO: Morón 1997 robustum Schott Chiapas (Araceae) (Socunusco)

Xanthosoma MEXICO: Morón 1997 sagittifolium (L.) Chiapas Schott (Socunusco) (Araceae)

Xanthosoma COSTA RICA: Valerio 1988; wendlandii (Schott) San José Morón 1997 Standl. (Granadilla de (Araceae) )

MEXICO: Chiapas (Cacahoatán)

Cyclocephala Dieffenbachia COSTA RICA: Young 1990 The plant was ampliata Bates, 1888 nitidipetiolata Herédia (La reported as D. Croat & Grayum Selva Biological longispatha (Araceae) Station) (Croat 2004).

Philodendron COSTA RICA: Croat 1997, citing pterotum K. Koch Herédia (La pers. comm. from and Augustin Selva Biological H. Young (Araceae) Station)

Philodendron COSTA RICA: Croat 1997, citing The scarab was radiatum Schott Herédia (La pers. comm. from reported as (Araceae) Selva Biological H. Young; Cyclocephala Station) Beath 1998; Beath ampliota [sic] 1999 (Beath 1999).

Philodendron sp. COSTA RICA Ratcliffe 2003, The plant could (Araceae) citing pers. comm. possibly be P. from H. Young pterotum or P. radiatum as reported by Croat (1997).

Cyclocephala atripes Cyclanthus COSTA RICA: Beach 1982;

125

APPENDIX 3 (continued)

Bates, 1888 bipartitus Poit. ex Herédia (La Ratcliffe 1992a A. Rich. Selva Biological (Cyclanthaceae) Station)

Dieffenbachia COSTA RICA: Label data of H. tonduzii Croat & Herédia (La Young Grayum Selva Biological (Araceae) Station)

Dieffenbachia COSTA RICA: Young 1986; The plant was nitidipetiolata Herédia (La Young 1988a; reported as D. Croat & Grayum Selva Biological Young 1990; longispatha (Araceae) Station) Ratcliffe 2003 (Croat 2004).

PANAMA: Colón

Dieffenbachia spp. COSTA RICA: Beach 1982 Beach (1982) (Araceae) Herédia (La noted C. atripes Selva Biological on two Station) Dieffenbachia spp. (possibly D. nitidipetiolata as described by Young (1986; 1988a; 1988b)) or D. tonduzii herein.

Cyclocephala Annona aurantiaca BRAZIL: Gottsberger 1986; atricapilla Barb. Rodr. Maranhão Gottsberger 1989; Mannerheim, 1829 (Annonaceae) Gottsberger and Silberbauer- Gottsberger 2006

Annona coriacea BRAZIL: Gottsberger 1986; Mart. Maranhão; Minas Gottsberger and (Annonaceae) Gerais Silberbauer- (Indianópolis); Gottsberger 1988; São Paulo Gottsberger 1989;Gottsberger 1999; Silberbauer- Gottsberger et al. 2003; Gottsberger and Silberbauer-

126

APPENDIX 3 (continued)

Gottsberger 2006

Annona cornifolia BRAZIL: Minas Gottsberger 1986; A. St.-Hil. Gerais Gottsberger 1988; (Annonaceae) (Indianópolis); Gottsberger and São Paulo Silberbauer- (Botucatu) Gottsberger 1988; Gottsberger 1989; Gottsberger and Silberbauer- Gottsberger 2006

Annona crassilflora BRAZIL: Gottsberger 1988; Mart. Brasília Gottsberger and (Annonaceae) (Chapada dos Silberbauer- Veadeiros, north Gottsberger 1988; of Brasilia); Gottsberger 1989; Goiás (Vila Gottsberger 1999; Propício); Minas Gottsberger and Gerais Silberbauer- (Indianópolis); Gottsberger 2006; São Paulo Cavalcante et al. (Botucatu) 2009

Annona dioica A. BRAZIL: Minas Gottsberger 1986, St.- Hil. Gerais citing pers. obs. (Annonaceae) (Indianópolis); by Silberbauer- São Paulo Gottsberger; (Botucatu) Gottsberger 1988; Gottsberger 1989; Gottsberger 1999; Gottsberger and Silberbauer- Gottsberger 2006

Annona monticola BRAZIL: Gottsberger 1989; Mart. Brasília; Minas Gottsberger and (Annonaceae) Gerais Silberbauer- (Indianópolis) Gottsberger 2006

Annona tomentosa BRAZIL: Gottsberger 1989; R. E. Fr. Brasília; Minas Gottsberger and (Annonaceae) Gerais Silberbauer- (Indianópolis) Gottsberger 2006

Annona BRAZIL: Gottsberger 1986; warmingiana Brasília Gottsberger 1989; Mello-Silva & Gottsberger and

127

APPENDIX 3 (continued)

Pirani Silberbauer- (Annonaceae) Gottsberger 2006

Caladium sp. BRAZIL: Gottsberger 1986 (Araceae) Maranhão

Colocasia BRAZIL: São Gottsberger 1986 The scarab was esculenta (L.) Paulo reported from Schott cultivated C. (Araceae) esculenta.

Philodendron VENEZUELA: Ramírez 1992 ptarianum Steyerm. Bolívar var. rugosum Bunt. (Canaima (Araceae) National Park)

Philodendron BRAZIL: Minas Gottsberger and mello-barretoanum Gerais Silberbauer- Burle-Marx ex G. (Indianópolis) Gottsberger 2006 M. Barroso (Araceae)

Xanthosoma BRAZIL: São Gottsberger 1986 striatipes (Kunth & Paulo C. D. Bouché) Madison (Araceae)

Cyclocephala Bactris hirta Mart. BRAZIL: Küchmeister et al. boulardi Dechambre, (Arecaceae) Amazonas 1998 1979

Cyclocephala brevis Cymbopetalum sp. PANAMA: Label data of N. Höhne, 1847 (Annonaceae) Colón (Btwn. A. Murray; Gatun and Pina) Ratcliffe 2003

Dieffenbachia PANAMA Beath 1999 The scarab was longispatha Engl. (Barro Colorado reported as C. and K. Krause Island) sexpunctata (Araceae) which is not recorded from Barro Colorado Island (Ratcliffe 2003; pers. obs., this study).

128

APPENDIX 3 (continued)

Dieffenbachia COSTA RICA: Young 1990; The scarab was nitidipetiolata Herédia (La Beath 1999 reported as C. Croat and Grayum Selva Biological sexpunctata (Araceae) Station) which is not recorded from La Selva (Ratcliffe 2003, pers. obs., this study). The plant was reported as D. longispatha, which does not occur in La Selva (Croat 2004).

Dieffenbachia COSTA RICA: Valerio 1984 oerstedii Schott San José (Araceae) (Granadilla de Curridabat)

Dieffenbachia VENEZUELA: Label data of seguine (Jacq.) Aragua Seres and Ramirez Schott (Henri Pittier (Araceae) National Park)

Dieffenbachia sp. PANAMA Ratcliffe 2003 (Araceae)

Philodendron COSTA RICA: Label data of H. ligulatum Schott Herédia (La Young (Araceae) Selva Biological Station)

Philodendron PANAMA Beath 1998 The scarab was fragrantissimum (Barro Colorado reported as C. (Hook.) G. Don Island) sexpunctata (Araceae) which is not recorded on Barro Colorado Island (Ratcliffe 2003; pers. obs., this study).

Philodendron COSTA RICA: Beath 1998 The scarab was platypetiolatum Herédia (La reported as C. Madison Selva Biological sexpunctata (Araceae) Station) which is not recorded on

129

APPENDIX 3 (continued)

Barro Colorado Island (Ratcliffe 2003; pers. obs., this study).

Philodendron COSTA RICA: Croat 1997, citing The scarab was pterotum K. Koch Herédia (La pers. comm. with reported as C. and Augustin Selva Biological H. Young sexpunctata (Araceae) Station) which is not recorded in La Selva (Ratcliffe 2003; pers. obs., this study).

Philodendron sp. PANAMA: Label data of B. (Araceae) Colón (1 km E Ratcliffe and M. Rio Guanche Jameson Bridge)

Socratea sp. VENEZUELA Seres and Ramírez Based on other (Arecaceae) (Henri Pittier 1995 observed National Park) specimens collected by Seres and Ramirez this scarab was misidentified and reported as C. sexpunctata.

Xanthosoma PANAMA Beath 1998 The scarab was helleborifolium (Barro Colorado reported as C. (Jacq.) Schott Island) sexpunctata (Araceae) which is not recorded in La Selva (Ratcliffe 2003; pers. obs., this study).

Xanthosoma PANAMA Beath 1998 mexicanum Liebm. (Barro Colorado (Araceae) Island)

Xanthosoma sp. ECUADOR Ohaus 1910; (Araceae) Label data of VENEZUELA Seres and Ramirez (Henri Pittier National Park,

130

APPENDIX 3 (continued)

Rancho Grande)

Xanthosoma VENEZUELA Seres and Ramirez The scarab was undipes (K. Koch (Henri Pittier 1995 misidentified and & C. D. Bouché) National Park, reported as C. K. Koch Rancho Grande) sexpunctata (Araceae) (pers. obs. of specimen and label data).

Xanthosoma COSTA RICA: Valerio 1988 wendlandii (Schott) San José Standl. (Granadilla) (Araceae)

Cyclocephala brittoni Annona muricata COSTA RICA: Villalta 1988; Endrödi, 1964 L. Limón Ratcliffe 1992a (Annonaceae)

Bactris COSTA RICA: Bullock 1981; hondurensis Standl. Herédia (La Ratcliffe 1992a (Arecaceae) Selva Biological Station)

Rhodospatha sp. COSTA RICA: Ratcliffe 1992a (Araceae) Limón

Cyclocephala Magnolia MEXICO: Dieringer et al. caelestis Ratcliffe and tamaulipana Tamaulipas (El 1998; Dieringer et Delgado, 1990 Vazquez Cielo Reserve) al. 1999 (Magnoliaceae)

Cyclocephala Xanthosoma sp. ECUADOR Ohaus 1910 camachicola Ohaus, (Araceae) (west side of 1910 Cordillera)

Cyclocephala Philodendron NO DATA Ratcliffe 2003; carbonaria Arrow, wendlandii Schott pers. comm. from 1911 (Araceae) H. Young

Dieffenbachia PANAMA Beath 1999 longispatha Engl. (Barro Colorado and K. Krause Island) (Araceae)

131

APPENDIX 3 (continued)

Xanthosoma PANAMA Beath 1998 helleborifolium (Barro Colorado (Jacq.) Schott Island) (Araceae)

Xanthosoma PANAMA Beath 1998 mexicanum Liebm. (Barro Colorado (Araceae) Island)

Cyclocephala Nymphaea SURINAME Cramer et al. 1975 castanea (Olivier, glandulifera 1789) Rodschied (Nymphaeaceae)

Nymphaea BRAZIL: Cramer et al. rudgeana G. Mey. Amazonas 1975; Prance and (Nymphaeaceae) (Manaus) Anderson 1976

SURINAME

Victoria amazonica BRAZIL: von Bayern 1897; (Poepp.) J. C. Amazonas Knuth et al. 1904; Sowerby Gessner 1962 (Nymphaeaceae)

Cyclocephala celata Caladium bicolor BRAZIL: Maia and Dechambre, 1980 (Aiton) Vent. Pernambuco Schlindwein 2006 (Araceae) (Goiana)

Gearum brasiliense BRAZIL: Gonçalves and N. E. Br. Tocantins Maia 2006 (Araceae) (Arraias)

Philodendron BRAZIL: Maia et al. 2010 acutatum Schott Pernambuco (Araceae) (Goiana, Igarassu)

Taccarum ulei BRAZIL Maia et al. 2010, Engl. and K. (northeastern) citing unpublished Krause data of A. C. D. (Araceae) Maia, C. Schlindwein and M. Gibernau

132

APPENDIX 3 (continued)

Cyclocephala colasi (Araceae) FRENCH Ponchel 2006 Endrödi, 1964 GUIANA

Montrichardia FRENCH Gibernau et al. arborescens (L.) GUIANA: 2003; Ponchel Schott Kourou, 2006 (Araceae) Sinnamary

Montrichardia FRENCH Ponchel 2006 linifera (Arruda) GUIANA Schott (Araceae)

Philodendron FRENCH Gibernau et al. melinonii Brongn. GUIANA: 2000; Ponchel ex Regel Kourou 2006 (Araceae)

Philodendron FRENCH Gibernau et al. solimoesense A. C. GUIANA 1999; Ponchel Sm. (between Kourou 2006; Seymour et (Araceae) and Sinnamary) al. 2009.

Cyclocephala Cyclanthus COSTA RICA: Beach 1982 conspicua Sharp, bipartitus Poit. ex Herédia (La 1877 A. Rich. Selva Biological (Cyclanthaceae) Station)

Dieffenbachia COSTA RICA: Young 1988a; The plant was nitidipetiolata Herédia (La Young 1990 reported as D. Croat & Grayum Selva Biological longispatha (Araceae) Station) (Croat 2004).

Dieffenbachia spp. COSTA RICA: Beach 1982 Beach (1982) (Araceae) Herédia (La noted C. Selva Biological conspicua on Station) two Dieffenbachia spp. (possibly D. nitidipetiolata as described by Young (1986; 1988a; 1988b)). The plant was reported as D.

133

APPENDIX 3 (continued)

longispatha (Croat 2004).

Philodendron PANAMA: Croat 1997 correae Croat Bocas del Toro (Araceae) (near continental divide)

Cyclocephala Philodendron BRAZIL: São Gottsberger and cribrata Burmeister, bipinnatifidum Paulo (Botucatu) Amaral 1984; 1847 Schott ex Endl. Gottsberger 1986 (Araceae)

Cyclocephala Bactris major Jacq. COLOMBIA Núnez-Avellaneda discicollis Arrow, (Arecaceae) and Neita 2009 1902

Cyclocephala Aphandra natalia COLOMBIA: Ervik et al. 1999 discolor (Herbst, (Balslev & A. J. Chocó 1790) Henderson) Barfod (Arecaceae) ECUADOR: Morona- Santiago, Napo, Pustaza

(Arecaceae) PERU Ponchel 2006

Oenocarpus bataua COLOMBIA: Nunez-Avellaneda Mart. Antioquia, and Rojas-Robles (Arecaceae) Chocó, Meta 2008; Núnez- Avellaneda and Neita 2009

Cyclocephala Attalea funifera BRAZIL: Bahia Voeks 2002 distincta Burmeister, Mart. 1847 (Arecaceae)

Cyclocephala (Araceae) FRENCH Ponchel 2006 emarginata Endrödi, GUIANA 1966

Philodendron FRENCH Gibernau et al. solimoesense A. C. GUIANA 1999

134

APPENDIX 3 (continued)

Sm. (Araceae)

Cyclocephala Nymphaea BRAZIL: Mato Prance 1980 epistomalis Bates, amazonum Mart. & Grosso (near 1888 Zucc. Fazenda Jofre) (Nymphaeaceae)

Cyclocephala Asplundia sp. MEXICO Ratcliffe and fasciolata Bates, 1888 (Cyclanthaceae) Morón 1997

Astrocaryum MEXICO: Búrquez et al. mexicanum Liebm. Veracruz 1987 ex Mart (Estación de (Arecaceae) Biología Tropical Los Tuxtlas)

Astrocaryum sp. MEXICO Ratcliffe and The plant was (Arecaceae) Morón 1997 reported as Astrocaryon [sic] sp.

Monstera sp. MEXICO Ratcliffe and (Araceae) Morón 1997

Cyclocephala forsteri Acrocomia BRAZIL: Scariot et al. Endrödi, 1963 aculeata (Jacq.) Distrito Federal 1991; Núnez- Lodd. ex Mart. (Planaltina Area) Avellaneda and (Arecaceae) Neita 2009 COLOMBIA

Cyclocephala gravis Colocasia sp. HONDURAS: Ratcliffe and Cave Bates, 1888 (Araceae) Francisco 2006 Morazán (El Zamorano)

Dieffenbachia PANAMA Beath 1999 longispatha Engl. (Barro Colorado and K. Krause Island) (Araceae)

Dieffenbachia COSTA RICA: Young 1986; The plant was nitidipetiolata Herédia (La Young 1988a; reported as D. Croat & Grayum Selva Biological Young 1988b; longispatha

135

APPENDIX 3 (continued)

(Araceae) Station) Young 1990; (Croat 2004). Beath 1999; PANAMA: Ratcliffe 2003 Colón

Montrichardia VENEZUELA: Ramirez and Brito arborescens (L.) Guárico State 1992 Schott (near Calabozo) (Araceae)

Philodendron COSTA RICA: Croat 1997; grandipes K. Herédia (La Croat 1997, citing Krause (Araceae) Selva Biological pers. comm. with Station) H. Young; Young 1986 PANAMA: San Blas (Nusagandi)

Xanthosoma PANAMA Beath 1998 helleborifolium (Barro Colorado (Jacq.) Schott Island) (Araceae)

Xanthosoma PANAMA Beath 1998 mexicanum Liebm. (Barro Colorado (Araceae) Island)

Cyclocephala Xanthosoma COLOMBIA: García-Robledo et gregaria Heyne and daguense Engl. Risaralda al. 2004; García- Taschenberg, 1907 (Araceae) (Sanctuario de Robledo et al. Fauna y Flora 2005 Otún-Quimbaya)

Cyclocephala Oenocarpus BRAZIL: Küchmeister et al. guianae Endrödi, bacaba Mart. Amazonas 1998 1969 (Arecaceae)

Cyclocephala hardyi Victoria amazonica BRAZIL: Prance and Arias Endrödi, 1975 (Poepp.) J. C. Amazonas 1975; Seymour Sowerby and Matthews (Nymphaeaceae) GUAYANA: 2006 Upper Takutu- Upper Essequibo (Karanambu Ranch)

136

APPENDIX 3 (continued)

Cyclocephala inca Attalea insignis COLOMBIA Núnez-Avellaneda Endrödi, 1966 (Mart.) Drude and Neita 2009 (Arecaceae)

Cyclocephala kaszabi Dieffenbachia COSTA RICA: Young 1986; The plant was Endrödi, 1964 nitidipetiolata Herédia (La Young 1988a; reported as D. Croat & Grayum Selva Biological Young 1990 longispatha (Araceae) Station) (Croat 2004).

Philodendron NO DATA Croat 1997 radiatum Schott (Araceae)

Philodendron COSTA RICA: Young 1987 rothschuhianum Herédia (La (Engl.) Croat & Selva Biological Grayum Station) (Araceae)

Philodendron COSTA RICA: Croat 1997, citing tripartitum (Jacq.) Herédia (La pers. comm. from Schott Selva Biological H. Young (Araceae) Station)

Xanthosoma COLOMBIA: García-Robledo et daguense Engl. Risaralda al. 2004; García- (Araceae) (Sanctuario de Robledo et al. Fauna y Flora 2005 Otún-Quimbaya)

Cyclocephala Magnolia MEXICO: Dieringer and jalapensis Casey, schiedeana Schltl. Veracruz (Xalapa Delgado 1994; 1915 (Magnoliaceae) area) Dieringer and Espinosa 1994

Cyclocephala Annona crassilflora BRAZIL: Goiás Cavalcante et al. latericia Höhne, 1923 Mart. (Vila Propício) 2009 (Annonaceae)

(Araceae) BRAZIL: Pará Martínez 1968 The scarab was reported as Cyclocephala

137

APPENDIX 3 (continued)

lateritia [sic].

Cyclocephala ligyrina Dieffenbachia COSTA RICA: Young 1986; The plant was Bates, 1888 nitidipetiolata Herédia (La Young 1988a; reported as D. Croat & Grayum Selva Biological Young 1990 longispatha (Araceae) Station) (Croat 2004).

Philodendron COSTA RICA: Ratcliffe 2003 cretosum Croat & Herédia (La Grayum Selva Biological (Araceae) Station)

Philodendron PANAMA: Croat 1997 jodavisianum G. S. Panamá Bunting (Araceae)

Philodendron PANAMA Croat 1997 pterotum K. Koch (Former Canal and Augustin Zone) (Araceae)

Philodendron NO DATA Croat 1997 radiatum Schott (Araceae)

Philodendron COSTA RICA: Ratcliffe 2003 rothschuhianum Herédia (La (Engl.) Croat & Selva Biological Grayum Station) (Araceae)

Cyclocephala literata Annona crassilflora BRAZIL: São Gottsberger 1986; Burmeister, 1847 Mart. Paulo Gottsberger 1989; (Annonaceae) Gottsberger and Silberbauer- Gottsberger 2006

Magnolia ovata (A. BRAZIL: São Gottsberger 1986; St.-Hil.) Spreng. Paulo Gottsberger 1989 (Magnoliaceae)

Cyclocephala Acacia pennata NO DATA Ratcliffe and lunulata Burmeister, (L.) Willd. Morón 1997 1847 (Leguminosae)

138

APPENDIX 3 (continued)

Ficus sp. NO DATA Morón 1997 (Moraceae)

Hibiscus rosa- NO DATA Ratcliffe and sinensis L. Morón 1997 (Malvaceae)

Psidium sp. NO DATA Morón 1997 (Myrtaceae)

Pithecellobium NO DATA Ratcliffe and The plant was dulce (Roxb.) Morón 1997 reported as Benth. Pitecellobium (Leguminosae) [sic] dulce.

Pithecellobium sp. COLOMBIA: Stechauner- (Leguminosae) Valle del Cauca Rohringer and Pardo-Locarno 2010

Cyclocephala lutea (Cactaceae) BRAZIL: Pará Martínez 1968 Endrödi, 1966

Cyclocephala mafaffa Philodendron PANAMA: Croat 1997 Burmeister, 1847 jodavisianum G. S. Panamá Bunting (Araceae)

Philodendron Guadeloupe Ponchel 2006 giganteum Schott archipelago (Araceae)

Xanthosoma MEXICO: Morón 1997; robustum Schott Chiapas Morón 1997, (Araceae) (Cacahoatán and citing pers. comm. Chiapa de from Corzco) Beutelspacher); Ratcliffe and Morón 1997

Xanthosoma COSTA RICA: Valerio 1988 wendlandii (Schott) Guanacaste Standl. () (Araceae)

139

APPENDIX 3 (continued)

Cyclocephala Attalea butyracea COLOMBIA Núnez-Avellaneda marginalis Kirsch, (Mutis ex. L.f.) and Neita 2009 1870 [1871] Wess. Boer (Arecaceae)

Attalea microcarpa BRAZIL: Küchmeister et al. Mart. Amazonas 1998 (Arecaceae)

Cyclocephala Acrocomia BRAZIL: Scariot et al. 1991 mecynotarsis Höhne, aculeata (Jacq.) Distrito Federal 1923 Lodd. ex Mart. (Planaltina Area) (Arecaceae)

Attalea geraensis BRAZIL Gottsberger and Barb. Rodr. Silberbauer- (Arecaceae) Gottsberger 2006

Cyclocephala Philodendron COSTA RICA: Croat 1997 melanae Bates, 1888 schottianum H. Cartago Wendl. ex Schott (Araceae)

Cyclocephala Annona coriacea BRAZIL: São Gottsberger 1986 melanocephala Mart. Paulo (Fabricius, 1775) (Annonaceae)

Brugmansia BRAZIL: São Ohaus 1910; The plant was arborea (L.) Steud. Paulo Gottsberger 1986 reported as (Solanaceae) Datura arborea ECUADOR without or assigning authorship. The Brugmansia x name D. arborea candida Pers. was used by (Solanaceae) three authors and is a synonym of or the species listed to the left. The Brugmansia identity of the suaveolens (Humb. association with & Bonpl. ex Brugmansia sp. Willd.) Bercht. & J. is ambiguous. Presl

140

APPENDIX 3 (continued)

(Solanaceae)

(Cactaceae) FRENCH Ponchel 2006 GUIANA

Kielmeyera BRAZIL: São Gottsberger 1986 variabilis Mart. & Paulo Zucc. (Calophyllaceae)

Magnolia ovata (A. BRAZL: São Gottsberger 1986 St.-Hil.) Spreng. Paulo (Magnoliaceae)

Mandevilla BRAZIL: São Gottsberger 1986 longiflora (Desf.) Paulo Pichon (Apocynaceae)

Cyclocephala munda Xanthosoma PERU: Loreto García-Robledo et Kirsch, 1870 [1871] poeppigii Schott (Estación al. 2005 (Araceae) Biológica Madre Selva)

Cyclocephala Monstera COSTA RICA: Ratcliffe 2003, nigerrima Bates, adansonii Schott Puntarenas citing pers. comm. 1888 var. adansonii (Monteverde) from A. Smith (Araceae)

Philodendron COSTA RICA: Croat 1997 brenesii Standl. San José (vicinity (Araceae) of Vara Blanca)

Philodendron sp. NO DATA Valerio 1984 (Araceae)

Philodendron Panama: Chiriquí Croat 1997 tysonii Croat (near continental (Araceae) divide)

Xanthosoma COSTA RICA: Goldwasser 1987; The plant was undipes (K. Koch Guanacaste Goldwasser 2000; reported as & C. D. Bouché) (Peñas Blancas), García-Robledo et Xanthosoma K. Koch Puntarenas al. 2005, citing robustum Schott (Araceae) (Monteverde) pers. comm. With (García-Robledo T. Croat et al. 2005, citing

141

APPENDIX 3 (continued)

pers. comm. with T. Croat).

Cyclocephala Annona coriacea BRAZIL: Minas Gottsberger 1986; ohausiana Höhne, Mart. Gerais, São Gottsberger 1988; 1923 (Annonaceae) Paulo Gottsberger and Silberbauer- Gottsberger 1988; Gottsberger 1989; Gottsberger and Silberbauer- Gottsberger 2006

Xanthosoma BRAZIL: São Gottsberger 1986; striatipes (Kunth & Paulo Gottsberger 1989 C. D. Bouché) Madison (Araceae)

Cyclocephala Annona crassilflora BRAZIL: Goiás Cavalcante et al. octopunctata Mart. (Goiána and Vila 2009 Burmeister, 1847 (Annonaceae) Propício)

Cyclocephala Annona coriacea BRAZIL: São Gottsberger 1989 paraguayensis Mart. Paulo Arrow, 1903 (Annonaceae)

Kielmeyera BRAZIL: São Gottsberger 1986 variabilis Mart. & Paulo Zucc. (Calophyllaceae)

Cyclocephala picipes Annona montana BRAZIL: Webber 1981 The scarab was (Olivier, 1789) Macfad. Amazonas reported from (Annonaceae) (Manaus) cultivated A. montana.

Annona muricata BRAZIL: Webber 1981 The scarab was L. Amazonas reported from (Annonaceae) (Manaus) cultivated A. muricata.

Annona nitida BRAZIL: Webber 1981 Mart. Amazonas

142

APPENDIX 3 (continued)

(Annonaceae) (Manaus)

Cyclocephala picta Xanthosoma MEXICO: Morón 1977 Burmeister, 1847 robustum Schott Veracruz (Araceae)

Cyclocephala Attalea amygdalina COLOMBIA Núnez-Avellaneda prolongata Arrow, Kunth and Neita 2009 1902 (Arecaceae)

Cyclocephala nr. Nymphaea BRAZIL Wiersema 1987 putrida Burmeister, lasiophylla Mart. & (northeastern) 1847 Zucc. (Nymphaeaceae)

Cyclocephala Aphandra natalia COLOMBIA: Ervik et al. 1999 quadripunctata (Balslev & A. J. Chocó Höhne, 1923 Henderson) Barfod (Arecaceae) ECUADOR: Morona- Santiago, Napo, Pustaza

Attalea insignis COLOMBIA Núnez-Avellaneda (Mart.) Drude and Neita 2009 (Arecaceae)

Phytelephas COLOMBIA: Ervik et al. 1999 macrocarpa Ruiz Chocó & Pav. (Arecaceae) ECUADOR: Napo

Cyclocephala Annona aurantiaca BRAZIL: Mato Silberbauer- Anecdotal, citing quatuordecimpunct- Barb. Rodr. Grosso Gottsberger et al. Gottsberger ata Mannerheim, (Annonaceae) 1997 (1989) and 1829 Gottsberger and Silberbauer- Gottsberger (1988). This association was not verifiable in cited literature.

143

APPENDIX 3 (continued)

Annona coriacea BRAZIL: Mato Gottsberger 1986; The scarab was Mart. Grosso, Minas Gottsberger 1989; reported as C. (Annonaceae) Gerais, São Silberbauer- inpunctata Paulo Gottsberger et al. (Gottsberger 1997; Gottsberger 1986) and Silberbauer- Gottsberger 2006

Annona cornifolia BRAZIL: Minas Gottsberger 1986; The scarab was A. St.-Hil. Gerais Gottsberger 1988; reported as C. (Annonaceae) (Indianópolis); Gottsberger and inpunctata São Paulo Silberbauer- (Gottsberger (Botucatu) Gottsberger 1988; 1986; Gottsberger 1989; Gottsberger Gottsberger 1999; 1988) Gottsberger and Silberbauer- Gottsberger 2006

Annona crassiflora BRAZIL: Gottsberger 1989; Mart. Brasília Gottsberger and (Annonaceae) (Chapada dos Silberbauer- Veadeiros, north Gottsberger 2006 of Brasilia); Goiás; Minas Gerais (Indianópolis); São Paulo (Botucatu)

Annona dioica A. BRAZIL: Mato Gottsberger 1986, The scarab was St.- Hil. Grosso; Minas citing pers. obs. reported as C. (Annonaceae) Gerais by Silberbauer- inpunctata (Indianópolis); Gottsberger; (Gottsberger São Paulo Gottsberger 1988; 1986) (Botucatu) Gottsberger 1989; Silberbauer- Gottsberger et al. 1997; Gottsberger and Silberbauer- Gottsberger 2006

Annona hybrid BRAZIL: Mato Silberbauer- forms 1 & 3 Grosso Gottsberger et al. (Annonaceae) 1997

Annona malmeana BRAZIL: Mato Gottsberger and

144

APPENDIX 3 (continued)

R. E. Fr. x Annona Grosso Silberbauer- coriacea Mart. Gottsberger 2006 (Annonaceae)

Annona monticola BRAZIL: Minas Gottsberger and Mart. Gerais Silberbauer- (Annonaceae) Gottsberger 2006

Annona tomentosa BRAZIL: Gottsberger 1989; R. E. Fr. Brasília; Minas Gottsberger 1999; (Annonaceae) Gerais Gottsberger and (Indianópolis) Silberbauer- Gottsberger 2006

NO DATA BRAZIL Mannerheim 1829

Cyclocephala Montrichardia FRENCH Ponchel 2006 quercina Burmeister, arborescens (L.) GUIANA 1847 Schott (Araceae)

(Nymphaeaceae) FRENCH Ponchel 2006 GUIANA

Cyclocephala Attalea attaleoides BRAZIL: Küchmeister et al. rondoniana Ratcliffe, (Barb. Rodr.) Amazonas 1998 1992b Wess. Boer (Arecaceae)

Cyclocephala Philodendron PANAMA: Croat 1997 C. rubescens is rubescens Bates, grayumii Croat Coclé (near El not recorded in 1891 (Araceae) Copé) Panama (Ratcliffe 2003).

Cyclocephala (Araceae) FRENCH Ponchel 2006 rufovaria Arrow, GUIANA 1911

Cyclocephala rustica (Araceae) FRENCH Ponchel 2006 (Olivier, 1789) GUIANA

Caladium bicolor SURINAME Pellmyr 1985 (Aiton) Vent.

145

APPENDIX 3 (continued)

(Araceae)

Philodendron NO DATA Croat 1997 callosum K. Krause (Araceae)

Philodendron NO DATA Croat 1997 The plant ptarianum Steyerm. voucher is listed (Araceae) as Ramirez 1163 by Croat (1997). In the Tropicos database Ramirez 1163 is a specimen of Philodendron callosum K. Krause.

Cyclocephala Attalea insignis COLOMBIA Núnez-Avellaneda santaritae Ratcliffe, (Mart.) Drude and Neita 2009 1992a (Arecaceae)

Cyclocephala Oenocarpus BRAZIL: Küchmeister et al. sarpedon Ratcliffe, bacaba Mart. Amazonas 1998 1992b (Arecaceae)

Cyclocephala Alocasia COSTA RICA: Label data of sexpunctata Laporte, macrorrhizos (L.) San José (Parque uncredited 1840 G. Don del Este) collector; Valerio (Araceae) 1984

(Araceae) PANAMA: Label data of Chiriquí (La Capistran, Ashe & Fortune, Brooks Quebrada Al Trail)

MEXICO: Veracruz (Catemaco, Pipipan, Parque de la Flora y Fauna Silvestre Tropical)

146

APPENDIX 3 (continued)

Philodendron NO DATA Croat 1997 grandipes K. Krause (Araceae)

Philodendron PANAMA: Croat 1997 grayumii Croat Coclé (near El (Araceae) Copé)

Philodendron PANAMA: Croat 1997 sagittifolium Panamá Liebm. (Araceae)

Philodendron FRENCH Gibernau et al. solimoesense A. C. GUIANA 1999 Sm. (Araceae)

Philodendron COSTA RICA: Label data of tripartitum (Jacq.) San José (Parque uncredited Schott del Este) collector (Araceae)

Xanthosoma PERU: Loreto García-Robledo et poeppigii Schott (Estación al. 2005 (Araceae) Biológica Madre Selva)

Xanthosoma MEXICO: Morón 1997; robustum Schott Chiapas Label data of (Araceae) (Cacahoatán); Delgado Guerrero (Mochitlán, Achauizolta)

Xanthosoma MEXICO: Morón 1997 sagittifolium (L.) Chiapas Schott (Cacahoatán) (Araceae)

Xanthosoma sp. COSTA RICA: Label data of E. (Araceae) Alajuela (San Cano and A. Solís Ramon, Rio S. Lorencito)

GUATEMALA: Quetzaltenango (El Palmar near

147

APPENDIX 3 (continued)

Finca El Faro)

Xanthosoma COSTA RICA: Goldwasser 1987; Goldwasser undipes (K. Koch Cartago (San Seres and Ramírez (1987; 2000) & C. D. Bouché) Ramón de la 1995; reported the K. Koch Unión), Goldwasser 2000; plant as (Araceae) Guanacaste García-Robledo et Xanthosoma (Peñas Blancas), al. 2005 robustum Schott Puntarenas (García-Robledo (Monteverde) et al. 2005, citing pers. comm. with T. Croat).

Xanthosoma COSTA RICA: Valerio 1988; wendlandii (Schott) Herédia (Santo Morón 1997 Standl. Domingo); (Araceae) Alajuela (Alajuela)

MEXICO: Chiapas (Cacahoatán)

Cyclocephala Philodendron FRENCH Ponchel 2006 simulatrix Höhne, solimoesense A. C. GUIANA 1923 Sm. (Araceae)

Philodendron FRENCH Gibernau and squamiferum GUIANA: Barabé 2002 Poepp. Kourou (Araceae)

Cyclocephala sparsa Cymbopetalum COSTA RICA: Schatz 1985 Arrow, 1902 costaricense Herédia (La (Donn. Sm.) R. E. Selva Biological Fr. Station) (Annonaceae)

Cymbopetalum COSTA RICA: Bawa et al. 1985a; torulosum G. E. Herédia (La Bawa et al 1985b; Schatz Selva Biological Schatz 1985; (Annonaceae) Station) Kress and Beach

148

APPENDIX 3 (continued)

1994

Malmea aff. MEXICO: Schatz 1987 depressa (Baill.) R. Veracruz E. Fr. (Estacíon (Annonaceae) Biológica Los Tuxtlas)

Cyclocephala spp. Annona montana BRAZIL: Webber 1981 The scarab was Macfad. Amazonas reported from (Annonaceae) (Amazonia) cultivated A. montana.

Annona muricata BRAZIL: Webber 1981 The scarab was L. Amazonas reported from (Annonaceae) (Manaus) cultivated A. muricata.

Annona sp. ex aff. BRAZIL Gottsberger 1989 Annona paludosa (Amazonia, near Aubl. Paricatuba) (Annonaceae)

Annona NO DATA Schatz 1987 Section Pilannona (Annonaceae)

Aphandra natalia ECUADOR: Ervik 1992 (Balslev & A. J. Morona-Santiago Henderson) Barfod (20 km south of (Arecaceae) Sucua)

Attalea spectabilis BRAZIL: Küchmeister et al. Mart. Amazonas 1992 (Arecaceae) (Ducke Forest Reserve)

Bactris gasipaes PERU: Huánaco Listabarth 1992 Kunth (Pachitea) (Arecaceae)

Bactris hirta var. BRAZIL: Henderson et al. pectinata (Mart.) Manaus (Reserve 2000 Govaerts 1501 of (Arecaceae) Biological Dynamics of Forest Fragments

149

APPENDIX 3 (continued)

Project)

Bactris sp. PERU: Huanaco Listabarth 1992 (Arecaceae) (Pachitea)

Carludovica drudei COSTA RICA: Anderson and Mast. Puntarenas Gómez-P. 1997 (Cyclanthaceae)

Carludovica COSTA RICA: Anderson and palmata Ruiz & Puntarenas Gómez-P. 1997 Pav. (Cyclanthaceae)

Dieffenbachia NO DATA Pellmeyr 1985, The plant was pittieri Engl. & K. citing pers. comm. reported as D. Krause from J. Beach piltieri [sic]. (Araceae)

Duguetia spixiana PERU: Maas et al. 2003 Mart. Madre de Dios (Annonaceae) (Tambopata)

Elaeis oleifera NO DATA Hardon 1969, (Kunth) Cortés citing unpublished (Arecaceae) data of J. J. Hardon

Magnolia ovata (A. BRAZL: São Gottsberger 1986 St.-Hil.) Spreng. Paulo (Magnoliaceae)

Oenocarpus BRAZIL: Küchmeister et al. bacaba Mart. Amazonas 1998 (Arecaceae)

Philodendron COSTA RICA: Grayum 1996 aurantiifolium Herédia (La subsp. Selva Biological aurantiifolium Station) Schott (Araceae)

Philodendron VENEZUELA: Ramírez 1989 Two unidentified ptarianum Steyerm. Bolívar Cyclocephala var. rugosum Bunt. (Canaima species came to (Araceae) National Park) P. ptarianum. One scarab

150

APPENDIX 3 (continued)

species was indentified as C. atricopilla [sic] (= C. atricapilla) in Ramírez 1992.

Porcelia spp. NO DATA Schatz 1987, (Annonaceae) citing pers. comm. from P. J. M. Maas

Syagrus sancona COLOMBIA Núnez-Avellaneda (Kunth) H. Karst. and Neita 2009 (Arecaceae)

Syngonium COSTA RICA Croat 1981, citing triphyllum Birdsey pers. comm. from ex Croat T. Ray (Araceae)

Wettinia quinaria COLOMBIA: Núñez et al. 2005 (O. F. Cook & Chocó Doyle) Burret (El Amargal (Arecaceae) Biological Station)

Xanthosoma VENEZUELA Seres and Ramírez undipes (K. Koch (Henri Pittier 1995 and C. D. Bouché) National Park) K. Koch (Araceae)

Xanthosoma COSTA RICA: Valerio 1988 wendlandii (Schott) Guanacaste Standl. (Carmona de (Araceae) )

Cyclocephala stictica Astrocaryum COSTA RICA: Bullock 1981 Burmeister, 1847 alatum Loomis Herédia (La (Arecaceae) Selva Biological Station)

Annona muricata COSTA RICA Villalta 1988; L. Ratcliffe 2003 (Annonaceae)

Bactris coloradonis COSTA RICA Ratcliffe 2003

151

APPENDIX 3 (continued)

L. H. Bailey (Arecaceae)

Bactris COSTA RICA: Bullock 1981 hondurensis Standl. Herédia (La (Arecaceae) Selva Biological Station)

Oenocarpus bataua COLOMBIA: Nunez-Avellaneda Mart. Antioquia, and Rojas-Robles (Arecaceae) Chocó, Meta 2008

Xanthosoma MEXICO: Morón 1997 sagittifolium (L.) Chiapas Schott (Cacahoatán) (Araceae)

Xanthosoma MEXICO: Morón 1997 wendlandii (Schott) Chiapas Standl. (Cacahoatán) (Araceae)

Cyclocephala tutilina Cyclanthus VENEZUELA Seres and Ramírez Burmeister, 1847 bipartitus Poit. ex (Henri Pittier 1995 A. Rich. National Park) (Cyclanthaceae)

Dieffenbachia COSTA RICA: Young 1986; C. tutilina is not nitidipetiolata Herédia (La Young 1988a; recorded in Croat & Grayum Selva Biological Young 1990 Costa Rica (Araceae) Station) (Ratcliffe 2003). The plant was reported as D. longispatha (Croat 2004).

Dieffenbachia VENEZUELA: Ratcliffe and Cave The plant was seguine (Jacq.) Aragua 2006; Label data reported as D. Schott (Henri Pittier of Seres and seguinum [sic] (Araceae) National Park) Ramirez (Ratlcliffe and Cave 2006).

Dieffenbachia sp. VENEZUELA Seres and Ramírez (Araceae) (Henri Pittier 1995 National Park)

152

APPENDIX 3 (continued)

Philodendron VENEZUELA Seres and Ramírez macroglossum (Henri Pittier 1995 Schott National Park) (Araceae)

Xanthosoma sp. ECUADOR Ohaus 1910 (Araceae)

Xanthosoma VENEZUELA Seres and Ramírez undipes (K. Koch (Henri Pittier 1995 and C. D. Bouché) National Park) K. Koch (Araceae)

Cyclocephala tylifera Philodendron FRENCH Gibernau and Höhne, 1923 squamiferum GUIANA: Barabé 2002; Poepp. Kourou Ponchel 2006 (Araceae)

Cyclocephala undata Annona foetida BRAZIL: Gottsberger 1999, (Olivier, 1789) Mart. Amazonas citing unpublished (Annonaceae) (Manaus) data of A. C. Weber and G. Gottsberger

Annona montana NO DATA Gottsberger et al. Macfad. 1998 (Annonaceae)

Bactris hirta Mart. BRAZIL: Küchmeister et al. (Arecaceae) Amazonas 1998

Cymbopetalum BRAZIL: Webber and euneurum N. A. Amazonas Gottsberger 1993 Murray (Ducke Forest (Annonaceae) Reserve)

Duguetia riparia BRAZIL: Küchmeister et al. Huber Amazonas 1998 (Annonaceae)

Duguetia ulei BRAZIL: Küchmeister et al. (Diels) R. E. Fr. Amazonas 1998 (Annonaceae)

Malmea NO DATA Gottsberger et al.

153

APPENDIX 3 (continued)

manausensis Maas 1998 & Miralha (Annonaceae)

Montrichardia FRENCH Ponchel 2006 arborescens (L.) GUIANA Schott (Araceae)

Cyclocephala Attalea geraensis BRAZIL: São Gottsberger 1986 variabilis Burmeister, Barb. Rodr. Paulo 1847 (Arecaceae)

Cyclocephala varians Montrichardia FRENCH Gibernau et al. Burmeister, 1847 arborescens (L.) GUIANA: 2003; Ponchel Schott Kourou, 2006 (Araceae) Sinnamary

Montrichardia FRENCH Ponchel 2006 linifera (Arruda) GUIANA Schott (Araceae)

(Nymphaeaceae) FRENCH Ponchel 2006 GUIANA

Cyclocephala Philodendron BRAZIL: São Gottsberger and variolosa Burmeister, bipinnatifidum Paulo (Botucatu) Amaral 1984; 1847 Schott ex Endl. Gottsberger 1986 (Araceae)

Philodendron sp. BRAZIL: São Gottsberger and (Araceae) Paulo (Botucatu) Amaral 1984

Cyclocephala vestita Annona muricata BRAZIL Cavalcante 2000; Höhne, 1923 L. (Annonaceae) (northeastern) Maia et al. 2010, citing unpublished data of Maia, Schlindwein and Gibernau

Montrichardia FRENCH Gibernau et al. arborescens (L.) GUIANA: 2003; Ponchel Schott Kourou, 2006

154

APPENDIX 3 (continued)

(Araceae) Sinnamary

Cyclocephala Corythophora BRAZIL: Prance 1976 verticalis Burmeister, rimosa W. A. Amazonas 1847 Rodrigues (Manaus) (Lecythidaceae)

Eschweilera BRAZIL: Prance 1976 decolorans Amazonas Sandwith (Manaus) (Lecythidaceae)

Eschweilera sp. BRAZIL: Prance 1976 (Lecythidaceae) Amazonas (Manaus)

Lecythis lurida BRAZIL: Prance 1976 (Miers) S. A. Mori Amazonas (Lecythidaceae) (Manaus)

Nymphaea SURINAME Cramer et al. 1975 amazonum Mart. & Zucc. (Nymphaeaceae)

Nymphaea conardii VENEZUELA: Wiersema 1987 Wiersema Barinas (Sosa) (Nymphaeaceae)

Nymphaea BRAZIL: Pará Cramer et al. rudgeana G. Mey. (Belém) 1975; Prance and (Nymphaeaceae) Anderson 1976 SURINAME

Victoria amazonica BRAZIL: Prance and Arias (Poepp.) J. C. Amazonas 1975; Seymour Sowerby and Matthews (Nymphaeaceae) GUAYANA: 2006 Upper Takutu- Upper Essequibo (Karanambu Ranch)

Cyclocephala Psidium sp. COSTA RICA Ratcliffe 1992a; williami Ratcliffe, (Myrtaceae) Ratcliffe 2003 1992a

155

APPENDIX 3 (continued)

Dyscinetus nr. Annona sp. ex aff. BRAZIL Gottsberger 1989 The scarab was plicatus (Burmeister, Annona densicoma (lower Rio attracted to floral 1847) Mart. Purús) odors but was (Annonaceae) not collected in inflorescences (Gottsberger 1989).

Erioscelis columbica Dieffenbachia COSTA RICA: Young 1986; The plant was Endrödi, 1966 nitidipetiolata Herédia (La Young 1988a; reported as D. Croat & Grayum Selva Biological Young 1988b; longispatha (Araceae) Station) Young 1990; (Croat 2004). Beath 1999; PANAMA Ratcliffe 2003

Philodendron COSTA RICA: Croat 1997, citing anisotomum Schott Herédia (La pers. comm. from (Araceae) Selva Biological H. Young Station)

Philodendron COSTA RICA: Croat 1997 grandipes K. Limón Krause (Araceae)

Philodendron COSTA RICA: Morón 1997, guttiferum Kunth Herédia (La citing pers. comm. (Araceae) Selva Biological from A. Solís Station)

Philodendron COSTA RICA: Croat 1997, citing jodavisianum G. S. Herédia (La pers. comm. from Bunting Selva Biological H. Young (Araceae) Station)

Philodendron COSTA RICA: Croat 1997, citing radiatum Schott Herédia (La pers. comm. from (Araceae) Selva Biological H. Young Station)

Philodendron COSTA RICA: Croat 1997, citing rothschuhianum Herédia (La pers. comm. from (Engl.) Croat & Selva Biological H. Young Grayum Station) (Araceae)

156

APPENDIX 3 (continued)

Philodendron COSTA RICA: Croat 1997, citing tripartitum (Jacq.) Herédia (La pers. comm. from Schott Selva Biological H. Young (Araceae) Station)

Syngonium COSTA RICA: Morón 1997, schottianum, Herédia (La citing pers. comm. Wendl. ex Schott Selva Biological from A. Solís; (Araceae) Station) Beath 1998

Erioscelis emarginata (Araceae) BRAZIL: Pará Martínez 1968 (Mannerheim, 1829) NO DATA BRAZIL Mannerheim 1829

Philodendron BRAZIL: São Schrottky 1910; bipinnatifidum Paulo (around Gottsberger 1986; Schott ex Endl. Botucatu) Gottsberger and (Araceae) Amaral1984; PARAGUAY Gottsberger and (Villa Silberbauer- Encarnacion) Gottsberger 1991

Xanthosoma PARAGUAY Schrottky 1908; Scarab reported striatipes (Kunth & (Villa Schrottky 1910 as an C. D. Bouché) Encarnacion) undetermined Madison dynastine by (Araceae) Schrottky (1908) and was indentified by as E. emarginata by Schrottky (1910). This association was questioned by Gottsberger and Amaral (1984).

Erioscelis proba Montrichardia FRENCH Gibernau et al. Sharp, 1877 arborescens (L.) GUIANA: 2003 Schott Kourou, (Araceae) Sinnamary

Philodendron COSTA RICA: Grayum 1996 aurantiifolium Herédia (La

157

APPENDIX 3 (continued)

subsp. Selva Biological aurantiifolium Station) Schott (Araceae)

Philodendron COSTA RICA: Grayum 1996; brevispathum Herédia (La Croat 1997 Schott Selva Biological (Araceae) Station)

Philodendron FRENCH Ponchel 2006 squamiferum GUIANA Poepp. (Araceae)

Mimeoma acuta Astrocaryum COSTA RICA: Bullock 1981 Arrow, 1902 alatum Loomis Herédia (La (Arecaceae) Selva Biological Station)

Bactris coloradonis COSTA RICA: Beach 1984; L. H. Bailey Herédia (La Ratcliffe 2003, (Arecaceae) Selva Biological citing pers. comm. Station) with J. Beach and H. Young

Bactris COSTA RICA: Bullock 1981; hondurensis Standl. Herédia (La Ratcliffe 2003, (Arecaceae) Selva Biological citing pers. comm. Station) with J. Beach and H. Young

Bactris longiseta COSTA RICA: Bullock 1981 H. Wendl. ex Herédia (La Burret Selva Biological (Arecaceae) Station)

Mimeoma englemani Bactris spp. PANAMA Ratcliffe 2003 Ratcliffe (2003) Ratcliffe, 1977 (Arecaceae) did not state this association occurs in Panama, though M. englemani is currently known only from Panama.

158

APPENDIX 3 (continued)

Mimeoma maculata Astrocaryum FRENCH Ponchel 2006; The plant was (Burmeister, 1847) paramaca Mart. GUIANA Ponchel 2010 reported as (Arecaceae) Astrocaryum paramaka [sic].

Peltonotus Epipremnum BRUNEI Jameson and malayensis Arrow, falcifolium Engl. Wada 2004 1910 (Araceae)

Peltonotus nasutus Amorphophallus THAILAND: Grimm 2009 Arrow, 1910 paeoniifolius Changwat (Dennst.) Nicolson (Thung Yai (Araceae) Wildlife Sanctuary)

Ruteloryctes morio Nymphaea lotus L. BENIN Ervik and (Fabricius, 1798) (Nymphaeaceae) Knudsen 2003; CÔTE D‟ Hirthe and IVOIRE: Zanzan Porembski 2003; (Comoé National Krell et al. 2003 Park)

SENEGAL: Kaolack, Tambacounda

Nymphaea sp. West Indies Fabricius 1798 (Nymphaeaceae) (erroneous label data)

Cyclocephalini Echinopsis NO DATA Schlumpberger Reported as a ancistrophora and Raguso 2008 destructive, Speg. subsp. nocturnal scarab. ancistrophora Based on (Cactaceae) photographs, the the beetles are probably cyclocephalines (pers. comm. with B. Schlumpberger, April 2011).

159

APPENDIX 3 (continued)

Rhodospatha sp. COSTA RICA: Schatz 1990 (Araceae) Herédia (La Selva Biological Station)

Dynastinae Bactris gasipaes PERU: Huánuco Listabarth 1996 Kunth (Arecaceae)

Bactris maraja PERU: Huánuco Listabarth 1996 This scarab was Mart. reported as a (Arecaceae) most rare visitor (Listabarth 1996).

Bactris bifida Mart. PERU: Huánuco Listabarth 1996 This scarab was (Arecaceae) reported as a most rare visitor (Listabarth 1996).

Bognera recondita BRAZIL: Gonçalves, E. G. The authors did (Madison) Mayo & Amazonas and A. C. D. Maia not explicity Nicolson (Lago Cauxi 2006; Bogner state the locality (Araceae) near Atalaia) 2008, citing of the association upublished data of data, though E. G. Gonçalves extensive observations of B. recondita were made only in Amazonas, Brazil

Homalomena sp. MALAYA Grayum 1990, This could be a (Araceae) citing pers. comm. misidentification. From G. E. Schatz Peltonotus was not in the Cyclocephalini prior to 2006 (Smith 2006). This beetle could be Parastasia spp. (Scarabaeidae: Rutelinae), species of which

160

APPENDIX 3 (continued)

are known visitors of Homalomena spp. on Borneo (Malaysia) (Momose et al 1998; Chen et al. 2011).

Monstera oreophila PANAMA: Grayum 1990 Madison Chiriquí (Araceae)

Scarabaeidae Ammandra COLOMBIA: Cook 1927 decasperma O. F. Valle del Cauca Cook (Buenaventura) (Arecaceae)

Annona montana COSTA RICA: Bawa et al. 1985b Macfad. Herédia (La (Annonaceae) Selva Biological Station)

Asimina sp. NO DATA Gottsberger 1988 (Annonaceae)

Attalea speciosa BRAZIL: Anderson et al. Mart. Maranhão (Lago 1988 (Arecaceae) Verde); Pará (Serra Norte, Canoal)

Chlorospatha spp. NO DATA Madison 1981 (Araceae)

Evodianthus funifer PERU Gottsberger 1991 (Poit.) Lindm. (Lower Río subsp. funifer Llullapichus, (Cyclanthaceae) Panguana Field Station)

Homalomena NO DATA Grayum 1984 hammelii Croat and Grayum (Araceae)

Philodendron BRAZIL: Minas Warming 1883 Scarabs reported

161

APPENDIX 3 (continued)

bipinnatifidum Gerais (Lagoa as “Maikäfer” Schott ex Endl. Santa) (Araceae)

Philodendron NO DATA Grayum 1984 davidsonii Croat (Araceae)

Philodendron NO DATA Grayum 1984 grandipes K. Krause (Araceae)

Philodendron NO DATA Grayum 1984 ligulatum Schott (Araceae)

Philodendron NO DATA Grayum 1984 venosum (Willd. Ex Schult. & Schult.f.) Croat (Araceae)

Philodendron NO DATA Grayum 1984 radiatum Schott (Araceae)

Philodendron NO DATA Grayum 1984 rothschuhianum (Engl.) Croat & Grayum (Araceae)

Porcelia sp. NO DATA Gottsberger 1988 (Annonaceae)

Syngonium NO DATA Grayum 1984 schottianum H. Wendl. ex Schott (Araceae)

Xanthosoma NO DATA Grayum 1984 robustum Schott (Araceae)

“Beetles” Philodendron NO DATA Madison 1979 acuminatissimum

162

APPENDIX 3 (continued)

Engl. (Araceae)

Philodendron NO DATA Madison 1979, Inflorenscences cruentospathum citing pers. comm. of this plant Madison from C. H. species rotate to (Araceae) Dodson capture water after anthesis which is a strategy to drive beetles out of the spathe (Madison 1979).

Philodendron NO DATA Madison 1979 Inflorescences of senatocarpium this plant species Madison are often filled (Araceae) with water which is a strategy to drive beetles out the spathe (Madison 1979).

Philodendron NO DATA Madison 1979 Inflorescences of venosum (Willd. ex this plant species Schult. & Schult.f.) are often filled Croat with water which is a strategy to drive beetles out the spathe. Scarabs have been reported from P. venosum (Grayum1984).

Rhodospatha NO DATA Grayum 1986, The beetles forgetii N. E. Br. citing pers. comm. could be (Araceae) from G. Schatz cyclocephalines based on the observations of Schatz (1990).

Xanthosoma NO DATA Madison 1979 The plant species sagittifolium (L.) displays a Schott “drowning” (Araceae) strategy similar to Philodendron (Madison 1979).

163

APPENDIX 3 (continued)

Evidence of beetle Nymphaea VENEZUELA Wiersema 1987 feeding oxypetala Planch. (Nymphaeaceae)

164