ECE 410: VLSI Design Course Lecture Notes (Uyemura Textbook)

Total Page:16

File Type:pdf, Size:1020Kb

ECE 410: VLSI Design Course Lecture Notes (Uyemura Textbook) ECE 410: VLSI Design Course Lecture Notes (Uyemura textbook) Professor Andrew Mason Michigan State University ECE 410, Prof. A. Mason Lecture Notes Page 2.1 CMOS Circuit Basics • CMOS = complementary MOS drain source – uses 2 types of MOSFETs gate gate to create logic functions •nMOS source drain nMOS pMOS •pMOS • CMOS Power Supply VDD CMOS – typically single power supply + CMOS VDD logic = – VDD, with Ground reference - logic circuit circuit • typically uses single power supply • VDD varies from 5V to 1V V •Logic Levels VDD logic 1 – all voltages between 0V and VDD voltages – Logic ‘1’ = VDD undefined – Logic ‘0’ = ground = 0V logic 0 voltages ECE 410, Prof. A. Mason Lecture Notes Page 2.2 Transistor Switching Characteristics •nMOS drain Vout nMOS –switching behavior gate • on = closed, when Vin > Vtn Vin nMOS – Vtn = nMOS “threshold voltage” + Vgs > Vtn = on Vgs – Vin is referenced to ground, Vin = Vgs - source • off = open, when Vin < Vtn •pMOS + source pMOS –switching behavior Vsg • on = closed, when Vin < VDD - |Vtp| - pMOS – |Vtp| = pMOS “threshold voltage” magnitude Vin Vsg > |Vtp| = on gate – Vin is referenced to ground, Vin = VDD-Vsg Vsg = VDD - Vin • off = open, when Vin > VDD - |Vtp| drain Rule to Remember: ‘source’ is at • lowest potential for nMOS • highest potential for pMOS ECE 410, Prof. A. Mason Lecture Notes Page 2.3 Transistor Digital Behavior •nMOS drain Vout nMOS Vin Vout (drain) gate Vin nMOS 1 Vs=0 device is ON + Vgs > Vtn = on 0 ? device is OFF Vgs - source •pMOS Vin Vout (drain) pMOS + source 1 ? device is OFF Vsg 0 Vs=VDD=1 device is ON - pMOS Vin Vsg > |Vtp| = on gate Vsg = VDD - Vin Vin drain pMOS Vout VDD off VDD-|Vtp| on Notice: on When Vin = low, nMOS is off, pMOS is on When Vin = high, nMOS is on, pMOS is off Vtn off Æ Only one transistor is on for each digital voltage nMOS ECE 410, Prof. A. Mason Lecture Notes Page 2.4 MOSFET Pass Characteristics • Pass characteristics: passing of voltage from drain (or source) to source (or drain) when device is ON (via gate voltage) • Each type of transistor is better than the other at passing (to output) one digital voltage – nMOS passes a good low (0) but not a good high (1) – pMOS passes a good high (1) but not a good low (0) VDD VDD + nMOS Vgs=Vtn Passes a good low ON when gate 0 V ? VDD ?- Max high is VDD-Vtn is ‘high’ Vy = 0 V Vy = VDD-Vtn 0 V 0 V - pMOS Vsg=|Vtp| Passes a good high ON when gate VDD ? 0 V ? + Min low is |Vtp| is ‘low’ Vy = VDD Vy = |Vtp| Rule to Remember ‘source’ is at lowest potential for nMOS and at highest potential for pMOS ECE 410, Prof. A. Mason Lecture Notes Page 2.5 MOSFET Terminal Voltages • How do you find one terminal voltage if the other 2 are known? –nMOS • case 1) if Vg > Vi + Vtn, then Vo = Vi (Vg-Vi > Vtn) Vo – here Vi is the “source” so the nMOS will pass Vi to Vo Vg • case 2) if Vg < Vi + Vtn, then Vo = Vg-Vtn (Vg-Vi < Vtn) – here Vo is the “source” so the nMOS output is limited Vi For nMOS, max(Vo) = Vg-Vtn –pMOS • case 1) if Vg < Vi - |Vtp|, then Vo = Vi (Vi-Vg > |Vtp|) Vi – here Vi is the “source” so the pMOS will pass Vi to Vo Vg • case 2) if Vg > Vi - |Vtp|, then Vo = Vg+|Vtp| (Vi-Vg < |Vtp|) Vo – here Vo is the “source” so the pMOS output is limited For pMOS, min(Vo) = Vg+|Vtp| IMPORTANT: Rules only apply if the devices is ON (e.g., Vg > Vtn for nMOS) ECE 410, Prof. A. Mason Lecture Notes Page 2.6 MOSFET Terminal Voltages: Examples –nMOSrules max(Vo) = Vg-Vtn • case 1) if Vg > Vi + Vtn, then Vo = Vi (Vg-Vi > Vtn) • case 2) if Vg < Vi + Vtn, then Vo = Vg-Vtn (Vg-Vi < Vtn) •nMOSexamples (Vtn=0.5V) Vo 2 1.5 Vo – 1: Vg=5V, Vi=2V acts as • Vg=5 > Vi +Vtn = 2.5 ⇒ Vo = 2V Vg5 Vg2 the source – 2: Vg=2V, Vi=2V • Vg=2 < Vi+Vtn = 2.5 ⇒ Vo = 1.5V 2Vi source 2Vi –pMOSrules min(Vo) = Vg+|Vtp| • case 1) if Vg < Vi - |Vtp|, then Vo = Vi (Vi-Vg > |Vtp|) • case 2) if Vg > Vi - |Vtp|, then Vo = Vg+|Vtp| (Vi-Vg < |Vtp|) •pMOSexamples (Vtp=-0.5V) – 1: Vg=2V, Vi=5V 5Vi source 2Vi • Vg=2 < Vi-|Vtp|=4.5 ⇒ Vo = 5V Vg2 Vg2 acts as – 2: Vg=2V, Vi=2V the source • Vg=2 > Vi-|Vtp|=1.5 ⇒ Vo = 2.5V Vo 52.5Vo ECE 410, Prof. A. Mason Lecture Notes Page 2.7 Switch-Level Boolean Logic • Logic gate are created by using sets of controlled switches • Characteristics of an assert-high switch nMOS acts like an assert-high switch – y = x • A, i.e. y = x if A = 1 AND, or multiply function Series switches ⇒ AND function Parallel switches ⇒ OR function a AND b a OR b ECE 410, Prof. A. Mason Lecture Notes Page 2.8 Switch-Level Boolean Logic • Characteristics of an assert-low switch pMOS acts like an y=x y=? assert-low switch – y = x • A, i.e. y = x if A = 0 error in figure 2.5 Series assert-low switches ⇒ ? NOT function, combining assert- a b high and assert-low switches NOT (a OR b) NOR Remember This?? a=1 ⇒ SW1 closed, SW2 open ⇒ y=0 = a a • b = a + b, a + b = a • b DeMorgan relations a=0 ⇒ SW1 open, SW2 closed ⇒ y=1 = a ECE 410, Prof. A. Mason Lecture Notes Page 2.9 CMOS “Push-Pull” Logic • CMOS Push-Pull Networks –pMOS assert-low pMOS •“on”when input is low logic • pushes output high inputs output –nMOS assert-high •“on”when input is high logic nMOS • pulls output low • Operation: for a given logic function – one logic network (p or n) produces the logic function and pushes or pulls the output – the other network acts as a “load” to complete the circuit, but is turned off by the logic inputs – since only one network it active, there is no static current (between VDD and ground) •zero static power dissipation ECE 410, Prof. A. Mason Lecture Notes Page 2.10 Creating Logic Gates in CMOS • All standard Boolean logic functions (INV, NAND, OR, etc.) can be produced in CMOS push-pull circuits. • Rules for constructing logic gates using CMOS – use a complementary nMOS/pMOS pair for each input – connect the output to VDD through pMOS txs – connect the output to ground through nMOS txs assert-low pMOS – insure the output is always either high or low logic inputs output • CMOS produces “inverting” logic assert-high logic nMOS – CMOS gates are based on the inverter – outputs are always inverted logic functions e.g., NOR, NAND rather than OR, AND Useful Logic Properties • Logic Properties 1 + x = 1 0 + x = x DeMorgan’s Rules 1 ⋅ x = x 0 ⋅ x = 0 Properties which can be proven (a ⋅ b)’ = a’ + b’ x + x’ = 1 x ⋅ x’ = 0 (a+b)(a+c) = a+bc a ⋅ a = a a + a = a a + a'b = a + b (a + b)’ = a’ ⋅ b’ ab + ac = a (b+c) ECE 410, Prof. A. Mason Lecture Notes Page 2.11 Review: Basic Transistor Operation CMOS Circuit Basics + source Vg= Vsg Vout - pMOS Vin Vin assert-low pMOS Vin Vsg > |Vtp| = on 0 1 on = closed pMOS gate Vsg = VDD - Vin logic 1 ? off = open VDD drain off inputs output VDD-|Vtp| drain on assert-high Vg= nMOS gate Vout on logic Vin nMOS Vin + Vgs > Vtn = on 0 ? off = open Vtn Vgs off source 1 0 on = closed - nMOS CMOS Pass Characteristics ‘source’ is at lowest potential (nMOS) and highest potential (pMOS) VDD VDD + •nMOS Vgs=Vtn –0 in Æ 0 out nMOS 0 V VDD - –VDD in Æ VDD-Vtn out Vy = 0 V Vy = – strong ‘0’, weak ‘1’ VDD-Vtn •pMOS 0 V 0 V - Vsg=|Vtp| –VDD in Æ VDD out pMOS VDD 0 V + –0 in Æ |Vtp| out Vy = VDD Vy = |Vtp| – strong ‘1’, weak ‘0’ ECE 410, Prof. A. Mason Lecture Notes Page 2.12 Review: Switch-Level Boolean Logic • assert-high switch – y = x • A, i.e. y = x if A = 1 – series = AND a AND b – parallel = OR a OR b • assert-low switch – y = x • A, i.e. y = x if A = 0 =x – series = NOR a b – parallel = NAND NOT (a OR b) ECE 410, Prof. A. Mason Lecture Notes Page 2.13 CMOS Inverter • Inverter Function • Inverter Symbol • toggle binary logic of a signal x y • Inverter Switch Operation • Inverter Truth Table xy= x 0 1 =VDD Vin=VDD 1 0 • CMOS Inverter Schematic + Vsg - input low Æ output high input high Æ output low pMOS nMOS off/open nMOS on/closed Vin pMOS on/closed pMOS off/open Vout = Vin pMOS “on” nMOS “on” nMOS Æ output high (1) + Æ output low (0) Vgs - ECE 410, Prof. A. Mason Lecture Notes Page 2.14 nMOS Logic Gates • We will look at nMOS logic first, more simple than CMOS • nMOS Logic (no pMOS transistors) – assume a resistive load to VDD – nMOS switches pull output low based on inputs VDD VDD (a) nMOS is off Æ output is high (1) nMOS Inverter =VDD VDD (b) nMOS is on Æ output is low (0) nMOS NOR nMOS NAND c = ab c = a+b • parallel switches = OR function • series switches = AND function • nMOS pulls low (NOTs the output) • nMOS pulls low (NOTs the output) ECE 410, Prof.
Recommended publications
  • Role of Mosfets Transconductance Parameters and Threshold Voltage in CMOS Inverter Behavior in DC Mode
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 July 2017 doi:10.20944/preprints201707.0084.v1 Article Role of MOSFETs Transconductance Parameters and Threshold Voltage in CMOS Inverter Behavior in DC Mode Milaim Zabeli1, Nebi Caka2, Myzafere Limani2 and Qamil Kabashi1,* 1 Department of Engineering Informatics, Faculty of Mechanical and Computer Engineering ([email protected]) 2 Department of Electronics, Faculty of Electrical and Computer Engineering ([email protected], [email protected]) * Correspondence: [email protected]; Tel.: +377-44-244-630 Abstract: The objective of this paper is to research the impact of electrical and physical parameters that characterize the complementary MOSFET transistors (NMOS and PMOS transistors) in the CMOS inverter for static mode of operation. In addition to this, the paper also aims at exploring the directives that are to be followed during the design phase of the CMOS inverters that enable designers to design the CMOS inverters with the best possible performance, depending on operation conditions. The CMOS inverter designed with the best possible features also enables the designing of the CMOS logic circuits with the best possible performance, according to the operation conditions and designers’ requirements. Keywords: CMOS inverter; NMOS transistor; PMOS transistor; voltage transfer characteristic (VTC), threshold voltage; voltage critical value; noise margins; NMOS transconductance parameter; PMOS transconductance parameter 1. Introduction CMOS logic circuits represent the family of logic circuits which are the most popular technology for the implementation of digital circuits, or digital systems. The small dimensions, low power of dissipation and ease of fabrication enable extremely high levels of integration (or circuits packing densities) in digital systems [1-5].
    [Show full text]
  • Logic Styles with Mosfets
    Logic Styles with MOSFETs NMOS Logic One way of using MOSFET transistors to produce logic circuits uses only n-type (n-p-n) transistors, and this style is called NMOS logic (N for n-type transistors). An inverter circuit in NMOS is shown in the figure with n-p-n transistors replacing both the switch and the resistor of the inverter circuit examined earlier. The lower transistor in the circuit operates as a switch exactly as the idealised switch in the original circuit: with 5V on the Gate input, the conducting channel is created in the transistor and the “switch” is closed; with 0V on the Gate there is no channel and the transistor is non-conducting - the “switch” is open. The depletion mode transistor is produced by adding a small amount of donor material to the The upper transistor, called a depletion mode channel region of a n-p-n transistor, so that there are a small number of free electrons in the channel transistor, operates as a resistor to limit current even when there is no electric field across the flow when the “switch” is closed. This transistor is insulator. This provides a connection through the a modified n-p-n transistor that always has a transistor for all Gate voltages. The conductivity of channel present and is always conducting, although the channel is lowest (Resistance is highest) when the conductivity is low when there is 0V on the the Gate is at 0V. When the Gate is at 5V and more Gate and higher when 5V is on the Gate: see Box.
    [Show full text]
  • MOSFET - Wikipedia, the Free Encyclopedia
    MOSFET - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/MOSFET MOSFET From Wikipedia, the free encyclopedia The metal-oxide-semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), is by far the most common field-effect transistor in both digital and analog circuits. The MOSFET is composed of a channel of n-type or p-type semiconductor material (see article on semiconductor devices), and is accordingly called an NMOSFET or a PMOSFET (also commonly nMOSFET, pMOSFET, NMOS FET, PMOS FET, nMOS FET, pMOS FET). The 'metal' in the name (for transistors upto the 65 nanometer technology node) is an anachronism from early chips in which the gates were metal; They use polysilicon gates. IGFET is a related, more general term meaning insulated-gate field-effect transistor, and is almost synonymous with "MOSFET", though it can refer to FETs with a gate insulator that is not oxide. Some prefer to use "IGFET" when referring to devices with polysilicon gates, but most still call them MOSFETs. With the new generation of high-k technology that Intel and IBM have announced [1] (http://www.intel.com/technology/silicon/45nm_technology.htm) , metal gates in conjunction with the a high-k dielectric material replacing the silicon dioxide are making a comeback replacing the polysilicon. Usually the semiconductor of choice is silicon, but some chip manufacturers, most notably IBM, have begun to use a mixture of silicon and germanium (SiGe) in MOSFET channels. Unfortunately, many semiconductors with better electrical properties than silicon, such as gallium arsenide, do not form good gate oxides and thus are not suitable for MOSFETs.
    [Show full text]
  • EE 434 Lecture 2
    EE 330 Lecture 6 • PU and PD Networks • Complex Logic Gates • Pass Transistor Logic • Improved Switch-Level Model • Propagation Delay Review from Last Time MOS Transistor Qualitative Discussion of n-channel Operation Source Gate Drain Drain Bulk Gate n-channel MOSFET Source Equivalent Circuit for n-channel MOSFET D D • Source assumed connected to (or close to) ground • VGS=0 denoted as Boolean gate voltage G=0 G = 0 G = 1 • VGS=VDD denoted as Boolean gate voltage G=1 • Boolean G is relative to ground potential S S This is the first model we have for the n-channel MOSFET ! Ideal switch-level model Review from Last Time MOS Transistor Qualitative Discussion of p-channel Operation Source Gate Drain Drain Bulk Gate Source p-channel MOSFET Equivalent Circuit for p-channel MOSFET D D • Source assumed connected to (or close to) positive G = 0 G = 1 VDD • VGS=0 denoted as Boolean gate voltage G=1 • VGS= -VDD denoted as Boolean gate voltage G=0 S S • Boolean G is relative to ground potential This is the first model we have for the p-channel MOSFET ! Review from Last Time Logic Circuits VDD Truth Table A B A B 0 1 1 0 Inverter Review from Last Time Logic Circuits VDD Truth Table A B C 0 0 1 0 1 0 A C 1 0 0 B 1 1 0 NOR Gate Review from Last Time Logic Circuits VDD Truth Table A B C A C 0 0 1 B 0 1 1 1 0 1 1 1 0 NAND Gate Logic Circuits Approach can be extended to arbitrary number of inputs n-input NOR n-input NAND gate gate VDD VDD A1 A1 A2 An A2 F A1 An F A2 A1 A2 An An A1 A 1 A2 F A2 F An An Complete Logic Family Family of n-input NOR gates forms
    [Show full text]
  • Advanced MOSFET Structures and Processes for Sub-7 Nm CMOS Technologies
    Advanced MOSFET Structures and Processes for Sub-7 nm CMOS Technologies By Peng Zheng A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Tsu-Jae King Liu, Chair Professor Laura Waller Professor Costas J. Spanos Professor Junqiao Wu Spring 2016 © Copyright 2016 Peng Zheng All rights reserved Abstract Advanced MOSFET Structures and Processes for Sub-7 nm CMOS Technologies by Peng Zheng Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Tsu-Jae King Liu, Chair The remarkable proliferation of information and communication technology (ICT) – which has had dramatic economic and social impact in our society – has been enabled by the steady advancement of integrated circuit (IC) technology following Moore’s Law, which states that the number of components (transistors) on an IC “chip” doubles every two years. Increasing the number of transistors on a chip provides for lower manufacturing cost per component and improved system performance. The virtuous cycle of IC technology advancement (higher transistor density lower cost / better performance semiconductor market growth technology advancement higher transistor density etc.) has been sustained for 50 years. Semiconductor industry experts predict that the pace of increasing transistor density will slow down dramatically in the sub-20 nm (minimum half-pitch) regime. Innovations in transistor design and fabrication processes are needed to address this issue. The FinFET structure has been widely adopted at the 14/16 nm generation of CMOS technology.
    [Show full text]
  • Vlsi Design Lecture Notes B.Tech (Iv Year – I Sem) (2018-19)
    VLSI DESIGN LECTURE NOTES B.TECH (IV YEAR – I SEM) (2018-19) Prepared by Dr. V.M. Senthilkumar, Professor/ECE & Ms.M.Anusha, AP/ECE Department of Electronics and Communication Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India Unit -1 IC Technologies, MOS & Bi CMOS Circuits Unit -1 IC Technologies, MOS & Bi CMOS Circuits UNIT-I IC Technologies Introduction Basic Electrical Properties of MOS and BiCMOS Circuits MOS I - V relationships DS DS PMOS MOS transistor Threshold Voltage - VT figure of NMOS merit-ω0 Transconductance-g , g ; CMOS m ds Pass transistor & NMOS Inverter, Various BiCMOS pull ups, CMOS Inverter Technologies analysis and design Bi-CMOS Inverters Unit -1 IC Technologies, MOS & Bi CMOS Circuits INTRODUCTION TO IC TECHNOLOGY The development of electronics endless with invention of vaccum tubes and associated electronic circuits. This activity termed as vaccum tube electronics, afterward the evolution of solid state devices and consequent development of integrated circuits are responsible for the present status of communication, computing and instrumentation. • The first vaccum tube diode was invented by john ambrase Fleming in 1904. • The vaccum triode was invented by lee de forest in 1906. Early developments of the Integrated Circuit (IC) go back to 1949. German engineer Werner Jacobi filed a patent for an IC like semiconductor amplifying device showing five transistors on a common substrate in a 2-stage amplifier arrangement.
    [Show full text]
  • MOS Caps II; Mosfets I
    6.012 - Microelectronic Devices and Circuits Lecture 10 - MOS Caps II; MOSFETs I - Outline G cS vGS + SiO2 – • Review - MOS Capacitor (= vGB) The "Delta-Depletion Approximation" n+ (n-MOS example) p-Si Flat-band voltage: VFB ≡ vGB such that φ(0) = φp-Si: VFB = φp-Si – φm Threshold voltage: VT ≡ vGB such B 1/2 * that φ(0) = – φp-Si: VT = VFB – 2φp-Si + [2εSi qNA|2φp-Si| ] /Cox * * Inversion layer sheet charge density: qN = – Cox [vGC – VT] • Charge stores - qG(vGB) from below VFB to above VT Gate Charge: qG(vGB) from below VFB to above VT Gate Capacitance: Cgb(VGB) Sub-threshold charge: qN(vGB) below VT • 3-Terminal MOS Capacitors - Bias between B and C Impact is on VT(vBC): |2φp-Si| → (|2φp-Si| - vBC) • MOS Field Effect Transistors - Basics of model Gradual Channel Model: electrostatics problem normal to channel drift problem in the plane of the channel Clif Fonstad, 10/15/09 Lecture 10 - Slide 1 G CS vGS + SiO2 – (= vGB) The n-MOS capacitor n+ Right: Basic device p-Si with vBC = 0 B Below: One-dimensional structure for depletion approximation analysis* vGB + – SiO 2 p-Si G B x -tox 0 * Note: We can't forget the n+ region is there; we Clif Fonstad, 10/15/09 will need electrons, and they will come from there. Lecture 10 - Slide 2 MOS Capacitors: Where do the electrons in the inversion layer come from? Diffusion from the p-type substrate? If we relied on diffusion of minority carrier electrons from the p-type substrate it would take a long time to build up the inversion layer charge.
    [Show full text]
  • Application of Logic Gates in Computer Science
    Application Of Logic Gates In Computer Science Venturesome Ambrose aquaplane impartibly or crumpling head-on when Aziz is annular. Prominent Robbert never needling so palatially or splints any pettings clammily. Suffocating Shawn chagrin, his recruitment bleed gravitate intravenously. The least three disadvantages of the other quantity that might have now button operated system utility scans all computer logic in science of application gates are required to get other programmers in turn saves the. To express a Boolean function as a product of maxterms, it must first be brought into a form of OR terms. Application to Logic Circuits Using Combinatorial Displacement of DNA Strands. Excitation table for a D flipflop. Its difference when compared to HTML which you covered earlier. The binary state of the flipflop is taken to be the value of the normal output. Write the truth table of OR Gate. This circuit should mean that if the lights are off and either sound or movement or both are detected, the alarm will sound. Transformation of a complex DPDN to a fully connected DPDN: design example. To best understand Boolean Algebra, we first have to understand the similarities and differences between Boolean Algebra and other forms of Algebra. Write a program that would keeps track of monthly repayments, and interest after four years. The network is of science topic needed resource in. We want to get and projects to download and in science. It for the security is one output in logic of application of the basic peripheral devices, they will not able to skip some masterslave flipflops are four binary.
    [Show full text]
  • Photovoltaic Couplers for MOSFET Drive for Relays
    Photocoupler Application Notes Basic Electrical Characteristics and Application Circuit Design of Photovoltaic Couplers for MOSFET Drive for Relays Outline: Photovoltaic-output photocouplers(photovoltaic couplers), which incorporate a photodiode array as an output device, are commonly used in combination with a discrete MOSFET(s) to form a semiconductor relay. This application note discusses the electrical characteristics and application circuits of photovoltaic-output photocouplers. ©2019 1 Rev. 1.0 2019-04-25 Toshiba Electronic Devices & Storage Corporation Photocoupler Application Notes Table of Contents 1. What is a photovoltaic-output photocoupler? ............................................................ 3 1.1 Structure of a photovoltaic-output photocoupler .................................................... 3 1.2 Principle of operation of a photovoltaic-output photocoupler .................................... 3 1.3 Basic usage of photovoltaic-output photocouplers .................................................. 4 1.4 Advantages of PV+MOSFET combinations ............................................................. 5 1.5 Types of photovoltaic-output photocouplers .......................................................... 7 2. Major electrical characteristics and behavior of photovoltaic-output photocouplers ........ 8 2.1 VOC-IF characteristics .......................................................................................... 9 2.2 VOC-Ta characteristic ........................................................................................
    [Show full text]
  • Class 08: NMOS, Pseudo-NMOS
    Class 08: NMOS, Pseudo-NMOS Topics: •02 NMOS Logic Gates •03 NMOS Logic Gates •04 Pseudo-NMOS •05 Pseudo-NMOS •06 Transistor Equivalency Dr. Joseph Elias; Dr. Andrew Mason 1 Class 08: NMOS, Pseudo-NMOS NMOS (Martin c. 1) § nMOS Inverter with resistive load § nMOS Inverter with depletion load Depletion nMOS, Vtn < 0 always ON for VGS = 0 § switch level model W/L Q1 > W/L Q2 so Q1 can “pull down” Vout § nMOS NOR gate c = a+b (a) NMOS off (b) NMOS on want to realize resistor with a transistor § nMOS NAND gate § Including transistor resistance c = ab rds º channel resistance RL >> rds so output close to 0V Dr. Joseph Elias; Dr. Andrew Mason 2 Class 08: NMOS, Pseudo-NMOS NMOS (Martin c. 1) • General nMOS schematic Examples: depletion-load nMOS logic – single load transistor – parallel and series nMOS transistor to complete the compliment of the desired function i.e., they determine when the output is low “0” rather than high “1” Dr. Joseph Elias; Dr. Andrew Mason 3 Class 08: NMOS, Pseudo-NMOS Pseudo-NMOS (Martin c. 4) •NMOS Common-Source Amplifier with •Pseudo-NMOS inverter with PMOS load current sourrce load and load capacitor •Choose W/L so that: •Choose Vbias in between VDD and ground Q2 always on since |Vgs| > |Vtp| Q2 in saturation if (for VDD=3.3) |Vds| > |Veff| > |Vgs| – |Vt| VDD – Vout > |Vgs| - |Vt| Vout < VDD - |Vgs| + |Vt| Vout < 1.65 + Vt < 2.45 Q1 in saturation if Vgs = Vin > Vt Vds > Veff > Vgs – Vt => •Current-source realized with a PMOS transistor Vout > Vin - Vt •Power Dissipation: Veff = Vgs - Vt output low (Vin is high): P = IL * VDD Vds = Vgs + Vdg at saturation, Vdg=-Vt output high (Vin is low): P = 0 Valid if: average static dissipation: P = ½ * IL * VDD Veff = |Vds-sat| > |Vgs| - |Vtp| -want drain at least Vt from gate Dr.
    [Show full text]
  • Fundamentals of MOSFET and IGBT Gate Driver Circuits
    Application Report SLUA618A–March 2017–Revised October 2018 Fundamentals of MOSFET and IGBT Gate Driver Circuits Laszlo Balogh ABSTRACT The main purpose of this application report is to demonstrate a systematic approach to design high performance gate drive circuits for high speed switching applications. It is an informative collection of topics offering a “one-stop-shopping” to solve the most common design challenges. Therefore, it should be of interest to power electronics engineers at all levels of experience. The most popular circuit solutions and their performance are analyzed, including the effect of parasitic components, transient and extreme operating conditions. The discussion builds from simple to more complex problems starting with an overview of MOSFET technology and switching operation. Design procedure for ground referenced and high side gate drive circuits, AC coupled and transformer isolated solutions are described in great details. A special section deals with the gate drive requirements of the MOSFETs in synchronous rectifier applications. For more information, see the Overview for MOSFET and IGBT Gate Drivers product page. Several, step-by-step numerical design examples complement the application report. This document is also available in Chinese: MOSFET 和 IGBT 栅极驱动器电路的基本原理 Contents 1 Introduction ................................................................................................................... 2 2 MOSFET Technology ......................................................................................................
    [Show full text]
  • Comparative Analysis of Low Power Adiabatic Logic Circuits in DSM Technology
    International Journal of Engineering Trends and Technology (IJETT) – Volume-45 Number3 -March 2017 Comparative Analysis of Low Power Adiabatic Logic Circuits in DSM Technology Shaefali Dixit #1, Ashish Raghuwanshi #2, # PG Student [VLSI], Dept. of ECE, IES college of Eng. Bhopal, RGPV Bhopal, M.P. India Abstract— With the continuous scaling down of dissipation energy loss takes place. While in technology, in the field of integrated circuit design, semiconductor devices, the charge transfer between low power dissipation has become one of the primary different nodes is the process of energy exchange and focus of the research. With the increasing demand for different techniques can be used for minimizing this low power devices adiabatic logic gates proves to be energy loss due to charge transfer. While fully an effective solution. This paper investigates different adiabatic operation is the ideal condition of a circuit adiabatic logic families such as ECRL, 2N-2N2P and operation, in practical cases partial adiabatic operation PFAL. The main aim of this paper is to simulate of circuit is used which gives considerable various logic gates using conventional CMOS and performance. different adiabatic logic families, and thus compare In conventional CMOS circuits the energy stored in for the effectiveness in terms of lower power load capacitors was dissipated to ground. While, dissipation. All simulations are carried out using adiabatic logic, in contrast, offers a way to reuse this HSPICE at 65nm technology with supply voltage is 1V energy and thus prevents the wastage of this energy. at 100MHz frequency, for fair comparison of results By adding the ideas of both the conventional and the W/L ratio of all the circuit is same.
    [Show full text]