Tumor in Patients with 9Q22.3 Microdeletion Syndrome Suggests a Role for PTCH1 in Nephroblastomas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Syndromes with an Increased Risk of Developing Cancer As an Example of the Use of New Technologies
Genetics and Molecular Biology, 37, 1 (suppl), 241-249 (2014) Copyright © 2014, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Review Article Impact of NGS in the medical sciences: Genetic syndromes with an increased risk of developing cancer as an example of the use of new technologies Pablo Lapunzina1,2, Rocío Ortiz López3,4, Lara Rodríguez-Laguna2, Purificación García-Miguel5, Augusto Rojas Martínez3,4 and Víctor Martínez-Glez1,2 1Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain. 2Instituto de Genética Médica y Molecular, Hospital Universitario la Paz, Madrid, Spain. 3Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León. Monterrey, Nuevo León, México. 4Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. 5Unidad de Oncología Pediátrica, Hospital Infantil La Paz, Madrid, Spain. Abstract The increased speed and decreasing cost of sequencing, along with an understanding of the clinical relevance of emerging information for patient management, has led to an explosion of potential applications in healthcare. Cur- rently, SNP arrays and Next-Generation Sequencing (NGS) technologies are relatively new techniques used to scan genomes for gains and losses, losses of heterozygosity (LOH), SNPs, and indel variants as well as to perform com- plete sequencing of a panel of candidate genes, the entire exome (whole exome sequencing) or even the whole ge- nome. As a result, these new high-throughput technologies have facilitated progress in the understanding and diagnosis of genetic syndromes and cancers, two disorders traditionally considered to be separate diseases but that can share causal genetic alterations in a group of developmental disorders associated with congenital malformations and cancer risk. -
Cavus Foot, from Neonates to Adolescents
Orthopaedics & Traumatology: Surgery & Research (2012) 98, 813—828 Available online at www.sciencedirect.com REVIEW ARTICLE ଝ Cavus foot, from neonates to adolescents P. Wicart Paris Descartes University, Necker—Sick Children Hospital (AP—HP), 149, rue de Sèvres, Paris 75015, France Accepted: 10 July 2012 KEYWORDS Summary Pes cavus, defined as a high arch in the sagittal plane, occurs in various clinical situa- Pes cavus; tions. A cavus foot may be a variant of normal, a simple morphological characteristic, seen in Charcot-Marie-Tooth healthy individuals. Alternatively, cavus may occur as a component of a foot deformity. When it disease; is the main abnormality, direct pes cavus should be distinguished from pes cavovarus. In direct Neurology; pes cavus, the deformity occurs only in the sagittal plane (in the forefoot, hindfoot, or both). Morphological types Direct pes cavus may be related to a variety of causes, although neurological diseases predom- inate in posterior pes cavus. Pes cavovarus is a three-dimensional deformity characterized by rotation of the calcaneopedal unit (the foot minus the talus). This deformity is caused by palsy of the intrinsic foot muscles, usually related to Charcot-Marie-Tooth disease. The risk of pro- gression during childhood can be eliminated by appropriate conservative treatment (orthosis to realign the foot). Extra-articular surgery is indicated when the response to orthotic treatment is inadequate. Muscle transfers have not been proven effective. Triple arthrodesis (talocalcanear, talonavicular, and calcaneocuboid) accelerates the mid-term development of osteoarthritis in the adjacent joints and should be avoided. © 2012 Published by Elsevier Masson SAS. Introduction The cavus may be either one of the components or the main component of the deformity (Tables 1 and 2). -
Megalencephaly and Macrocephaly
277 Megalencephaly and Macrocephaly KellenD.Winden,MD,PhD1 Christopher J. Yuskaitis, MD, PhD1 Annapurna Poduri, MD, MPH2 1 Department of Neurology, Boston Children’s Hospital, Boston, Address for correspondence Annapurna Poduri, Epilepsy Genetics Massachusetts Program, Division of Epilepsy and Clinical Electrophysiology, 2 Epilepsy Genetics Program, Division of Epilepsy and Clinical Department of Neurology, Fegan 9, Boston Children’s Hospital, 300 Electrophysiology, Department of Neurology, Boston Children’s Longwood Avenue, Boston, MA 02115 Hospital, Boston, Massachusetts (e-mail: [email protected]). Semin Neurol 2015;35:277–287. Abstract Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and Keywords behavioral problems; specific disorders have associations with overgrowth or abnor- ► megalencephaly malities in other tissues. The molecular underpinnings of many of these disorders are ► hemimegalencephaly now understood, providing insight into how dysregulation of critical pathways leads to ► -
Genetic, Cytogenetic and Physical Refinement of the Autosomal Recessive CMT Linked to 5Q31ð Q33: Exclusion of Candidate Genes I
European Journal of Human Genetics (1999) 7, 849–859 © 1999 Stockton Press All rights reserved 1018–4813/99 $15.00 t http://www.stockton-press.co.uk/ejhg ARTICLE Genetic, cytogenetic and physical refinement of the autosomal recessive CMT linked to 5q31–q33: exclusion of candidate genes including EGR1 Ang`ele Guilbot1, Nicole Ravis´e1, Ahmed Bouhouche6, Philippe Coullin4, Nazha Birouk6, Thierry Maisonobe3, Thierry Kuntzer7, Christophe Vial8, Djamel Grid5, Alexis Brice1,2 and Eric LeGuern1,2 1INSERM U289, 2F´ed´eration de Neurologie and 3Laboratoire de Neuropathologie R Escourolle, Hˆopital de la Salpˆetri`ere, Paris 4Laboratoire de cytog´en´etique, Villejuif 5G´en´ethon, Evry, France 6Service de Neurologie, Hˆopital des Sp´ecialit´es, Rabat, Morocco 7Service de Neurologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland 8Service D’EMG et de pathologie neuromusculaire, Hˆopital neurologique Pierre Wertheimer, Lyon, France Charcot-Marie-Tooth disease is an heterogeneous group of inherited peripheral motor and sensory neuropathies with several modes of inheritance: autosomal dominant, X-linked and autosomal recessive. By homozygosity mapping, we have identified, in the 5q23–q33 region, a third locus responsible for an autosomal recessive form of demyelinating CMT. Haplotype reconstruction and determination of the minimal region of homozygosity restricted the candidate region to a 4 cM interval. A physical map of the candidate region was established by screening YACs for microsatellites used for genetic analysis. Combined genetic, cytogenetic and physical mapping restricted the locus to a less than 2 Mb interval on chromosome 5q32. Seventeen consanguineous families with demyelinating ARCMT of various origins were screened for linkage to 5q31–q33. -
WES Gene Package Multiple Congenital Anomalie.Xlsx
Whole Exome Sequencing Gene package Multiple congenital anomalie, version 5, 1‐2‐2018 Technical information DNA was enriched using Agilent SureSelect Clinical Research Exome V2 capture and paired‐end sequenced on the Illumina platform (outsourced). The aim is to obtain 8.1 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA‐MEM algorithm (reference: http://bio‐bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x A4GALT [Blood group, P1Pk system, P(2) phenotype], 111400 607922 101 100 100 99 [Blood group, P1Pk system, p phenotype], 111400 NOR polyagglutination syndrome, 111400 AAAS Achalasia‐addisonianism‐alacrimia syndrome, 231550 605378 73 100 100 100 AAGAB Keratoderma, palmoplantar, -
Mackenzie's Mission Gene & Condition List
Mackenzie’s Mission Gene & Condition List What conditions are being screened for in Mackenzie’s Mission? Genetic carrier screening offered through this research study has been carefully developed. It is focused on providing people with information about their chance of having children with a severe genetic condition occurring in childhood. The screening is designed to provide genetic information that is relevant and useful, and to minimise uncertain and unclear information. How the conditions and genes are selected The Mackenzie’s Mission reproductive genetic carrier screen currently includes approximately 1300 genes which are associated with about 750 conditions. The reason there are fewer conditions than genes is that some genetic conditions can be caused by changes in more than one gene. The gene list is reviewed regularly. To select the conditions and genes to be screened, a committee comprised of experts in genetics and screening was established including: clinical geneticists, genetic scientists, a genetic pathologist, genetic counsellors, an ethicist and a parent of a child with a genetic condition. The following criteria were developed and are used to select the genes to be included: • Screening the gene is technically possible using currently available technology • The gene is known to cause a genetic condition • The condition affects people in childhood • The condition has a serious impact on a person’s quality of life and/or is life-limiting o For many of the conditions there is no treatment or the treatment is very burdensome for the child and their family. For some conditions very early diagnosis and treatment can make a difference for the child. -
(12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE Et Al
US 20160281 166A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE et al. (43) Pub. Date: Sep. 29, 2016 (54) METHODS AND SYSTEMIS FOR SCREENING Publication Classification DISEASES IN SUBJECTS (51) Int. Cl. (71) Applicant: PARABASE GENOMICS, INC., CI2O I/68 (2006.01) Boston, MA (US) C40B 30/02 (2006.01) (72) Inventors: Arindam BHATTACHARJEE, G06F 9/22 (2006.01) Andover, MA (US); Tanya (52) U.S. Cl. SOKOLSKY, Cambridge, MA (US); CPC ............. CI2O 1/6883 (2013.01); G06F 19/22 Edwin NAYLOR, Mt. Pleasant, SC (2013.01); C40B 30/02 (2013.01); C12O (US); Richard B. PARAD, Newton, 2600/156 (2013.01); C12O 2600/158 MA (US); Evan MAUCELI, (2013.01) Roslindale, MA (US) (21) Appl. No.: 15/078,579 (57) ABSTRACT (22) Filed: Mar. 23, 2016 Related U.S. Application Data The present disclosure provides systems, devices, and meth (60) Provisional application No. 62/136,836, filed on Mar. ods for a fast-turnaround, minimally invasive, and/or cost 23, 2015, provisional application No. 62/137,745, effective assay for Screening diseases, such as genetic dis filed on Mar. 24, 2015. orders and/or pathogens, in Subjects. Patent Application Publication Sep. 29, 2016 Sheet 1 of 23 US 2016/0281166 A1 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S{}}\\93? sau36 Patent Application Publication Sep. 29, 2016 Sheet 2 of 23 US 2016/0281166 A1 &**** ? ???zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz??º & %&&zzzzzzzzzzzzzzzzzzzzzzz &Sssssssssssssssssssssssssssssssssssssssssssssssssssssssss & s s sS ------------------------------ Patent Application Publication Sep. 29, 2016 Sheet 3 of 23 US 2016/0281166 A1 23 25 20 FG, 2. Patent Application Publication Sep. 29, 2016 Sheet 4 of 23 US 2016/0281166 A1 : S Patent Application Publication Sep. -
2012 2013 Causes of Birth Defects: Lessons from History 1 0 Drug
cited Issue title 2012 2013 Vol.51 NO1 Causes of birth defects: Lessons from history 1 0 (2011) Drug safety in pregnancy: Utopia or achievable prospect? Risk information, risk research and advocacy in Teratology Information 3 0 Services Role of rare cases in deciphering the mechanisms of congenital 2 0 anomalies: CHARGE syndrome research Value of the small cohort study including a physical examination 2 0 for minor structural defects in identifying new human teratogens In vitro models of pancreatic differentiation using embryonic stem 2 1 or induced pluripotent stem cells Peptic ulcer disease with related drug treatment in pregnant 0 0 women and congenital abnormalities in their offspring Efficacy of medical care of epileptic pregnant women based on the 1 0 rate of congenital abnormalities in their offspring Rare clinical entity Perlman syndrome: Is cholestasis a new 0 0 finding? An unusual bronchopulmonary malformation in adulthood: Bronchial 0 0 atresia Vol.51 NO2 Effects of melanocortins on fetal development 0 0 (2011) Hypothyroidism caused by phenobarbital affects patterns of 0 0 estrous cyclicity in rats Adrenocorticotropic tumor cells transplanted into mouse embryos 0 0 affect pancreatic histogenesis Distribution of the longevity gene product, SIRT1, in developing 1 1 mouse organs Is there a reduction of congenital abnormalities in the offspring of diabetic pregnant women after folic acid supplementation? A 3 0 population-based case-control study Analysis of genitourinary anomalies in patients with VACTERL (Vertebral anomalies, -
Clinical and Genetic Findings of Two Cases with Apert Syndrome
BoletínMédicodel HospitalInfantildeMéxico CLINICALCASE ClinicalandgeneticfindingsoftwocaseswithApertsyndrome Francisco Cammarata-Scalisi1*, Elanur Yilmaz2, Michele Callea3, Andrea Avendaño1, Ercan Mıhçı4 and Ozgul M. Alper2 © Permanyer 2019 1 2 Unit of Medical Genetics, Department of Pediatrics, Faculty of Medicine, University of The Andes, Mérida, Venezuela; Department of Medical . Biology and Genetics, Akdeniz University Medical School, Antalya, Turkey; 3Unit of Dentistry, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 4Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey of the publisher Abstract Background: Craniosynostosis is described as the premature fusion of cranial sutures that belongs to a group of alterations which produce an abnormal phenotype. Case report: Two unrelated female patients with clinical findings of Apert syndro- me—characterized by acrocephaly, prominent frontal region, flat occiput, ocular proptosis, hypertelorism, down-slanted pal- pebral fissures, midfacial hypoplasia, high-arched or cleft palate, short neck, cardiac anomalies and symmetrical syndactyly of the hands and feet—are present. In both patients, a heterozygous missense mutation (c.755C>G, p.Ser252Trp) in the FGFR2 gene was identified. Conclusions: Two cases of Apert syndrome are described. It is important to recognize this uncommon entity through clinical findings, highlight interdisciplinary medical evaluation, and provide timely genetic counse- ling for the family. Key words: Apert syndrome. Clinical. FGFR2 -
(12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub
US 2010O2.10567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub. Date: Aug. 19, 2010 (54) USE OF ATUFTSINASATHERAPEUTIC Publication Classification AGENT (51) Int. Cl. A638/07 (2006.01) (76) Inventor: Dorian Bevec, Germering (DE) C07K 5/103 (2006.01) A6IP35/00 (2006.01) Correspondence Address: A6IPL/I6 (2006.01) WINSTEAD PC A6IP3L/20 (2006.01) i. 2O1 US (52) U.S. Cl. ........................................... 514/18: 530/330 9 (US) (57) ABSTRACT (21) Appl. No.: 12/677,311 The present invention is directed to the use of the peptide compound Thr-Lys-Pro-Arg-OH as a therapeutic agent for (22) PCT Filed: Sep. 9, 2008 the prophylaxis and/or treatment of cancer, autoimmune dis eases, fibrotic diseases, inflammatory diseases, neurodegen (86). PCT No.: PCT/EP2008/007470 erative diseases, infectious diseases, lung diseases, heart and vascular diseases and metabolic diseases. Moreover the S371 (c)(1), present invention relates to pharmaceutical compositions (2), (4) Date: Mar. 10, 2010 preferably inform of a lyophilisate or liquid buffersolution or artificial mother milk formulation or mother milk substitute (30) Foreign Application Priority Data containing the peptide Thr-Lys-Pro-Arg-OH optionally together with at least one pharmaceutically acceptable car Sep. 11, 2007 (EP) .................................. O7017754.8 rier, cryoprotectant, lyoprotectant, excipient and/or diluent. US 2010/0210567 A1 Aug. 19, 2010 USE OF ATUFTSNASATHERAPEUTIC ment of Hepatitis BVirus infection, diseases caused by Hepa AGENT titis B Virus infection, acute hepatitis, chronic hepatitis, full minant liver failure, liver cirrhosis, cancer associated with Hepatitis B Virus infection. 0001. The present invention is directed to the use of the Cancer, Tumors, Proliferative Diseases, Malignancies and peptide compound Thr-Lys-Pro-Arg-OH (Tuftsin) as a thera their Metastases peutic agent for the prophylaxis and/or treatment of cancer, 0008. -
Pes Cavus – Not Just a Clinical Sign Diagnosis, Aetiology and Management
ACNRJF13_Layout 1 13/01/2013 22:33 Page 16 REHABILITATION ARTICLE Pes Cavus – Not Just a Clinical Sign Diagnosis, Aetiology and Management Mr Thomas Ball, he term Pes cavus describes the deformity of Figure 1 MRCS, MRCP, MA(Cantab) is a Specialty Registrar in Trauma a high arched, relatively stiff foot. It has a and Orthopaedics in the South T variety of neurological and other causes. West Peninsula, currently working Management depends on the aetiology, rapidity of at Royal Cornwall Hospital. He progression and the severity of symptoms. aims to specialise in foot and ankle surgery and correction of lower limb deformity. Definition Pes cavus is an umbrella term describing a spec- trum of foot shapes with a high arch.1 Pure Pes cavus occurs when the metatarsal bones are plan- tarflexed relative to the hindfoot – described as ‘forefoot plantaris’ – which increases the height and curvature of the medial longitudinal arch (Figure 1). When the patient weight-bears, the hindfoot is pushed into dorsiflexion by the plan- tarflexed forefoot (Figure 2). Mr Michael Butler, A high arch accompanied by a medially angu- MA MB BS FRCS (TR&Orth) lated heel is termed pes cavovarus (Figure 3). is a Consultant Orthopaedic Surgeon and Foot and Ankle When this is complicated by foot drop and Specialist at the Royal Cornwall equinus of the ankle, it is described as pes Hospital in Truro and is a regular equinocavovarus. A n o t h e r va r i a n t , pes calcaneo- officer in the Army. Mr Butler varus, occurs when the primary deformity is treats patients for complex excessive ankle and hindfoot dorsiflexion; in problems of the foot and ankle Box 1: Causes of Pes cavus and is a Review Board Member for order to place the foot flat on the ground, the fore- Foot and Ankle Surgery. -
A Rare Intermetatarsal Coalition with Rigid Fifth Metatarsal Deformity and Symptomatic Plantar Lesion
The Journal of Foot & Ankle Surgery xxx (2015) 1–6 Contents lists available at ScienceDirect The Journal of Foot & Ankle Surgery journal homepage: www.jfas.org Case Reports and Series A Rare Intermetatarsal Coalition With Rigid Fifth Metatarsal Deformity and Symptomatic Plantar Lesion Antonio Cordoba-Fern andez, DP, PhD 1, Rafael Rayo-Rosado, DP, PhD 2, Daniel Lopez-Garc ıa, DP 3, Jose MarıaJuarez-Jim enez, DP, PhD 2 1 Professor of Podiatric Surgery, Department of Podiatry, Universidad de Sevilla, Sevilla, Spain 2 Assistant Professor, Department of Podiatry, Universidad de Sevilla, Sevilla, Spain 3 Private Practice, Jerez de la Frontera, Spain article info abstract Level of Clinical Evidence: 4 Coalition or synostosis of the foot is a relatively uncommon abnormality. Some cases of synostosis of the foot, primarily involving the midfoot and hindfoot, have been reported. However, intermetatarsal coalition is Keywords: bone bridge extremely rare, with only a small number of cases reported. We report a case of a unilateral, congenital fi metatarsal coalition metatarsal coalition between the fourth and fth metatarsal bones in a 27-year-old female. She had initially oblique metatarsal osteotomy been referred because of a symptomatic plantar lesion under the fifth metatarsal head. Surgery consisted of synostosis separating the affected metatarsals, combined with a proximal osteotomy, which proved successful in establishing pain-free and more natural weightbearing. Ó 2015 by the American College of Foot and Ankle Surgeons. All rights reserved. Congenital coalitions of the foot are relatively uncommon abnor- malities and occur in approximately 1% of the population (1). Talo- calcaneal and calcaneonavicular are the most common types of coalitions.