Beckwith-Wiedemann Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Beckwith-Wiedemann Syndrome 560 Med Genet 1994;31:560-564 Syndrome of the month J Med Genet: first published as 10.1136/jmg.31.7.560 on 1 July 1994. Downloaded from Beckwith-Wiedemann syndrome Margaret Elliott, Eamonn R Maher In 1963 Beckwith' presented the necropsy find- features are most apparent before the age of 3 ings of three unrelated children with exompha- years, and after the age of 5 years there is often los, macroglossia, hyperplasia of the kidneys only minor dysmorphism. It is helpful to con- and pancreas, and adrenal cytomegaly, and sug- sider the complications of BWS by the age at gested that this might represent a new syn- presentation. drome. In 1964 Wiedemann2 published a case report of three sibs with exomphalos, macrog- lossia, and overgrowth. Subsequently more PRENATAL than 300 cases have been reported and the Exomphalos complicates approximately half incidence of Beckwith-Wiedemann syndrome the cases of BWS and will usually be picked up (BWS) has been estimated at 007 per 1000 on prenatal ultrasonography, but BWS is a births.34 rare cause of exomphalos (< 3% of all cases).6 Prenatal diagnosis of BWS has occasionally been reported after ultrasonographic detection Clinical features and natural history of a combination of abdominal wall defect, The clinical features of BWS are listed in the polyhydramnios, nephromegaly, and macro- table which is derived from the personal experi- glossia.7 BWS pregnancies are frequently com- ence of one of the authors (ME) of 69 cases in plicated by premature onset of labour. The risk the UK and 22 cases from the one other large of prematurity is associated with an increased clinical study published.5 Anterior abdominal incidence of polyhydramnios but not with fetal wall defects, macroglossia, pre- or postnatal overgrowth alone. Multiple births are more overgrowth, and characteristic facial dysmor- common in BWS, with an excess ofboth mono- phology occur in most cases (figs 1-3). Other zygotic and dizygotic twins. Twin pairs are common features are neonatal hypoglycaemia, invariably discordant for BWS, though the organomegaly, renal anomalies, and hemihy- second twin may occasionally show minor pertrophy. Neoplasia, developmental delay, features. There is an excess of female monozy- http://jmg.bmj.com/ and cardiac malformations may cause signific- gotic twins pairs among twin pairs with normal ant morbidity but are infrequent. The overall chromosomes (13 female, one male).89 mortality rate is about 10% with most deaths occurring early secondary to congenital malfor- mations or prematurity. Histopathology char- NEONATAL acteristically shows diffuse adrenal cytomegaly, Many BWS children will require surgery for islet cell hyperplasia, and nephrob- exomphalos in the neonatal period and this is pancreatic P on September 25, 2021 by guest. Protected copyright. lastomatosis.4 generally well tolerated. Hypoglycaemia also There are no fixed diagnostic criteria for occurs in the majority of BWS patients, but this BWS and no one feature is obligatory in making is usually mild and transient. In severe cases the diagnosis, but we have found the following hypoglycaemia may persist for months, and definition covers most cases: either (1) three early detection and treatment of hypoglycaemia major features (anterior abdominal wall defect, is important to prevent neurological damage. macroglossia, pre- or postnatal overgrowth) or Prematurity related pulmonary disease and (2) two major features plus three minor features congenital heart disease are the leading cause of (ear creases or pits, facial naevus flammeus, early death in BWS, although congenital car- hypoglycaemia, nephromegaly, hemihypertro- diac defects only occur in <10% of BWS phy). The craniofacial dysmorphological patients. Department of Clinicalfeatures of Beckwith-Wiedemann syndrome Clinical Genetics, Addenbrooke's Comlications Frequency (%) Hospital, Hills Road, Macroglossia 99 Cambridge CB2 2QQ, Pre- or postnatal gigantism (growth > 90th centile) 87 UK Abdominal wall defect (exomphalos, umbilical hernia, or diastasis recti) 77 M Elliott Ear creases or posterior helical ear pits 75 E R Maher Renal abnormalities (nephromegaly, multiple calyceal cysts, or hydropnephrosis) 62 Facial naevus flammeus 62 Cambridge University Hypoglycaemia 59 Department of Hemihypertrophy 23 Pathology, Cambridge Congenital cardiac malformations 9 CB2 lQP, UK Neoplasia 4 E R Maher Moderate/severe mental retardation 4 Polydactyly 3 Correspondence to Cleft palate 3 Dr Maher. Beckwith-Wiedemann syndrome 561 J Med Genet: first published as 10.1136/jmg.31.7.560 on 1 July 1994. Downloaded from Figure 1 An 8 month old boy with BWS. Macroglossia, maxillary hypoplasia, andfacial hemihypertrophy are present. x: t - \1t 't http://jmg.bmj.com/ Figure 2 A S year old girl with BWS after tongue reduction. Mild prognathism is present but dysmorphic features are much less apparent. on September 25, 2021 by guest. Protected copyright. Figure 3 Ear lobe creases and ear pits in BWS: posterior helical pits and pits on the posterior aspect of the ear lobe can be seen. CHILDHOOD Macroglossia is the most frequent manifes- The most frequent problems during childhood tation of BWS, and may cause feeding diffi- are related to macroglossia, overgrowth, hemi- culties, speech delay secondary to articulation hypertrophy, urological anomalies, and con- problems, and obstructive apnoea (during cerns about the risks of embryonal tumours sleep or feeding). Surgical tongue reduction is and psychomotor retardation. performed in up to 50% of cases (usually at 2 562 Elliott, Maher to 3 years of age, but earlier if there are increased risk of neoplasia, and a characteristic significant feeding problems or apnoea). craniofacial dysmorphism."4 15 As the pene- Untreated macroglossia that does not regress trance of familial BWS is more complete when spontaneously may lead to prognathism, open the mother is the transmitting parent,'216 the anterior bite, and dental problems. family history in BWS may occasionally re- J Med Genet: first published as 10.1136/jmg.31.7.560 on 1 July 1994. Downloaded from Growth patterns are very variable in BWS. semble X linked inheritance. Features to con- Often rapid growth occurs in early childhood sider in the differential diagnosis of BWS and and bone age is advanced. Growth rate tends SGS include the different facial dysmorphism, to slow down during late childhood and al- relative macrocephaly, and mild macroglossia though detailed information on adult height is in SGS, and the infrequency of exomphalos in sparse, most reported cases are 2 to 3 SD above SGS. Umbilical and inguinal herniae, and the mean. nephromegaly and renal malformations are Hemihypertrophy occurs in up to 25% of common to both. Cardiac malformations, cleft cases, is usually evident at birth, and often palate, glandular hypospadias, polydactyly, and becomes more marked as the child grows. Mild accessory nipples are seen occasionally in BWS, asymmetry may require physiotherapy and but are much more common in SGS. Perlman conservative orthopaedic management (for syndrome is a rare autosomal recessive disorder example, shoe raises). In more severe cases, with a high neonatal mortality, characteristic surgical intervention (to shorten the hypertro- facies, a high incidence of renal malformations phied side or lengthen the non-hypertrophied and Wilms' tumour, hypoglycaemia, and men- side) may be performed at puberty. tal retardation.'7 Exomphalos and macroglossia Organomegaly is common with nephrome- are not reported, and although there may be galy in 65%. In up to half of these cases there macrosomia at birth, postnatal overgrowth does may be an associated renal malformation and not occur. approximately 25% of children have recurrent urinary tract infections. Inguinal herniae and undescended testes are common in males. Neoplasia is generally estimated to occur in Genetics 7 5% of cases,'0 although this may be an overes- The genetics of BWS are complex and are the timate. The most common tumour is Wilms' subject of much current interest. Imprinted tumour, followed by adrenocortical carcinoma, genes in chromosome llpl5 have been impli- hepatoblastoma, and neuroblastoma. Screening cated in the pathogenesis of familial and spora- for tumours by three monthly abdominal ultra- dic BWS. A small number of patients (2 to 3%) sonography is frequently advocated." How- have cytogenetic abnormalities of chromosome ever, this has not yet been proven to improve 1pl5.p Paternally derived duplications of chro- the prognosis. Although the requirement for mosome 1 1p15 and maternally inherited inver- regular ultrasonography has been questioned, it sions or balanced translocations may be associ- is generally agreed that weekly abdominal pala- ated with BWS.'o20 Approximately 15% of http://jmg.bmj.com/ pation by parents can be helpful in detecting BWS patients have a positive family history, Wilms' tumours. Tumours rarely develop after and familial BWS is inherited as an autosomal the age of 10 years, but the risk of neoplasia dominant trait with incomplete penetrance. appears to be increased in children with hemi- Parent of origin differences in penetrance are hypertrophy.'0 well described, such that penetrance is more Most children with BWS develop normally, complete if the mother is the transmitting par- and the major risk factors for psychomotor Genetic linkage studies have mapped ent.'216 on September 25, 2021 by guest. Protected copyright. retardation are an unbalanced translocation, the BWS gene to chromosome 1 lp15.5.21 22 The
Recommended publications
  • Genetic Syndromes with an Increased Risk of Developing Cancer As an Example of the Use of New Technologies
    Genetics and Molecular Biology, 37, 1 (suppl), 241-249 (2014) Copyright © 2014, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Review Article Impact of NGS in the medical sciences: Genetic syndromes with an increased risk of developing cancer as an example of the use of new technologies Pablo Lapunzina1,2, Rocío Ortiz López3,4, Lara Rodríguez-Laguna2, Purificación García-Miguel5, Augusto Rojas Martínez3,4 and Víctor Martínez-Glez1,2 1Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain. 2Instituto de Genética Médica y Molecular, Hospital Universitario la Paz, Madrid, Spain. 3Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León. Monterrey, Nuevo León, México. 4Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. 5Unidad de Oncología Pediátrica, Hospital Infantil La Paz, Madrid, Spain. Abstract The increased speed and decreasing cost of sequencing, along with an understanding of the clinical relevance of emerging information for patient management, has led to an explosion of potential applications in healthcare. Cur- rently, SNP arrays and Next-Generation Sequencing (NGS) technologies are relatively new techniques used to scan genomes for gains and losses, losses of heterozygosity (LOH), SNPs, and indel variants as well as to perform com- plete sequencing of a panel of candidate genes, the entire exome (whole exome sequencing) or even the whole ge- nome. As a result, these new high-throughput technologies have facilitated progress in the understanding and diagnosis of genetic syndromes and cancers, two disorders traditionally considered to be separate diseases but that can share causal genetic alterations in a group of developmental disorders associated with congenital malformations and cancer risk.
    [Show full text]
  • Megalencephaly and Macrocephaly
    277 Megalencephaly and Macrocephaly KellenD.Winden,MD,PhD1 Christopher J. Yuskaitis, MD, PhD1 Annapurna Poduri, MD, MPH2 1 Department of Neurology, Boston Children’s Hospital, Boston, Address for correspondence Annapurna Poduri, Epilepsy Genetics Massachusetts Program, Division of Epilepsy and Clinical Electrophysiology, 2 Epilepsy Genetics Program, Division of Epilepsy and Clinical Department of Neurology, Fegan 9, Boston Children’s Hospital, 300 Electrophysiology, Department of Neurology, Boston Children’s Longwood Avenue, Boston, MA 02115 Hospital, Boston, Massachusetts (e-mail: [email protected]). Semin Neurol 2015;35:277–287. Abstract Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and Keywords behavioral problems; specific disorders have associations with overgrowth or abnor- ► megalencephaly malities in other tissues. The molecular underpinnings of many of these disorders are ► hemimegalencephaly now understood, providing insight into how dysregulation of critical pathways leads to ►
    [Show full text]
  • WES Gene Package Multiple Congenital Anomalie.Xlsx
    Whole Exome Sequencing Gene package Multiple congenital anomalie, version 5, 1‐2‐2018 Technical information DNA was enriched using Agilent SureSelect Clinical Research Exome V2 capture and paired‐end sequenced on the Illumina platform (outsourced). The aim is to obtain 8.1 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA‐MEM algorithm (reference: http://bio‐bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x A4GALT [Blood group, P1Pk system, P(2) phenotype], 111400 607922 101 100 100 99 [Blood group, P1Pk system, p phenotype], 111400 NOR polyagglutination syndrome, 111400 AAAS Achalasia‐addisonianism‐alacrimia syndrome, 231550 605378 73 100 100 100 AAGAB Keratoderma, palmoplantar,
    [Show full text]
  • Mackenzie's Mission Gene & Condition List
    Mackenzie’s Mission Gene & Condition List What conditions are being screened for in Mackenzie’s Mission? Genetic carrier screening offered through this research study has been carefully developed. It is focused on providing people with information about their chance of having children with a severe genetic condition occurring in childhood. The screening is designed to provide genetic information that is relevant and useful, and to minimise uncertain and unclear information. How the conditions and genes are selected The Mackenzie’s Mission reproductive genetic carrier screen currently includes approximately 1300 genes which are associated with about 750 conditions. The reason there are fewer conditions than genes is that some genetic conditions can be caused by changes in more than one gene. The gene list is reviewed regularly. To select the conditions and genes to be screened, a committee comprised of experts in genetics and screening was established including: clinical geneticists, genetic scientists, a genetic pathologist, genetic counsellors, an ethicist and a parent of a child with a genetic condition. The following criteria were developed and are used to select the genes to be included: • Screening the gene is technically possible using currently available technology • The gene is known to cause a genetic condition • The condition affects people in childhood • The condition has a serious impact on a person’s quality of life and/or is life-limiting o For many of the conditions there is no treatment or the treatment is very burdensome for the child and their family. For some conditions very early diagnosis and treatment can make a difference for the child.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE Et Al
    US 20160281 166A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE et al. (43) Pub. Date: Sep. 29, 2016 (54) METHODS AND SYSTEMIS FOR SCREENING Publication Classification DISEASES IN SUBJECTS (51) Int. Cl. (71) Applicant: PARABASE GENOMICS, INC., CI2O I/68 (2006.01) Boston, MA (US) C40B 30/02 (2006.01) (72) Inventors: Arindam BHATTACHARJEE, G06F 9/22 (2006.01) Andover, MA (US); Tanya (52) U.S. Cl. SOKOLSKY, Cambridge, MA (US); CPC ............. CI2O 1/6883 (2013.01); G06F 19/22 Edwin NAYLOR, Mt. Pleasant, SC (2013.01); C40B 30/02 (2013.01); C12O (US); Richard B. PARAD, Newton, 2600/156 (2013.01); C12O 2600/158 MA (US); Evan MAUCELI, (2013.01) Roslindale, MA (US) (21) Appl. No.: 15/078,579 (57) ABSTRACT (22) Filed: Mar. 23, 2016 Related U.S. Application Data The present disclosure provides systems, devices, and meth (60) Provisional application No. 62/136,836, filed on Mar. ods for a fast-turnaround, minimally invasive, and/or cost 23, 2015, provisional application No. 62/137,745, effective assay for Screening diseases, such as genetic dis filed on Mar. 24, 2015. orders and/or pathogens, in Subjects. Patent Application Publication Sep. 29, 2016 Sheet 1 of 23 US 2016/0281166 A1 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S{}}\\93? sau36 Patent Application Publication Sep. 29, 2016 Sheet 2 of 23 US 2016/0281166 A1 &**** ? ???zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz??º & %&&zzzzzzzzzzzzzzzzzzzzzzz &Sssssssssssssssssssssssssssssssssssssssssssssssssssssssss & s s sS ------------------------------ Patent Application Publication Sep. 29, 2016 Sheet 3 of 23 US 2016/0281166 A1 23 25 20 FG, 2. Patent Application Publication Sep. 29, 2016 Sheet 4 of 23 US 2016/0281166 A1 : S Patent Application Publication Sep.
    [Show full text]
  • 2012 2013 Causes of Birth Defects: Lessons from History 1 0 Drug
    cited Issue title 2012 2013 Vol.51 NO1 Causes of birth defects: Lessons from history 1 0 (2011) Drug safety in pregnancy: Utopia or achievable prospect? Risk information, risk research and advocacy in Teratology Information 3 0 Services Role of rare cases in deciphering the mechanisms of congenital 2 0 anomalies: CHARGE syndrome research Value of the small cohort study including a physical examination 2 0 for minor structural defects in identifying new human teratogens In vitro models of pancreatic differentiation using embryonic stem 2 1 or induced pluripotent stem cells Peptic ulcer disease with related drug treatment in pregnant 0 0 women and congenital abnormalities in their offspring Efficacy of medical care of epileptic pregnant women based on the 1 0 rate of congenital abnormalities in their offspring Rare clinical entity Perlman syndrome: Is cholestasis a new 0 0 finding? An unusual bronchopulmonary malformation in adulthood: Bronchial 0 0 atresia Vol.51 NO2 Effects of melanocortins on fetal development 0 0 (2011) Hypothyroidism caused by phenobarbital affects patterns of 0 0 estrous cyclicity in rats Adrenocorticotropic tumor cells transplanted into mouse embryos 0 0 affect pancreatic histogenesis Distribution of the longevity gene product, SIRT1, in developing 1 1 mouse organs Is there a reduction of congenital abnormalities in the offspring of diabetic pregnant women after folic acid supplementation? A 3 0 population-based case-control study Analysis of genitourinary anomalies in patients with VACTERL (Vertebral anomalies,
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub
    US 2010O2.10567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub. Date: Aug. 19, 2010 (54) USE OF ATUFTSINASATHERAPEUTIC Publication Classification AGENT (51) Int. Cl. A638/07 (2006.01) (76) Inventor: Dorian Bevec, Germering (DE) C07K 5/103 (2006.01) A6IP35/00 (2006.01) Correspondence Address: A6IPL/I6 (2006.01) WINSTEAD PC A6IP3L/20 (2006.01) i. 2O1 US (52) U.S. Cl. ........................................... 514/18: 530/330 9 (US) (57) ABSTRACT (21) Appl. No.: 12/677,311 The present invention is directed to the use of the peptide compound Thr-Lys-Pro-Arg-OH as a therapeutic agent for (22) PCT Filed: Sep. 9, 2008 the prophylaxis and/or treatment of cancer, autoimmune dis eases, fibrotic diseases, inflammatory diseases, neurodegen (86). PCT No.: PCT/EP2008/007470 erative diseases, infectious diseases, lung diseases, heart and vascular diseases and metabolic diseases. Moreover the S371 (c)(1), present invention relates to pharmaceutical compositions (2), (4) Date: Mar. 10, 2010 preferably inform of a lyophilisate or liquid buffersolution or artificial mother milk formulation or mother milk substitute (30) Foreign Application Priority Data containing the peptide Thr-Lys-Pro-Arg-OH optionally together with at least one pharmaceutically acceptable car Sep. 11, 2007 (EP) .................................. O7017754.8 rier, cryoprotectant, lyoprotectant, excipient and/or diluent. US 2010/0210567 A1 Aug. 19, 2010 USE OF ATUFTSNASATHERAPEUTIC ment of Hepatitis BVirus infection, diseases caused by Hepa AGENT titis B Virus infection, acute hepatitis, chronic hepatitis, full minant liver failure, liver cirrhosis, cancer associated with Hepatitis B Virus infection. 0001. The present invention is directed to the use of the Cancer, Tumors, Proliferative Diseases, Malignancies and peptide compound Thr-Lys-Pro-Arg-OH (Tuftsin) as a thera their Metastases peutic agent for the prophylaxis and/or treatment of cancer, 0008.
    [Show full text]
  • Tumor in Patients with 9Q22.3 Microdeletion Syndrome Suggests a Role for PTCH1 in Nephroblastomas
    European Journal of Human Genetics (2013) 21, 784–787 & 2013 Macmillan Publishers Limited All rights reserved 1018-4813/13 www.nature.com/ejhg SHORT REPORT Wilms’ tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas Bertrand Isidor*,1,2,14, Franck Bourdeaut3,4,5,14, Delfine Lafon6, Ghislaine Plessis7, Elodie Lacaze7, Caroline Kannengiesser8, Sylvie Rossignol9, Olivier Pichon1, Annaig Briand1, Dominique Martin-Coignard10, Maria Piccione11, Albert David1, Olivier Delattre2,Ce´cile Jeanpierre12, Nicolas Se´venet6 and Ce´dric Le Caignec1,13 Nephroblastoma (Wilms’ tumor; WT) is the most common renal tumor of childhood. To date, several genetic abnormalities predisposing to WT have been identified in rare overgrowth syndromes. Among them, abnormal methylation of the 11p15 region, GPC3 and DIS3L2 mutations, which are responsible for Beckwith–Wiedemann, Simpson–Golabi–Behmel and Perlman syndromes, respectively. However, the underlying cause of WT remains unknown in the majority of cases. We report three unrelated patients who presented with WT in addition to a constitutional 9q22.3 microdeletion and dysmorphic/overgrowth syndrome. The size of the deletions was variable (ie, from 1.7 to 8.9 Mb) but invariably encompassed the PTCH1 gene. Subsequently, we identified a somatic PTCH1 nonsense mutation in the renal tumor of one patient. In addition, by array comparative genomic hybridization method, we analyzed the DNA extracted from the blood samples of nine patients with overgrowth syndrome and WT, but did not identify any deleterious chromosomal imbalances in these patients. These findings strongly suggest that patients with constitutional 9q22.3 microdeletion have an increased risk of WT, and that PTCH1 have a role in the pathogenesis of nephroblastomas.
    [Show full text]
  • Cancer Prone Disease Section Mini Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Cancer Prone Disease Section Mini Review Perlman syndrome (renal hamartomas, nephroblastomatosis and fetal gigantism) Maria Piccione, Giovanni Corsello Dipartimento Materno-Infantile University of Palermo, Palermo, Italy Published in Atlas Database: December 2006 Online updated version: http://AtlasGeneticsOncology.org/Kprones/PerlmanID10117.html DOI: 10.4267/2042/38420 This work is licensed under a Creative Commons Attribution-Non-commercial-No Derivative Works 2.0 France Licence. © 2007 Atlas of Genetics and Cytogenetics in Oncology and Haematology Etiology: The genetic basis of the Perlman syndrome is Identity unknown and there is no conclusive laboratory test to Note: The Perlman syndrome is characterized by confirm the diagnosis. Although both sexes are polyhydramnios, fetal overgrowth, neonatal affected, the sex ratio is 2M:1F. The diagnosis is based macrosomia, high neonatal mortality, macrocephaly, on characteristic features and confirmed by histological dysmorphic facial features, visceromegaly, renal evidence. The syndrome has been described in nephroblastomatosis and a predisposition for Wilms both consanguineous and non-consanguineous tumor at very early age. couplings. Inheritance: Inheritance is of an autosomal recessive nature. Figure 1,2 : Macrocephaly, hypertelorism, epicanthus, broad flat nasal bridge, anteverted upper lip, axial hypotonia. Atlas Genet Cytogenet Oncol Haematol. 2007;11(2) 136 Perlman syndrome (renal hamartomas, nephroblastomatosis and fetal gigantism) Piccione M, Corsello G Figure 3 : Abdominal ultrasound scan at 6 months of age: nephromegaly with lobulated contoured kidneys and loss of corticomedullary differentiation. - Cardiomegaly. Clinics - Congenital heart disease: interrupted aortic arch and Phenotype and clinics anomalous coronary vessels and the dextroposition of the heart, muscular ventricular septal defect.
    [Show full text]
  • Syndromes and Constitutional Chromosomal Abnormalities
    Downloaded from jmg.bmj.com on May 16, 2013 - Published by group.bmj.com 705 REVIEW Syndromes and constitutional chromosomal abnormalities associated This article is available free on JMG online via the JMG Unlocked open access trial, with Wilms tumour funded by the Joint Information Systems Committee. For further information, see R H Scott, C A Stiller, L Walker, N Rahman http://jmg.bmjjournals.com/cgi/content/ full/42/2/97 ............................................................................................................................... J Med Genet 2006;43:705–715. doi: 10.1136/jmg.2006.041723 Wilms tumour has been reported in association with over Multiple nephrogenic rests throughout the kid- ney are sometimes present and can be referred to 50 different clinical conditions and several abnormal as nephroblastomatosis. constitutional karyotypes. Conclusive evidence of an The dramatic advances in the treatment of increased risk of Wilms tumour exists for only a minority of Wilms tumour are such that long term survival is now the norm: exceeding 90% for disease these conditions, including WT1 associated syndromes, localised to the abdomen (stages 1–3), and over familial Wilms tumour, and certain overgrowth conditions 70% in metastatic disease (stage 4).7 The treat- such as Beckwith-Wiedemann syndrome. In many reported ment of Wilms tumour is determined both by stage and histological classification of the conditions the rare co-occurrence of Wilms tumour is tumour, with treatment protocols varying probably due to chance. However, for several conditions between countries. Surgical resection is comple- the available evidence cannot either confirm or exclude an mented in the majority of individuals by chemo- therapy. Currently in the United Kingdom increased risk, usually because of the rarity of the around 30% of individuals with Wilms tumour syndrome.
    [Show full text]
  • Differential Diagnoses of Overgrowth Syndromes: the Most Important Clinical and Radiological Disease Manifestations
    Hindawi Publishing Corporation Radiology Research and Practice Volume 2014, Article ID 947451, 7 pages http://dx.doi.org/10.1155/2014/947451 Review Article Differential Diagnoses of Overgrowth Syndromes: The Most Important Clinical and Radiological Disease Manifestations Letícia da Silva Lacerda,1 Úrsula David Alves,1 José Fernando Cardona Zanier,1 Dequitier Carvalho Machado,1,2 Gustavo Bittencourt Camilo,1,2 and Agnaldo José Lopes2 1 Department of Radiology, State University of Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil 2 Postgraduate Programme in Medical Sciences, State University of Rio de Janeiro, 20550-170 Rio de Janeiro, RJ, Brazil Correspondence should be addressed to Agnaldo Jose´ Lopes; [email protected] Received 12 March 2014; Revised 19 May 2014; Accepted 27 May 2014; Published 9 June 2014 Academic Editor: Andreas H. Mahnken Copyright © 2014 Let´ıcia da Silva Lacerda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Overgrowth syndromes comprise a heterogeneous group of diseases that are characterized by excessive tissue development. Some of these syndromes may be associated with dysfunction in the receptor tyrosine kinase (RTK)/PI3K/AKT pathway, which results in an increased expression of the insulin receptor. In the current review, four overgrowth syndromes were characterized (Proteus syndrome, Klippel-Trenaunay-Weber syndrome, Madelung’s disease, and neurofibromatosis type I) and illustrated using cases from our institution. Because these syndromes have overlapping clinical manifestations and have no established genetic tests for their diagnosis, radiological methods are important contributors to the diagnosis of many of these syndromes.
    [Show full text]
  • Connective Tissue Disorders
    UNIVERSITY OF MINNESOTA PHYSICIANS OUTREACH LABS Submit this form along with the appropriate Molecular requisition (Molecular Diagnostics or MOLECULAR DIAGNOSTICS (612) 273-8445 Molecular NGS Oncology). DATE: TIME COLLECTED: PCU/CLINIC: AM PM PATIENT IDENTIFICATION DIAGNOSIS (Dx) / DIAGNOSIS CODES (ICD-9) - OUTPATIENTS ONLY SPECIMEN TYPE: o Blood (1) (2) (3) (4) PLEASE COLLECT 5-10CC IN ACD-A OR EDTA TUBE ORDERING PHYSICIAN NAME AND PHONE NUMBER: Tests can be ordered as a full panel, or by individual gene(s). Please contact the genetic counselor with any questions at 612-624-8948 or by pager at 612-899-3291. _______________________________________________ Test Ordered- EPIC: Next generation sequencing(Next Gen) Sunquest: NGS FBN1 Connective tissue Asphyxiating thoracic dystrophy Cranioectodermal dysplasia 2 disorders Full panel WDR35 IFT80 Achondrogenesis DYNC2H1 Craniolenticulosutural dysplasia Full panel TTC21B SEC23A SLC26A2 WDR19 Craniosynostosis TRIP11 Atelosteogenesis Full panel COL2A1 Full panel FGFR2 Achondroplasia SLC26A2 IL11RA FGFR3 FLNB CYP26B1 Acrocapitofemoral dysplasia Brachydactyly TWIST1 IHH Full panel MSX2 Acrodysostosis GDF5 FGFR1 Full panel BMP2 FGFR3 PRKAR1A PTHLH PDE4D Brachyolmia Cutis laxa Acrofacial dysostosis Full panel Full panel Full panel PAPSS2 ATP6V0A2 SF3B4 TRPV4 EFEMP2 DHODH Campomelic dysplasia with autosomal PYCR1 Acromesomelic dysplasia sex reversal ALDH18A1 Full panel SOX9 GDF5 Camurati-Engelmann disease De la Chapelle dysplasia NPR2 TGFB1 SLC26A2 Alport syndrome Cenani-Lenz syndactyly syndrome Full
    [Show full text]