Congenital Malformations Notice

Total Page:16

File Type:pdf, Size:1020Kb

Congenital Malformations � Notice CONGENITAL MALFORMATIONS ᭤ NOTICE Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the au- thors nor the publisher nor any other party who has been involved in the preparation or publi- cation of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to con- firm the information contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for admin- istration. This recommendation is of particular importance in connection with new or infrequently used drugs. CONGENITAL MALFORMATIONS Evidence-Based Evaluation and Management Editors PRAVEEN KUMAR, MBBS, DCH, MD, FAAP Associate Professor of Pediatrics Feinberg School of Medicine Northwestern University Children’s Memorial Hospital and Northwestern Memorial Hospital Chicago, Illinois and BARBARA K. BURTON, MD Professor of Pediatrics Feinberg School of Medicine Northwestern University Children’s Memorial Hospital Chicago, Illinois New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-159356-X The material in this eBook also appears in the print version of this title: 0-07-147189-8. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms. THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise. DOI: 10.1036/0071471898 We dedicate this book to all infants with congenital malformations, their parents, and their families. This page intentionally left blank For more information about this title, click here Contents Contributors xiii Preface xv PART I General Considerations / 1 01. Dysmorphology 3 Praveen Kumar 02. Assessment of an Infant with a Congenital Malformation 13 Barbara K. Burton 03. Genetic Counseling: Principles and Practices 21 Katherine H. Kim Part II Central Nervous System Malformations / 39 14. Spina Bifida 41 Barbara K. Burton 5. Anencephaly 51 Barbara K. Burton 6. Encephalocele 53 Barbara K. Burton 7. Holoprosencephaly 57 Barbara K. Burton 8. Hydrocephalus 61 Barbara K. Burton 9. Dandy-Walker Malformation 67 Barbara K. Burton vii viii CONTENTS 10. Chiari Malformations 71 Barbara K. Burton 11. Agenesis of the Corpus Callosum 77 Barbara K. Burton 12. Craniosynostosis 83 Barbara K. Burton Part III Craniofacial Malformations / 91 13. Cleft Lip and Palate 93 Brad Angle 14. Micrognathia 101 Brad Angle 15. Congenital Anomalies Associated with Facial Asymmetry 105 Brad Angle 16. Ear Anomalies 111 Brad Angle 17. Choanal Atresia 117 Brad Angle 18. Coloboma 121 Brad Angle 19. Cataract 125 Brad Angle Part IV Respiratory Malformations / 133 20. Congenital High Airway Obstruction Syndrome 135 Sandra B. Cadichon 21. Pulmonary Agenesis 139 Sandra B. Cadichon 22. Pulmonary Hypoplasia 143 Sandra B. Cadichon CONTENTS ix 23. Congenital Cystic Adenomatoid Malformations 147 Sandra B. Cadichon 24. Congenital Diaphragmatic Hernia 151 Sandra B. Cadichon 25. Congenital Hydrothorax 159 Sandra B. Cadichon 26. Congenital Pulmonary Lymphangiectasia 165 Sandra B. Cadichon Part V Cardiac Malformations / 171 27. Septal Defects 173 Barbara K. Burton 28. Conotruncal Heart Defects 183 Amy Wu 29. Right Ventricular Outflow Tract Obstructive Defects 193 Barbara K. Burton 30. Left Ventricular Outflow Tract Obstructive Defects 199 Barbara K. Burton 31. Dextrocardia 205 Barbara K. Burton 32. Cardiomyopathy 209 Barbara K. Burton Part VI Gastrointestinal Malformations / 215 33. Esophageal Atresia and Tracheoesophageal Fistula 217 Praveen Kumar 34. Duodenal Atresia 223 Praveen Kumar 35. Anorectal Malformations 227 Praveen Kumar x CONTENTS 36. Hirschsprung Disease 233 Praveen Kumar 37. Omphalocele 241 Praveen Kumar 38. Gastroschisis 247 Praveen Kumar Part VII Renal Malformations / 251 39. Renal Agenesis 253 Praveen Kumar 40. Horseshoe Kidney 261 Praveen Kumar 41. Renal Cystic Diseases 265 Praveen Kumar 42. Posterior Urethral Valves 277 Praveen Kumar Part VIII Skeletal Malformations / 283 43. Polydactyly 285 Praveen Kumar 44. Syndactyly 293 Praveen Kumar 45. Limb Reduction Defects 299 Praveen Kumar 46. Skeletal Dysplasias 307 Praveen Kumar 47. Arthrogryposis 321 Praveen Kumar CONTENTS xi Part IX Miscellaneous Malformations / 331 48. Single Umbilical Artery 333 Praveen Kumar 49. Sacral Dimple and Other Cutaneous Markers of Occult Spinal Dysraphism 339 Praveen Kumar 50. Hemihyperplasia and Overgrowth Disorders 347 Praveen Kumar 51. Cystic Hygroma 355 Praveen Kumar Glossary of Genetic Terms 363 Web Resources 375 Index 379 This page intentionally left blank Contributors Brad Angle, MD Katherine H. Kim, MS Associate Professor of Pediatrics Instructor, Department of Pediatrics Feinberg School of Medicine Feinberg School of Medicine Northwestern University Northwestern University Children’s Memorial Hospital Children’s Memorial Hospital Chicago, Illinois Chicago, Illinois Barbara K. Burton, MD Praveen Kumar, MBBS, DCH, MD, FAAP Professor of Pediatrics Associate Professor of Pediatrics Feinberg School of Medicine Feinberg School of Medicine Northwestern University’s Northwestern University Children’s Memorial Hospital Children’s Memorial Hospital and Northwestern Chicago, Illinois Memorial Hospital Chicago, Illinois Sandra B. Cadichon, MD Assistant Professor of Pediatrics Amy Wu, MD Feinberg School of Medicine Pediatric Cardiology Fellow Northwestern University Department of Cardiology Children’s Memorial Hospital and Northwestern The Willis J. Potts Children’s Heart Center Memorial Hospital Children’s Memorial Hospital Chicago, Illinois Chicago, Illinois xiii Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. This page intentionally left blank Preface Based on a World Health Organization (WHO) of these infants. The first three chapters provide report, about 3 million fetuses and infants are a broad overview
Recommended publications
  • PLAGIOCEPHALY and CRANIOSYNOSTOSIS TREATMENT Policy Number: ORT010 Effective Date: February 1, 2019
    UnitedHealthcare® Commercial Medical Policy PLAGIOCEPHALY AND CRANIOSYNOSTOSIS TREATMENT Policy Number: ORT010 Effective Date: February 1, 2019 Table of Contents Page COVERAGE RATIONALE ............................................. 1 CENTERS FOR MEDICARE AND MEDICAID SERVICES DEFINITIONS .......................................................... 1 (CMS) .................................................................... 6 APPLICABLE CODES ................................................. 2 REFERENCES .......................................................... 6 DESCRIPTION OF SERVICES ...................................... 2 POLICY HISTORY/REVISION INFORMATION ................. 7 CLINICAL EVIDENCE ................................................ 4 INSTRUCTIONS FOR USE .......................................... 7 U.S. FOOD AND DRUG ADMINISTRATION (FDA) ........... 6 COVERAGE RATIONALE The following are proven and medically necessary: Cranial orthotic devices for treating infants with the following conditions: o Craniofacial asymmetry with severe (non-synostotic) positional plagiocephaly when ALL of the following criteria are met: . Infant is between 3-18 months of age . Severe plagiocephaly is present with or without torticollis . Documentation of a trial of conservative therapy of at least 2 months duration with cranial repositioning, with or without stretching therapy o Craniosynostosis (i.e., synostotic plagiocephaly) following surgical correction Cranial orthotic devices used for treating infants with mild to moderate plagiocephaly
    [Show full text]
  • Mimics, Miscalls, and Misses in Pancreatic Disease Koenraad J
    Mimics, Miscalls, and Misses in Pancreatic Disease Koenraad J. Mortelé1 The radiologist plays a pivotal role in the detection and This chapter will summarize, review, and illustrate the characterization of pancreatic disorders. Unfortunately, the most common and important mimics, miscalls, and misses in accuracy of rendered diagnoses is not infrequently plagued by pancreatic imaging and thereby improve diagnostic accuracy a combination of “overcalls” of normal pancreatic anomalies of diagnoses rendered when interpreting radiologic studies of and variants; “miscalls” of specific and sometimes pathog- the pancreas. nomonic pancreatic entities; and “misses” of subtle, uncom- mon, or inadequately imaged pancreatic abnormalities. Ba- Normal Pancreatic Anatomy sic understanding of the normal and variant anatomy of the The Gland pancreas, knowledge of state-of-the-art pancreatic imaging The coarsely lobulated pancreas, typically measuring ap- techniques, and familiarity with the most commonly made mis- proximately 15–20 cm in length, is located in the retroperito- diagnoses and misses in pancreatic imaging is mandatory to neal anterior pararenal space and can be divided in four parts: avoid this group of errors. head and uncinate process, neck, body, and tail [4]. The head, neck, and body are retroperitoneal in location whereas the Mimics of pancreatic disease, caused by developmental tail extends into the peritoneal space. The pancreatic head is variants and anomalies, are commonly encountered on imag- defined as being to the right of the superior mesenteric vein ing studies [1–3]. To differentiate these benign “nontouch” en- (SMV). The uncinate process is the prolongation of the medi- tities from true pancreatic conditions, radiologists should be al and caudal parts of the head; it has a triangular shape with a familiar with them, the imaging techniques available to study straight or concave anteromedial border.
    [Show full text]
  • Advances in Understanding the Genetics of Syndromes Involving Congenital Upper Limb Anomalies
    Review Article Page 1 of 10 Advances in understanding the genetics of syndromes involving congenital upper limb anomalies Liying Sun1#, Yingzhao Huang2,3,4#, Sen Zhao2,3,4, Wenyao Zhong1, Mao Lin2,3,4, Yang Guo1, Yuehan Yin1, Nan Wu2,3,4, Zhihong Wu2,3,5, Wen Tian1 1Hand Surgery Department, Beijing Jishuitan Hospital, Beijing 100035, China; 2Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; 3Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing 100730, China; 4Department of Orthopedic Surgery, 5Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China Contributions: (I) Conception and design: W Tian, N Wu, Z Wu, S Zhong; (II) Administrative support: All authors; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: Y Huang; (V) Data analysis and interpretation: L Sun; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Wen Tian. Hand Surgery Department, Beijing Jishuitan Hospital, Beijing 100035, China. Email: [email protected]. Abstract: Congenital upper limb anomalies (CULA) are a common birth defect and a significant portion of complicated syndromic anomalies have upper limb involvement. Mostly the mortality of babies with CULA can be attributed to associated anomalies. The cause of the majority of syndromic CULA was unknown until recently. Advances in genetic and genomic technologies have unraveled the genetic basis of many syndromes- associated CULA, while at the same time highlighting the extreme heterogeneity in CULA genetics. Discoveries regarding biological pathways and syndromic CULA provide insights into the limb development and bring a better understanding of the pathogenesis of CULA.
    [Show full text]
  • Circle Applicable Codes
    IDENTIFYING INFORMATION (please print legibly) Individual’s Name: DOB: Last 4 Digits of Social Security #: CIRCLE APPLICABLE CODES ICD-10 ICD-10 ICD-9 DIAGNOSTIC ICD-9 DIAGNOSTIC PRIMARY ICD-9 CODES CODE CODE PRIMARY ICD-9 CODES CODE CODE Abetalipoproteinemia 272.5 E78.6 Hallervorden-Spatz Syndrome 333.0 G23.0 Acrocephalosyndactyly (Apert’s Syndrome) 755.55 Q87.0 Head Injury, unspecified – Age of onset: 959.01 S09.90XA Adrenaleukodystrophy 277.86 E71.529 Hemiplegia, unspecified 342.9 G81.90 Arginase Deficiency 270.6 E72.21 Holoprosencephaly 742.2 Q04.2 Agenesis of the Corpus Callosum 742.2 Q04.3 Homocystinuria 270.4 E72.11 Agenesis of Septum Pellucidum 742.2 Q04.3 Huntington’s Chorea 333.4 G10 Argyria/Pachygyria/Microgyria 742.2 Q04.3 Hurler’s Syndrome 277.5 E76.01 or 758.33 Aicardi Syndrome 333 G23.8 Hyperammonemia Syndrome 270.6 E72.4 Alcohol Embryo and Fetopathy 760.71 F84.5 I-Cell Disease 272.2 E77.0 Anencephaly 655.0 Q00.0 Idiopathic Torsion Dystonia 333.6 G24.1 Angelman Syndrome 759.89 Q93.5 Incontinentia Pigmenti 757.33 Q82.3 Asperger Syndrome 299.8 F84.5 Infantile Cerebral Palsy, unspecified 343.9 G80.9 Ataxia-Telangiectasia 334.8 G11.3 Intractable Seizure Disorder 345.1 G40.309 Autistic Disorder (Childhood Autism, Infantile 299.0 F84.0 Klinefelter’s Syndrome 758.7 Q98.4 Psychosis, Kanner’s Syndrome) Biotinidase Deficiency 277.6 D84.1 Krabbe Disease 333.0 E75.23 Canavan Disease 330.0 E75.29 Kugelberg-Welander Disease 335.11 G12.1 Carpenter Syndrome 759.89 Q87.0 Larsen’s Syndrome 755.8 Q74.8 Cerebral Palsy, unspecified 343.69 G80.9
    [Show full text]
  • 2018 Etiologies by Frequencies
    2018 Etiologies in Order of Frequency by Category Hereditary Syndromes and Disorders Count CHARGE Syndrome 958 Down syndrome (Trisomy 21 syndrome) 308 Usher I syndrome 252 Stickler syndrome 130 Dandy Walker syndrome 119 Cornelia de Lange 102 Goldenhar syndrome 98 Usher II syndrome 83 Wolf-Hirschhorn syndrome (Trisomy 4p) 68 Trisomy 13 (Trisomy 13-15, Patau syndrome) 60 Pierre-Robin syndrome 57 Moebius syndrome 55 Trisomy 18 (Edwards syndrome) 52 Norrie disease 38 Leber congenital amaurosis 35 Chromosome 18, Ring 18 31 Aicardi syndrome 29 Alstrom syndrome 27 Pfieffer syndrome 27 Treacher Collins syndrome 27 Waardenburg syndrome 27 Marshall syndrome 25 Refsum syndrome 21 Cri du chat syndrome (Chromosome 5p- synd) 16 Bardet-Biedl syndrome (Laurence Moon-Biedl) 15 Hurler syndrome (MPS I-H) 15 Crouzon syndrome (Craniofacial Dysotosis) 13 NF1 - Neurofibromatosis (von Recklinghausen dis) 13 Kniest Dysplasia 12 Turner syndrome 11 Usher III syndrome 10 Cockayne syndrome 9 Apert syndrome/Acrocephalosyndactyly, Type 1 8 Leigh Disease 8 Alport syndrome 6 Monosomy 10p 6 NF2 - Bilateral Acoustic Neurofibromatosis 6 Batten disease 5 Kearns-Sayre syndrome 5 Klippel-Feil sequence 5 Hereditary Syndromes and Disorders Count Prader-Willi 5 Sturge-Weber syndrome 5 Marfan syndrome 3 Hand-Schuller-Christian (Histiocytosis X) 2 Hunter Syndrome (MPS II) 2 Maroteaux-Lamy syndrome (MPS VI) 2 Morquio syndrome (MPS IV-B) 2 Optico-Cochleo-Dentate Degeneration 2 Smith-Lemli-Opitz (SLO) syndrome 2 Wildervanck syndrome 2 Herpes-Zoster (or Hunt) 1 Vogt-Koyanagi-Harada
    [Show full text]
  • Imaging Pearls of the Annular Pancreas on Antenatal Scan and Its
    Imaging pearls of the annular pancreas on antenatal scan and its diagnostic Case Report dilemma: A case report © 2020, Roul et al Pradeep Kumar Roul,1 Ashish Kaushik,1 Manish Kumar Gupta,2 Poonam Sherwani,1 * Submitted: 22-08-2020 Accepted: 10-09-2020 1 Department of Radiodiagnosis, All India Institute of Medical Sciences, Rishikesh 2 Department of Pediatric Surgery, All India Institute of Medical Sciences, Rishikesh License: This work is licensed under a Creative Commons Attribution 4.0 Correspondence*: Dr. Poonam Sherwani. DNB, EDIR, Fellow Pediatric Radiology, Department of International License. Radiodiagnosis, All India Institute of Medical Sciences, Rishikesh, E-mail: [email protected] DOI: https://doi.org/10.47338/jns.v9.669 KEYWORDS ABSTRACT Annular pancreas, Background: Annular pancreas is an uncommon cause of duodenal obstruction and rarely Duodenal obstruction, causes complete duodenal obstruction. Due to its rarity of identification in the antenatal Double bubble sign, period and overlapping imaging features with other causes of duodenal obstruction; it is Hyperechogenic band often misdiagnosed. Case presentation: A 33-year-old primigravida came for routine antenatal ultrasonography at 28 weeks and 4 days of gestational age. On antenatal ultrasonography, dilated duodenum and stomach were seen giving a double bubble sign and a hyperechoic band surrounding the duodenum. Associated polyhydramnios was also present. Fetal MRI was also done. Postpartum ultrasonography demonstrated pancreatic tissue surrounding the duodenum. The upper gastrointestinal contrast study showed a non-passage of contrast beyond the second part of the duodenum. Due to symptoms of obstruction, the neonate was operated on, and the underlying cause was found to be the annular pancreas.
    [Show full text]
  • REVIEW ARTICLE Genetic Factors in Congenital Diaphragmatic Hernia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW ARTICLE Genetic Factors in Congenital Diaphragmatic Hernia A. M. Holder,* M. Klaassens,* D. Tibboel, A. de Klein, B. Lee, and D. A. Scott Congenital diaphragmatic hernia (CDH) is a relatively common birth defect associated with high mortality and morbidity. Although the exact etiology of most cases of CDH remains unknown, there is a growing body of evidence that genetic factors play an important role in the development of CDH. In this review, we examine key findings that are likely to form the basis for future research in this field. Specific topics include a short overview of normal and abnormal diaphragm development, a discussion of syndromic forms of CDH, a detailed review of chromosomal regions recurrently altered in CDH, a description of the retinoid hypothesis of CDH, and evidence of the roles of specific genes in the development of CDH. Congenital diaphragmatic hernia (CDH [MIM 142340, Overview of Normal and Abnormal Diaphragm 222400, 610187, and 306950]) is defined as a protrusion Development of abdominal viscera into the thorax through an abnormal opening or defect that is present at birth. In some cases, this protrusion is covered by a membranous sac. In con- The development of the human diaphragm occurs be- trast, diaphragmatic eventrations are extreme elevations, tween the 4th and 12th wk of gestation. Traditional views rather than protrusions, of part of the diaphragm that is of diaphragm development suggest that the diaphragm 9 often atrophic and abnormally thin. CDH is a relatively arises from four different structures.
    [Show full text]
  • L&D – Amnioinfusion Guideline and Procedure for Amnioinfusion
    L&D – Amnioinfusion Guideline and Procedure for Amnioinfusion. Purpose: Replacing the amniotic fluid with normal saline has been found to be a safe, simple, and very effective way to reduce the occurrence of repetitive variable decelerations. Procedure: Initiation of Amnioinfusion will be ordered and performed by a Certified Nurse Midwife (CNM) or physician (MD). 1. Prepare NS or LR 1000ml with IV tubing in the same fashion as for intravenous infusion. Flush the tubing to clear air. 2. An intrauterine pressure catheter (IUPC) will be placed by the MD/CNM. 3. Elevate the IV bag 3-4 feet above the IUPC tip for rapid infusion. Infuse 250-500ml of solution over a 20-30 minute time frame followed by a 60-180ml/hour maintenance infusion. The total volume infused should not exceed 1000ml unless one has access to ultrasound and can titrate to an amniotic fluid index (AFI) of 8-12 cm to prevent polyhydramnios and hypertonus. 4. If variable decelerations recur or other new non-reassuring FHR patterns develop, notify the MD/CNM. The procedure may be repeated as ordered. 5. Resting tone of the uterus will be increased during infusion but should not increase > 15mmHg from previous baseline. If this occurs, infusion should stop until there is a return to the previous baseline then it can be restarted. An elevated baseline prior to infusion is a contraindication. 6. Monitor for an outflow of infusion. If there is a sudden cessation of outflow fetal head engagement may have occurred increasing the risk of polyhydramnios. Complications are rare but can include iatrogenic polyhydramnios, uterine hypertonus, chorioamnionitis, uterine rupture, placental abruption, and maternal pulmonary embolus.
    [Show full text]
  • Genevista Microdeletion and Microduplication Syndromes
    GeNeViSTA Microdeletion and Microduplication Syndromes: An Update Priya Ranganath, Prajnya Ranganath Department of Medical Genetics, Nizam’s Institute of Medical Sciences, Hyderabad, India Correspondence to: Dr Prajnya Ranganath Email: [email protected] Abstract containing dosage sensitive genes responsible for the phenotype is generally involved (Goldenberg, Microdeletion and microduplication syndromes 2018). Theoretically, for every microdeletion (MMS) also known as ‘contiguous gene syndrome there should be a reciprocal syndromes’ are a group of disorders caused microduplication syndrome, but microdeletions by sub-microscopic chromosomal deletions or are more common. Microduplications appear to duplications. Most of these conditions are typically result in a milder or no clinical phenotype. associated with developmental delay, autism, multiple congenital anomalies, and characteristic Molecular Etiopathology phenotypic features. These chromosomal abnormalities cannot be detected by conventional Copy number variation (CNV) is defined as the gain cytogenetic techniques like karyotyping and or loss of a stretch of DNA when compared with require higher resolution ‘molecular cytogenetic’ the reference human genome and may range in techniques. The advent of high throughput tests size from a kilobase to several megabases or even such as chromosomal microarray in the past one an entire chromosome. The CNVs associated with or two decades has led to a continuously growing MMS constitute only a small fraction of the total list of microdeletions and microduplication number of possible copy-number variants. There syndromes along with identification of the ‘critical are two major classes of CNVs: recurrent and region’ responsible for the main phenotypic non-recurrent. Recurrent CNVs generally result features associated with these syndromes. This from Non-Allelic Homologous Recombination review discusses the etiopathogenic mechanisms (NAHR) during meiosis.
    [Show full text]
  • CHARGE Syndrome
    orphananesthesia Anaesthesia recommendations for CHARGE syndrome Disease name: CHARGE syndrome ICD 10: Q87.8 Synonyms: CHARGE association; Hall-Hittner syndrome Disease summary: CHARGE syndrome was initially defined as a non-random association of anomalies: - Coloboma - Heart defect - Atresia choanae (choanal atresia) - Retarded growth and development - Genital hypoplasia - Ear anomalies/deafness In 1998, an expert group defined the major (the classical 4C´s: Choanal atresia, Coloboma, Characteristic ear and Cranial nerve anomalies) and minor criteria of CHARGE syndrome [1]. In 2004, mutations in the CHD7 gene were identified as the major cause. The inheritance pattern is autosomal dominant with variable expressivity. Almost all mutations occurs de novo, but parent-to-child transmission has occasionally been reported [2]. Clinical criteria for CHARGE syndrome [1] Major criteria: • Coloboma • Choanal Atresia • Cranial nerve anomalies • Abnormalities of the inner, middle, or external ear Minor criteria: • Cardiaovascular malformations • Genital hypoplasia or delayed pubertal development • Cleft lip and/or palate • Tracheoesophageal defects • Distinctive CHARGE facies • Growth retardation • Developmental delay Occasional: • Renal anomalies: duplex system, vesicoureteric reflux • Spinal anomalies: scoliosis, osteoporosis • Hand anomalies 1 • Neck/shoulder anomalies • Immune system disorders Individuals with all four major characteristics or three major and three minor characteristics are highly likely to have CHARGE syndrome [1]. CHARGE syndrome
    [Show full text]
  • Amniotic Fluid Volume: When and How to Take Action
    Amniotic fluid volume: When and how to take action http://contemporaryobgyn.modernmedicine.com/pr... Published on Contemporary OB/GYN (http://contemporaryobgyn.modernmedicine.com) Amniotic fluid volume: When and how to take action Alessandro Ghidini, MD and Marta Schilirò, MD and Anna Locatelli, MD Publish Date: JUN 01,2014 Dr. Ghidini is Professor, Georgetown University, Washington, DC, and Director, Perinatal Diagnostic Center, Inova Alexandria Hospital, Alexandria, Virginia. Dr. Schilirò is Medical Doctor, Obstetrics and Gynecology, University of Milano-Bicocca, Monza, Italy. Dr. Locatelli is Associate Professor, University of Milano-Bicocca, Monza, Italy, and Director, Department of Obstetrics and Gynecology, Carate- Giussano Hospital, AO Vimercate-Desio, Italy. None of the authors has a conflict of interest to report with respect to the content of this article. Assessment of amniotic fluid volume (AFV) is an integral part of antenatal ultrasound evaluation during screening exams, targeted anatomy examinations, and in tests assessing fetal well-being. 1 di 17 18/06/2014 11:10 Amniotic fluid volume: When and how to take action http://contemporaryobgyn.modernmedicine.com/pr... Abnormal AFV has been associated with an increased risk of perinatal mortality and several adverse perinatal outcomes, including premature rupture of membranes (PROM), fetal abnormalities, abnormal birth weight, and increased risk of obstetric interventions.1 A recent systematic review demonstrated associations between oligohydramnios, birthweight <10th percentile, and perinatal mortality, as well as between polyhydramnios, birthweight >90th percentile, and perinatal mortality. The predictive ability of AFV alone, however, was generally poor.2 How to assess AFV Ultrasound (U/S) examination is the only practical method of assessing AFV.
    [Show full text]
  • A Narrative Review of Poland's Syndrome
    Review Article A narrative review of Poland’s syndrome: theories of its genesis, evolution and its diagnosis and treatment Eman Awadh Abduladheem Hashim1,2^, Bin Huey Quek1,3,4^, Suresh Chandran1,3,4,5^ 1Department of Neonatology, KK Women’s and Children’s Hospital, Singapore, Singapore; 2Department of Neonatology, Salmanya Medical Complex, Manama, Kingdom of Bahrain; 3Department of Neonatology, Duke-NUS Medical School, Singapore, Singapore; 4Department of Neonatology, NUS Yong Loo Lin School of Medicine, Singapore, Singapore; 5Department of Neonatology, NTU Lee Kong Chian School of Medicine, Singapore, Singapore Contributions: (I) Conception and design: EAA Hashim, S Chandran; (II) Administrative support: S Chandran, BH Quek; (III) Provision of study materials: EAA Hashim, S Chandran; (IV) Collection and assembly: All authors; (V) Data analysis and interpretation: BH Quek, S Chandran; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: A/Prof. Suresh Chandran. Senior Consultant, Department of Neonatology, KK Women’s and Children’s Hospital, Singapore 229899, Singapore. Email: [email protected]. Abstract: Poland’s syndrome (PS) is a rare musculoskeletal congenital anomaly with a wide spectrum of presentations. It is typically characterized by hypoplasia or aplasia of pectoral muscles, mammary hypoplasia and variably associated ipsilateral limb anomalies. Limb defects can vary in severity, ranging from syndactyly to phocomelia. Most cases are sporadic but familial cases with intrafamilial variability have been reported. Several theories have been proposed regarding the genesis of PS. Vascular disruption theory, “the subclavian artery supply disruption sequence” (SASDS) remains the most accepted pathogenic mechanism. Clinical presentations can vary in severity from syndactyly to phocomelia in the limbs and in the thorax, rib defects to severe chest wall anomalies with impaired lung function.
    [Show full text]