EE 434 Lecture 2

Total Page:16

File Type:pdf, Size:1020Kb

EE 434 Lecture 2 EE 330 Lecture 6 • PU and PD Networks • Complex Logic Gates • Pass Transistor Logic • Improved Switch-Level Model • Propagation Delay Review from Last Time MOS Transistor Qualitative Discussion of n-channel Operation Source Gate Drain Drain Bulk Gate n-channel MOSFET Source Equivalent Circuit for n-channel MOSFET D D • Source assumed connected to (or close to) ground • VGS=0 denoted as Boolean gate voltage G=0 G = 0 G = 1 • VGS=VDD denoted as Boolean gate voltage G=1 • Boolean G is relative to ground potential S S This is the first model we have for the n-channel MOSFET ! Ideal switch-level model Review from Last Time MOS Transistor Qualitative Discussion of p-channel Operation Source Gate Drain Drain Bulk Gate Source p-channel MOSFET Equivalent Circuit for p-channel MOSFET D D • Source assumed connected to (or close to) positive G = 0 G = 1 VDD • VGS=0 denoted as Boolean gate voltage G=1 • VGS= -VDD denoted as Boolean gate voltage G=0 S S • Boolean G is relative to ground potential This is the first model we have for the p-channel MOSFET ! Review from Last Time Logic Circuits VDD Truth Table A B A B 0 1 1 0 Inverter Review from Last Time Logic Circuits VDD Truth Table A B C 0 0 1 0 1 0 A C 1 0 0 B 1 1 0 NOR Gate Review from Last Time Logic Circuits VDD Truth Table A B C A C 0 0 1 B 0 1 1 1 0 1 1 1 0 NAND Gate Logic Circuits Approach can be extended to arbitrary number of inputs n-input NOR n-input NAND gate gate VDD VDD A1 A1 A2 An A2 F A1 An F A2 A1 A2 An An A1 A 1 A2 F A2 F An An Complete Logic Family Family of n-input NOR gates forms a complete logic family Family of n-input NAND gates forms a complete logic family Having both NAND and NOR gates available is a luxury Can now implement any combinationalA1 logic function !! A 1 A2 F A2 F If add one flip flop, can implement any Boolean system !! An An Flip flops easy to design but will discuss sequential logic systems later Other logic circuits • Other methods for designing logic circuits exist • Insight will be provided on how other logic circuits evolve • Several different types of logic circuits are often used simultaneously in any circuit design Pull-up and Pull-down Networks VDD VDD PUN A B A B PDN GND GND PU network comprised of p-channel device and “tries” to pull B to VDD when conducting PD network comprised of n-channel device and “tries to pull B to GND when conducting One and only one of these networks is conducting at the same time (to avoid contention) Pull-up and Pull-down Networks VDD VDD PUN A C A C B B PDN PU network comprised of p-channel devices PD network comprised of n-channel devices One and only one of these networks is conducting at the same time Pull-up and Pull-down Networks VDD VDD A A PUN C C B B PDN PU network comprised of p-channel devices PD network comprised of n-channel devices One and only one of these networks is conducting at the same time Pull-up and Pull-down Networks V In these circuits, the PUN and PDN have DD the 3 interesting characteristics 1. PU network comprised of p-channel PUN devices 2. PD network comprised of n-channel Y X devices n 3. One and only one of these networks is conducting at the same time PDN What are VH and VL? What is the power dissipation? How fast are these logic circuits? What are VH and VL? What is the power dissipation? How fast are these logic circuits? Consider the inverterVDD Use switch-level model for MOS devices VDD B A A B A What are VH and VL? What is the power dissipation? How fast are these logic circuits? Consider the inverter Use switch-level model for MOS devices VDD VH=VDD V =0 L A B ID=0 thus PH=PL=0 A tHL=tLH=0 (too good to be true?) Pull-up and Pull-down Networks For these circuits, the PUN and PDN have 3 interesting characteristics Three key characteristics of these Static CMOS Gates VDD 1. PU network comprised of p-channel devices 2. PD network comprised of n-channel devices 3. One and only one of these networks is conducting at the same time PUN Y X Three key properties of these Static CMOS Gates n 1. What are VH and VL? VH=VDD, VL=0 (too good to be true?) PDN 2. What is the power dissipation? PH=PL=0 (too good to be true?) 3. How fast are these logic circuits? tHL=tLH=0 (too good to be true?) These 3 properties are inherent in all Boolean circuits that have these 3 characteristics !!! Pull-up and Pull-down Networks Three key characteristics of Static CMOS Gates 1. PU network comprised of p-channel devices VDD 2. PD network comprised of n-channel devices 3. One and only one of these networks is conducting at the same time PUN Y Three properties of Static CMOS Gates (based X upon simple switch-level model) n 1. V =V , V =0 (too good to be true?) H DD L PDN 2. PH=PL=0 (too good to be true?) 3. tHL=tLH=0 (too good to be true?) These 3 properties are inherent in Boolean circuits with these 3 characteristics Pull-up and Pull-down Networks Concept can be extended to arbitrary number of inputs n-input NOR gate n-input NAND gate VDD VDD X 1 X1 X2 Xn Y X2 X1 Xn X2 Y X1 X2 Xn Xn Pull-up and Pull-down Networks Concept can be extended to arbitrary number of inputs n-input NOR gate n-input NAND gate VDD VDD X1 X1 X2 Xn Y X2 X1 Xn X2 Y X1 X2 Xn Xn 1. PU network comprised of p-channel devices 2. PD network comprised of n-channel devices 3. One and only one of these networks is conducting at the same time Pull-up and Pull-down Networks VDD VDD VDD PUN X1 X1 X2 Xn Y n-input NOR gateX2 Y X X1 n Xn X2 Y 1. PU network comprised of p-channelPD Ndevices X1 2. PD network comprised of n-channel devices X2 Xn 3. One and only one of these networksXn is conducting at the same time VH=VDD, VL=0 PH=PL=0 n-input NAND gate tHL=tLH=0 Nomenclature VDD VDD X1 X1 X2 Xn n-input NAND gate Y n-input NOR gateX2 X1 In this class, logic circuits that are implemented by interconnecting multiple- input NAND and NOR gates will be referred to as “Static CMOS Logic” Xn X2 Y Since the set of NAND gates is complete, any combinational logic function can X1 be realizedX2 with Xthen NAND circuit structures considered thus far Xn Since the set NOR gates is complete, any combinational logic function can be realized with the NOR circuit structures considered thus far Many logic functions are realized with “Static CMOS Logic” and this is probably the dominant design style used today! Example 1: Circuit Structures Circuit Design How many transistors are required to realize the function F A B A C in a basic CMOS process if static NAND and NOR gates are used? Assume A, B and C are available. Example 1: How many transistors are required to realize the function F A B A C in a basic CMOS process if static NAND and NOR gates are used? Assume A, B and C are available. Solution: C A F B 20 transistors and 5 levels of logic Example 1: How many transistors are required to realize the function F A B A C in a basic CMOS process if static NAND and NOR gates are used? Assume A, B and C are available. Solution (alternative): From basic Boolean Manipulations F A B A C A B A C F A 1 CB A B A F B 8 transistors and 3 levels of logic Example 1: How many transistors are required to realize the function F A B A C in a basic CMOS process if static NAND and NOR gates are used? Assume A, B and C are available. Solution (alternative): From basic Boolean Manipulations F A 1 CB A B F A B A B A F B 6 transistors and 2 levels of logic Example 2: XOR Function A Y B Y=A B A widely-used 2-input Gate Static CMOS implementation Y=AB + AB A Y B 22 transistors 5 levels of logic Delays unacceptable (will show later) and device count is too large ! Example 3: Y AB CD Standard Static CMOS Implementation A B Y C D 3 levels of Logic 16 Transistors if Basic CMOS Gates are Used Can the same Boolean functionality be obtained with less transistors? Observe: VDD C D A B Y Y A B CD B D A C Significant reduction in transistor count and levels of logic for realizing same Boolean function Termed a “Complex Logic Gate” implementation Some authors term this a “compound gate” Complex Logic Gates VDD Pull-up Network C D AY A BB CD Y B D A C Pull-down Network Complex Gates VDD Pull up and pull down network never both conducting C D One of the two networks is always conducting A B Y B D A C Complex Gates Nomenclature: VDD PUN Y X n When the logic gate shown is not a multiple-input NAND or NOR PgateDN but has Characteristics 1, 2, and 3 above, the gate will be referred to as a Complex Logic Gate Complex Logic Gates also implement static logic functions and some authors would refer to this as Static CMOS Logic as well but we will make the distinction and refer to this as “Complex Logic Gates” Complex Gates VDD PUN Y X n Complex Gate Design Strategy: PDN 1.
Recommended publications
  • Transistors and Logic Gates
    Introduction to Computer Engineering CS/ECE 252, Spring 2013 Prof. Mark D. Hill Computer Sciences Department University of Wisconsin – Madison Chapter 3 Digital Logic Structures Slides based on set prepared by Gregory T. Byrd, North Carolina State University Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Transistor: Building Block of Computers Microprocessors contain millions of transistors • Intel Pentium II: 7 million • Compaq Alpha 21264: 15 million • Intel Pentium III: 28 million Logically, each transistor acts as a switch Combined to implement logic functions • AND, OR, NOT Combined to build higher-level structures • Adder, multiplexer, decoder, register, … Combined to build processor • LC-3 3-3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Simple Switch Circuit Switch open: • No current through circuit • Light is off • Vout is +2.9V Switch closed: • Short circuit across switch • Current flows • Light is on • Vout is 0V Switch-based circuits can easily represent two states: on/off, open/closed, voltage/no voltage. 3-4 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. N-type MOS Transistor MOS = Metal Oxide Semiconductor • two types: N-type and P-type N-type • when Gate has positive voltage, short circuit between #1 and #2 (switch closed) • when Gate has zero voltage, open circuit between #1 and #2 Gate = 1 (switch open) Gate = 0 Terminal #2 must be connected to GND (0V). 3-5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. P-type MOS Transistor P-type is complementary to N-type • when Gate has positive voltage, open circuit between #1 and #2 (switch open) • when Gate has zero voltage, short circuit between #1 and #2 (switch closed) Gate = 1 Gate = 0 Terminal #1 must be connected to +2.9V.
    [Show full text]
  • CSCE 5730 Digital CMOS VLSI Design
    Lecture 2: Overview CSCE 5730 Digital CMOS VLSI Design Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other sources for academic purpose only. The instructor does not claim any originality. CSCE 5730: Digital CMOS VLSI Design 1 Lecture Outline • Historical development of computers • Introduction to a basic digital computer • Five classic components of a computer • Microprocessor • IC design abstraction level • Intel processor family • Developmental trends of ICs • Moore’s Law CSCE 5730: Digital CMOS VLSI Design 2 Introduction to Digital Circuits CSCE 5730: Digital CMOS VLSI Design 3 What is a digital Computer ? A fast electronic machine that accepts digitized input information, processes it according to a list of internally stored instruction, and produces the resulting output information. List of instructions Æ Computer program Internal storage Æ Memory CSCE 5730: Digital CMOS VLSI Design 4 Different Types and Forms of Computer • Personal Computers (Desktop PCs) • Notebook computers (Laptop computers) • Handheld PCs • Pocket PCs • Workstations (SGI, HP, IBM, SUN) • ATM (Embedded systems) • Supercomputers CSCE 5730: Digital CMOS VLSI Design 5 Five classic components of a Computer Computer Processor Memory Devices Control Input Datapath Output (1) Input, (2) Output, (3) Datapath, (4) Controller, and (5) Memory CSCE 5730: Digital CMOS VLSI Design 6 What is a microprocessor ? • A microprocessor is an integrated circuit (IC) built on a tiny piece of silicon. It contains thousands, or even millions, of transistors, which are interconnected via superfine traces of aluminum. The transistors work together to store and manipulate data so that the microprocessor can perform a wide variety of useful functions.
    [Show full text]
  • Digital IC Listing
    BELS Digital IC Report Package BELS Unit PartName Type Location ID # Price Type CMOS 74HC00, Quad 2-Input NAND Gate DIP-14 3 - A 500 0.24 74HCT00, Quad 2-Input NAND Gate DIP-14 3 - A 501 0.36 74HC02, Quad 2 Input NOR DIP-14 3 - A 417 0.24 74HC04, Hex Inverter, buffered DIP-14 3 - A 418 0.24 74HC04, Hex Inverter (buffered) DIP-14 3 - A 511 0.24 74HCT04, Hex Inverter (Open Collector) DIP-14 3 - A 512 0.36 74HC08, Quad 2 Input AND Gate DIP-14 3 - A 408 0.24 74HC10, Triple 3-Input NAND DIP-14 3 - A 419 0.31 74HC32, Quad OR DIP-14 3 - B 409 0.24 74HC32, Quad 2-Input OR Gates DIP-14 3 - B 543 0.24 74HC138, 3-line to 8-line decoder / demultiplexer DIP-16 3 - C 603 1.05 74HCT139, Dual 2-line to 4-line decoders / demultiplexers DIP-16 3 - C 605 0.86 74HC154, 4-16 line decoder/demulitplexer, 0.3 wide DIP - Small none 445 1.49 74HC154W, 4-16 line decoder/demultiplexer, 0.6wide DIP none 446 1.86 74HC190, Synchronous 4-Bit Up/Down Decade and Binary Counters DIP-16 3 - D 637 74HCT240, Octal Buffers and Line Drivers w/ 3-State outputs DIP-20 3 - D 643 1.04 74HC244, Octal Buffers And Line Drivers w/ 3-State outputs DIP-20 3 - D 647 1.43 74HCT245, Octal Bus Transceivers w/ 3-State outputs DIP-20 3 - D 649 1.13 74HCT273, Octal D-Type Flip-Flops w/ Clear DIP-20 3 - D 658 1.35 74HCT373, Octal Transparent D-Type Latches w/ 3-State outputs DIP-20 3 - E 666 1.35 74HCT377, Octal D-Type Flip-Flops w/ Clock Enable DIP-20 3 - E 669 1.50 74HCT573, Octal Transparent D-Type Latches w/ 3-State outputs DIP-20 3 - E 674 0.88 Type CMOS CD4000 Series CD4001, Quad 2-input
    [Show full text]
  • Digital Logic and Design (Course Code: EE222) Ltlecture 6: Lliogic Famili Es
    Indian Institute of Technology Jodhpur, Year 2018‐2019 Digital Logic and Design (Course Code: EE222) LtLecture 6: LiLogic Fam ilies Course Instructor: Shree Prakash Tiwari EilEmail: sptiwari@iitj .ac.i n Webpage: http://home.iitj.ac.in/~sptiwari/ Course related documents will be uploaded on http://home.iitj.ac.in/~sptiwari/DLD/ Note: The information provided in the slides are taken form text books Digital Electronics (including Mano & Ciletti), and various other resources from internet, for teaching/academic use only 1 Overview •Early families (DL, RTL) • TTL •Evolution of TTL family • CMOS family and its evolution 2 Logic families Diode Logic (DL) •simpp;lest; does not scale •NOT not possible (need = an active element) Resistor-Transistor Logic (RTL) • replace diode switch with a tittransistor switc h •can be cascaded = • large power draw 3 Logic families Diode-Transistor Logic (DTL) • essentially diode logic with transistor amplification • reduced power consumption •faster than RTL = DL AND gate Saturating inverter 4 Logic Families • The bipolar transistor as a logical switch TTL Bipolar Transistor-Transistor Logic (TTL) •First introduced by in 1964 (Texas Instruments) •TTL has shaped digital technology in many ways • Standard TTL family (e.g. 7400) is obsolete •Newer TTL families used (e.g. 74ALS00) 6 TTL Bipolar Transistor-Transistor Logic (TTL) Distinct features •Multi‐emitter transistors 7 TTL A Standard TTL NAND gate 8 TTL A standard TTL NAND gate with open collector output 9 TTL evolution Schottky series (74LS00) TTL •A major
    [Show full text]
  • Application of Logic Gates in Computer Science
    Application Of Logic Gates In Computer Science Venturesome Ambrose aquaplane impartibly or crumpling head-on when Aziz is annular. Prominent Robbert never needling so palatially or splints any pettings clammily. Suffocating Shawn chagrin, his recruitment bleed gravitate intravenously. The least three disadvantages of the other quantity that might have now button operated system utility scans all computer logic in science of application gates are required to get other programmers in turn saves the. To express a Boolean function as a product of maxterms, it must first be brought into a form of OR terms. Application to Logic Circuits Using Combinatorial Displacement of DNA Strands. Excitation table for a D flipflop. Its difference when compared to HTML which you covered earlier. The binary state of the flipflop is taken to be the value of the normal output. Write the truth table of OR Gate. This circuit should mean that if the lights are off and either sound or movement or both are detected, the alarm will sound. Transformation of a complex DPDN to a fully connected DPDN: design example. To best understand Boolean Algebra, we first have to understand the similarities and differences between Boolean Algebra and other forms of Algebra. Write a program that would keeps track of monthly repayments, and interest after four years. The network is of science topic needed resource in. We want to get and projects to download and in science. It for the security is one output in logic of application of the basic peripheral devices, they will not able to skip some masterslave flipflops are four binary.
    [Show full text]
  • Chapter6-6.Pdf
    MEMS1082 Chapter 6 Digital Circuit 6-6 Department of Mechanical Engineering TTL and CMOS ICs , TTL and CMOS output circuit totem pole configuration When the upper transistor is forward biased and the bottom When input is high, the p- transistor is off, the output is type transistor (top) is off, high. The resistor, transistor, n-type is on. So the and diode drop the actual output is pulled low. The output voltage to a value device sinks current typically about 3.4 V. When the lower transistor is forward When input is low, the n- biased and the top transistor is type transistor (bottom) is off, the output is low. off, p-type is on. So the The TTL device sources current output is pulled high. The when there is a high output and device sources current. sinks current when the output is low. TTL device dissipates power continuously regardless of whether the output is high or low. Department of Mechanical Engineering The MOSFET and MOSFET switching states There are presently two general types of MOSFETs: depletion and enhancement. MOS digital ICs use enhancement MOSFETs exclusively The direction of the arrow indicates either P- or N-channel. The symbols show a broken line between the source and drain to indicate that there is normally no conducting channel between these electrodes. Symbol also shows a separation between the gate and the other terminals to indicate the very high resistance (typically around 1012 Ω ) between the gate and channel. Department of Mechanical Engineering The MOSFET and MOSFET switching states Department of Mechanical Engineering N-MOS Inverter Department of Mechanical Engineering N-MOS NAND Gate Department of Mechanical Engineering N-MOS NOR Gate Department of Mechanical Engineering CMOS Logic The complementary MOS (CMOS) logic family uses both P- and N- channel MOSFETs in the same circuit to realize several advantages over the P-MOS and N- MOS families.
    [Show full text]
  • Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, High-Impedance Outputs 5
    Introduction to Digital Logic Course Outline 1. Digital Computers, Number Systems, Arithmetic Operations, Decimal, Alphanumeric, and Gray Codes 2. Binary Logic, Gates, Boolean Algebra, Standard Forms 3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level Prof. Nizamettin AYDIN Circuit Optimization 4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, High-Impedance Outputs 5. Implementation Technology and Logic Design, Design Concepts and Automation, The Design Space, Design Procedure, The major design steps [email protected] 6. Programmable Implementation Technologies: Read-Only Memories, Programmable Logic Arrays, Programmable Array Logic,Technology mapping to programmable [email protected] logic devices 7. Combinational Functions and Circuits 8. Arithmetic Functions and Circuits 9. Sequential Circuits Storage Elements and Sequential Circuit Analysis 10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables 11. Counters, register cells, buses, & serial operations 12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM) 13. Memory Basics 1 2 Introduction to Digital Logic Other Gate Types • Why? – Implementation feasibility and low cost – Power in implementing Boolean functions Lecture 4 – Convenient conceptual representation Additional Gates and Circuits • Gate classifications – Primitive gate - a gate that can be described using a single – Other Gate Types primitive operation type (AND or OR) plus an optional – Exclusive -OR Operator and Gates inversion(s). – High -Impedance Outputs – Complex gate - a gate that requires more than one primitive operation type for its description • Primitive gates will be covered first 3 4 Buffer NAND Gate • A buffer is a gate with the function F = X: • The basic NAND gate has the following symbol, illustrated for three inputs: XF – AND-Invert (NAND) • In terms of Boolean function, a buffer is the X Y (F X, ,Y Z) === X ⋅⋅⋅ Y ⋅⋅⋅ Z same as a connection! Z • So why use it? • NAND represents NOT AND , i.
    [Show full text]
  • VLSI Overview
    Lecture 1: VLSI Overview Digital CMOS VLSI Design Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other sources for academic purpose only. The instructor does not claim any origgyinality. Digital CMOS VLSI Design 1 Lecture Outline • Historical development of computers • ItIntro duc tion toabibasic dig ita l computer • Five classic components of a computer • Microprocessor • IC design abstraction level • Processor Trend • DlDevelopmen tltal tdtrendsof ICs • Moore’s Law Digital CMOS VLSI Design 2 Introduction to Digital Circuits Digital CMOS VLSI Design 3 What is a digital Computer ? A fast electronic machine that accepts digitized input information, processes it according to a list of internally stored instruction, and produces the resulting output information. List of instructions Computer program Internal storage Memory Digital CMOS VLSI Design 4 Different Types and Forms of Computer • Personal Computers (Desktop PCs) • Notebook computers (Laptop computers) • Handheld PCs • Pocket PCs • WkttiWorkstations (SGI, HP, IBM, SUN) • ATM (Embedded systems) • Supercomputers Digital CMOS VLSI Design 5 Five classic components of a Computer Computer Processor Memory Devices Control Input Datapath Output (1) Input, (2) Output, (3) Datapath, (4) Controller, and (5) Memory Digital CMOS VLSI Design 6 What is a microprocessor ? • A microprocessor is an integrated circuit (IC) built on a tiny piece of silicon. It contains thousands, or even millions, of transistors, which are interconnected via superfine traces of aluminum. The transistors work together to store and manipulate data so that the microprocessor can perform a wide variety of useful functions. The particular functions a microprocessor performs are dictated by software.
    [Show full text]
  • Implementing Dimensional-View of 4X4 Logic Gate/Circuit for Quantum Computer Hardware Using Xylinx
    BABAR et al.: IMPLEMENTING DIMENSIONAL VIEW OF 4X4 LOGIC GATE IMPLEMENTING DIMENSIONAL-VIEW OF 4X4 LOGIC GATE/CIRCUIT FOR QUANTUM COMPUTER HARDWARE USING XYLINX MOHAMMAD INAYATULLAH BABAR1, SHAKEEL AHMAD3, SHEERAZ AHMED2, IFTIKHAR AHMED KHAN1 AND BASHIR AHMAD3 1NWFP University of Engineering & Technology, Peshawar, Pakistan 2City University of Science & Information Technology, Peshawar, Pakistan 3ICIT, Gomal University, Pakistan Abstract: Theoretical constructed quantum computer (Q.C) is considered to be an earliest and foremost computing device whose intention is to deploy formally analysed quantum information processing. To gain a computational advantage over traditional computers, Q.C made use of specific physical implementation. The standard set of universal reversible logic gates like CNOT, Toffoli, etc provide elementary basis for Quantum Computing. Reversible circuits are the gates having same no. of inputs/outputs known as its width with 1-to-1 vectors of inputs/outputs mapping. Hence vector input states can be reconstructed uniquely from output states of the vector. Control lines are used in reversible gates to feed its reversible circuits from work bits i.e. ancilla bits. In a combinational reversible circuit, all gates are reversible, and there is no fan-out or feedback. In this paper, we introduce implementation of 4x4 multipurpose logic circuit/gate which can perform multiple functions depending on the control inputs. The architecture we propose was compiled in Xylinx and hence the gating diagram and its truth table was developed. Keywords: Quantum Computer, Reversible Logic Gates, Truth Table 1. QUANTUM COMPUTING computations have been performed during which operation based on quantum Quantum computer is a computation device computations were executed on a small no.
    [Show full text]
  • Design a 3-Input CMOS NAND Gate (PUN/PDN) with Fan-Out of 3. Total Output Load of the NAND Gate Is Equal to 15Ff and Μn/Μp = 2.5
    Tutorial on Transistor Sizing Problem #1 (Static CMOS logic): Design a 3-input CMOS NAND gate (PUN/PDN) with fan-out of 3. Total output load of the NAND gate is equal to 15fF and µn/µp = 2.5. For 0.35µm process technology tox = -9 -12 7.6*10 m, εox = 35*10 F/m. Compare the above design with that of a 3-input NOR (PUN/PDN) gate. State any benefits of one implementation over the other. For the sake of simplicity assume all capacitance is lumped and gate capacitance neglecting diffusion and wiring capacitance. Solution: Cox = εoxWL/ tox = 15fF. So W = 9.2µm. Leff = 0.35µm. Assuming output load is all gate capacitance. This is a simplifying assumption made for this problem. A more realistic approach would be to calculate the diffusion and wiring capacitances as well. Equivalent inverter for fan-out of 3 and µn/µp = 2.5 would result in: A B C 2.23 2.23 2.23 Wp = 2.5*Wn for equal rise and fall times. Also, Wp + Wn = 9.2/3 = 3.16µm for fan-out of 3. A 2.67 B Solving the above equations we have, 2.67 C 2.67 Wp = 2.23µm and Wn = 0.89µm. NAND implementation: NAND implementation Therefore, for the 3-ip NAND gate implementation, each PDN n-MOS transistor will be: 3*0.89µm = 2.67µm A and each p-MOS transistor in the PUN network will be: 2.23µm 6.69 B NOR implementation: 6.69 For a 3-ip NOR gate implementation, each PDN n-MOS transistor C will be: 0.89µm 6.69 A BC Each PUN p-MOS transistor will be 3*2.23µm = 6.69µm 0.89 0.89 0.89 Area comparison: NOR implementation Total gate area of NAND gate is: 3*(2.67+2.23)µm = 14.7µm Total gate area of NOR gate is: 3*(6.69+0.89) µm = 22.7µm Thus we infer that the NAND gate has less area and power compared to the NOR gate for identical loading and fan-out conditions and is the preferred implementation.
    [Show full text]
  • Logic Families/Objectives
    Logic Families/Objectives – Digital Logic Voltage and Current Parameters • Fan-out, Noise Margin, Propagation Delay – TTL Logic Family – Supply current spikes and ground bounce – TTL Logic Family Evolution –ECL – CMOS Logic Families and Evolution – Logic Family Overview 29/09/2005 EE6471 (KR) 121 Logic Families/Level of Integration – SSI <12 gates/chip Level of integration ever increasing, because of – MSI 12..99 gates/chip •cost •speed – LSI ..1000 gates/chip •size •power – VLSI …10k gates/chip •reliability – ULSI …100k gates/chip Limits of integration: – GSI …1Meg gates/chip •packaging •power dissipation •inductive and capacitive components Note: Ratio gate count/transistor count •flexibility is roughly 1/10 •critical quantity 29/09/2005 EE6471 (KR) 122 Logic Families/Level of Integration – Remember: Gordon Moore, 1975. Predictions: • Mosfet device dimensions scale down by a factor of 2 every 3 years • #transistors/chip double every 1-2 years. Source: G. Sery, Intel 29/09/2005 EE6471 (KR) 123 Logic Families/Static VI Parameters Vcc Vcc Vcc Ioh Iih Iol Iil Voh Vih Vol Vil Parameter Comment Voh(min) High-Level Output Voltage. The minimum voltage level at a logic circuit output in the logical 1 state under defined load conditions. Vol(max) Low-Level Output Voltage. The maximum voltage level at a logic circuit output in the logical 0 state under defined load conditions. 29/09/2005 EE6471 (KR) 124 Logic Families/Static VI Parameters Vcc Vcc Vcc Ioh Iih Iol Iil Voh Vih Vol Vil Parameter Comment Vih(min) High-Level Input Voltage. The minimum voltage level required for a logical 1 at an input.
    [Show full text]
  • Hardware Abstract the Logic Gates References Results Transistors Through the Years Acknowledgements
    The Practical Applications of Logic Gates in Computer Science Courses Presenters: Arash Mahmoudian, Ashley Moser Sponsored by Prof. Heda Samimi ABSTRACT THE LOGIC GATES Logic gates are binary operators used to simulate electronic gates for design of circuits virtually before building them with-real components. These gates are used as an instrumental foundation for digital computers; They help the user control a computer or similar device by controlling the decision making for the hardware. A gate takes in OR GATE AND GATE NOT GATE an input, then it produces an algorithm as to how The OR gate is a logic gate with at least two An AND gate is a consists of at least two A NOT gate, also known as an inverter, has to handle the output. This process prevents the inputs and only one output that performs what inputs and one output that performs what is just a single input with rather simple behavior. user from having to include a microprocessor for is known as logical disjunction, meaning that known as logical conjunction, meaning that A NOT gate performs what is known as logical negation, which means that if its input is true, decision this making. Six of the logic gates used the output of this gate is true when any of its the output of this gate is false if one or more of inputs are true. If all the inputs are false, the an AND gate's inputs are false. Otherwise, if then the output will be false. Likewise, are: the OR gate, AND gate, NOT gate, XOR gate, output of the gate will also be false.
    [Show full text]