Scoliosis Is Rapidly Progressive During the Periods of Rapid Growth In

Total Page:16

File Type:pdf, Size:1020Kb

Scoliosis Is Rapidly Progressive During the Periods of Rapid Growth In Adolescent Idiopathic Scoliosis: Associated Factors, Progression, and a Risk-Benefit Analysis of Treatment Options Davis, Bonnie E. ABSTRACT Objective: The purpose of this paper is to discuss the associated factors of adolescent idiopathic scoliosis (AIS), the progression of AIS, and to compare conservative vs. surgical management of AIS with respect to the benefits, risks, and costs of each. After reviewing the literature, a conclusion will be made as to which type of management has the most reasonable and beneficial approach. Methods: Research literature covering AIS was obtained through colleagues, databases such as PubMed, and relevant websites. Discussion: Associated factors of AIS include female gender and genetic predispositions, respiratory deficiency, melatonin-signaling pathway deficiencies, pes cavus, and high platelet calmodulin levels. Treatment options for AIS patients include conservative care (electric stimulation, manual therapy, bracing, acupuncture), and surgical care, which may also include post-surgical bracing. Conservative care has shown some promising results for both immediate and long-lasting effects on scoliotic curvatures. Side effects are limited due to the non-invasive procedures. Surgical management of AIS can be very effective at immediate curve reduction, however long- term results may not be as promising. It also has many more serious side effects such as implant failure, infections, and decreased spinal range of motion. Conclusion: Due to numerous factors involved in the development of AIS, a holistic approach must be taken when dealing with these patients. Surgical management, due to its cost, its risks, and its limited applications for AIS patients should be considered a last option for most patients with AIS. Key Words: Adolescent Idiopathic Scoliosis, Melatonin, Pes Cavus, Platelet Calmodulin, Kyphosis, Lordosis, Manual Therapy, Chiropractic, Acupuncture, Thoracoplasty, Harrington rod 2 INTRODUCTION The History, Prevalence, and Treatment of Scoliosis Scoliosis has been a recognized deformity of the human body for thousands of years. The deformity was first described by Hippocrates (430-370 B.C.)38, and the term "scoliosis" was first coined by Galen (131-201 A.D.). Just recently, however, did the Scoliosis Research Society (founded in 1965) solidify the term. The agreed upon definition of scoliosis is a deviation of the spine in which there is a curvature of 10 degrees or more, as measured by the Cobb method, and the spinous processes of the vertebrae involved are directed towards the concavity of the curvature. The prevalence of scoliosis is estimated to be between two and four percent, and it effects all countries and all races. Scoliosis is not just a skeletal problem, however. Its consequences reach much further, affecting the gross physiology and psychology of the patient. Therefore, having the tools to effectively treat scoliosis is an asset to any doctor. Scoliosis is rapidly progressive during the periods of growth in adolescence20. However, a less known fact is that most scoliotic curvatures continue to progress after the end of a person’s growth, the average having been found to be 0.4 degrees per year2. Because of this, it is imperative that doctors approach all scoliosis cases, regardless of the age of the patient, with a degree of seriousness. Today, doctors choose to manage scoliosis in a number of different ways. The most common type of scoliosis treated is adolescent idiopathic scoliosis (AIS), which describes one or multiple curvatures found in young adults that has/have developed from unknown reasons. AIS makes up roughly 90% of all cases of scoliosis in North America49. Treatment options for these patients include surgical intervention and conservative treatments (chiropractic adjustments, 3 strengthening and rehabilitative exercises, bracing, and acupuncture, among others). The effectiveness of each of these types of treatment has been evaluated. Topics that will be discussed in this paper include factors known to be associated with AIS such as gender & genetics, respiratory deficiency, melatonin levels, pes cavus, and platelet calmodulin levels. After which, the natural progression of untreated AIS will be discussed. Finally, the treatment options for AIS, the effectiveness, and the estimated costs of these treatment options (surgical vs. conservative) will be compared. METHODS Most of the articles used for this review were graciously donated by a chiropractic colleague of the author. Other sources of information for this review included various internet sites dedicated to scoliosis and research databases such as PubMed. DISCUSSION Associated Factors Gender and Genetics The incidence of mild scoliotic curvatures that are noted during school screenings is relatively equal between girls and boys, with a ratio of 1.2:147. However, the ratio jumps up to 8:1 in favor of girls when moderate to severe forms of scoliosis are compared between genders8. Girls are also more at risk for severe progression of AIS than boys are, with a ratio of 3.6 to 149. The prevalence of scoliosis has been observed to be higher among relatives than it is within the general population18. With mothers who had a scoliotic curvature of more than 15 4 degrees, one researcher found that their daughters showed a 27 percent prevalence of the disorder26. In addition, monozygous twins have shown a 73 percent concordance rate, while dizygous twins have shown a concordance rate of 36 percent22. Ogilvie et al concluded that “Nearly all (97%) AIS patients have familial origins”46. With these observations, the role of genetic factors for scoliosis has received much support. Several studies have been done to look at the type of inheritance pattern of scoliosis (dominant, recessive, or multifactorial)59, and whether or not scoliosis is an X-linked trait15,43. In the end, studies have supported both dominant, recessive, and multifactorial patterns of inheritance59, and have also found that X-linkage has been supported in some, but not all populations43. With this information, it can be concluded that hereditary and genetic factors for scoliosis are definitely present, however the complexity of transmission from one family member to another may be much more complex than simple Mendelian genetics. Respiratory Deficiency The relationship between scoliosis and respiratory deficiency has long been established, and was attributed by Hippocrates to the restriction of chest movement due to the size and shape of the deformed thorax50. However, respiratory deficiency has only been correlated with a severe thoracic curvature, and has been found in both humans and animals. In a study done by Smith et al., the researchers induced spinal deformity in a group of rabbits to study the effect of scoliosis on respiratory function. They found that there was, in fact, a relationship between thoracic scoliosis and respiratory deficiency, but only in rabbits with severe, rapidly progressing curvatures50. 5 Melatonin The idea of decreased melatonin levels playing a pivotal role in the development of AIS has been present since 1983, when Dobousset et al. discovered that chickens who had had their pineal glands removed often developed scoliosis21. Following this study, several researchers measured the levels of melatonin in humans with AIS, only to find that there was no consistent correlations between AIS and decreased melatonin levels44. In response to this, Moreau et al performed a study in 2004, looking instead at the melatonin-signaling pathway in AIS patients. After obtaining osteoblastic cultures from several AIS patients during surgery and comparing their melatonin pathway efficiencies, they found that there was a significant relationship between AIS and a dysfunction with the melatonin-signaling pathway in all 41 patients studied. These findings suggest that there may be distinct mutations in AIS patients that interfere with melatonin signal transduction44, and that this dysfunction could play a significant role in the development of AIS. Pes Cavus Pes cavus, high plantar arches, has been found to be correlated with AIS. In a study done in 1994 by Carpintero et al, researchers compared the incidence of pes cavus and scoliosis between 3 groups: a group with established idiopathic scoliosis (Group A), a group with established idiopathic pes cavus (Group C), and a control group with neither (Group B). Carpintero et al found that 65% of the subjects in Group A had abnormally high plantar arches, compared to only 9.5% of the subjects in the control group. From these results, the researchers concluded that “both deformities may share a common origin in muscle imbalance, either 6 through primary involvement of the muscle or as a result of changes in the central nervous system or the organs of balance”10. Platelet Calmodulin Platelet calmodulin is a receptor protein that helps to regulate the contractile protein systems in skeletal muscle and platelets. In a study done in 1994, Kindsfater et al measured the levels of platelet calmodulin in AIS patients with both progressive (over 10 degrees of progression in 12 months) and stable (less than 5 degrees of progression in 12 months) curves. They found that AIS patients with progressive curves had significantly higher platelet calmodulin levels than those with stable curves, or with no curve at all. They made no hypothesis as to why the levels were higher in AIS patients, but concluded that platelet calmodulin levels may now serve as a useful predictor of the progression of AIS33. This could lead to a more accurate prediction as to whether or not extreme measures such as surgery are needed for a particular patient. The Natural History of Untreated AIS To Progress or Not to Progress The natural history of untreated AIS has long been a controversial topic, and there still appears to be no agreed-upon conclusions between researchers regarding the incidence of progression. Some of the controversy could be resolved if all researchers used the same definitions of “scoliosis” and “progression”. Many researchers, when defining scoliosis, have used participants 7 with less than a 10 degree curvature of the spine, who don’t meet the current criteria for scoliosis.
Recommended publications
  • Idiopathic Scoliosis
    Close (https://www.aetna.com/) Idiopathic Scoliosis Number: 0398 Policy History Policy I. Aetna considers surface electrical muscle stimulators Last Review 06/13/2017 (direct or alternating current, not high-voltage Effective: 05/04/2000 galvanic current) experimental and investigational for Next Review: 04/12/2018 the management of idiopathic scoliosis because there is inadequate evidence of its effectiveness and Review History safety in the peer-reviewed published medical literature. Definitions II. Aetna considers surgery (e.g., spinal fusion with instrumentation and bone grafting) for the treatment of idiopathic scoliosis medically necessary for any of Additional the following conditions: Information A. An increasing curve (greater than 40 degrees) in a Clinical Policy Bulletin growing child; or Notes B. Scoliosis related pain that is refractory to conservative treatments; or C. Severe deformity (curve greater than 50 degrees) with trunk asymmetry in children and adolescents; or D. Thoracic lordosis that can not be treated conservatively. Aetna considers idiopathic scoliosis surgery experimental and investigational when these criteria are not met. III. Aetna considers growing rods technique medically necessary in the treatment of idiopathic scoliosis for persons who meet criteria for surgery above. Please note this include the MAGEC System; but does not apply to other expandable magnetic growing rods (e.g., Phenix Growing Rod device) which are considered investigational and experimental. IV. Scoliosis braces and casts A. Aetna considers the following types of braces and casts medically necessary DME for the treatment of scoliosis: 1. Boston scoliosis brace 2. Charleston scoliosis brace 3. Milwaukee scoliosis brace 4. Providence brace 5. Rigo-Cheneau brace 6.
    [Show full text]
  • Cavus Foot, from Neonates to Adolescents
    Orthopaedics & Traumatology: Surgery & Research (2012) 98, 813—828 Available online at www.sciencedirect.com REVIEW ARTICLE ଝ Cavus foot, from neonates to adolescents P. Wicart Paris Descartes University, Necker—Sick Children Hospital (AP—HP), 149, rue de Sèvres, Paris 75015, France Accepted: 10 July 2012 KEYWORDS Summary Pes cavus, defined as a high arch in the sagittal plane, occurs in various clinical situa- Pes cavus; tions. A cavus foot may be a variant of normal, a simple morphological characteristic, seen in Charcot-Marie-Tooth healthy individuals. Alternatively, cavus may occur as a component of a foot deformity. When it disease; is the main abnormality, direct pes cavus should be distinguished from pes cavovarus. In direct Neurology; pes cavus, the deformity occurs only in the sagittal plane (in the forefoot, hindfoot, or both). Morphological types Direct pes cavus may be related to a variety of causes, although neurological diseases predom- inate in posterior pes cavus. Pes cavovarus is a three-dimensional deformity characterized by rotation of the calcaneopedal unit (the foot minus the talus). This deformity is caused by palsy of the intrinsic foot muscles, usually related to Charcot-Marie-Tooth disease. The risk of pro- gression during childhood can be eliminated by appropriate conservative treatment (orthosis to realign the foot). Extra-articular surgery is indicated when the response to orthotic treatment is inadequate. Muscle transfers have not been proven effective. Triple arthrodesis (talocalcanear, talonavicular, and calcaneocuboid) accelerates the mid-term development of osteoarthritis in the adjacent joints and should be avoided. © 2012 Published by Elsevier Masson SAS. Introduction The cavus may be either one of the components or the main component of the deformity (Tables 1 and 2).
    [Show full text]
  • Genetic, Cytogenetic and Physical Refinement of the Autosomal Recessive CMT Linked to 5Q31ð Q33: Exclusion of Candidate Genes I
    European Journal of Human Genetics (1999) 7, 849–859 © 1999 Stockton Press All rights reserved 1018–4813/99 $15.00 t http://www.stockton-press.co.uk/ejhg ARTICLE Genetic, cytogenetic and physical refinement of the autosomal recessive CMT linked to 5q31–q33: exclusion of candidate genes including EGR1 Ang`ele Guilbot1, Nicole Ravis´e1, Ahmed Bouhouche6, Philippe Coullin4, Nazha Birouk6, Thierry Maisonobe3, Thierry Kuntzer7, Christophe Vial8, Djamel Grid5, Alexis Brice1,2 and Eric LeGuern1,2 1INSERM U289, 2F´ed´eration de Neurologie and 3Laboratoire de Neuropathologie R Escourolle, Hˆopital de la Salpˆetri`ere, Paris 4Laboratoire de cytog´en´etique, Villejuif 5G´en´ethon, Evry, France 6Service de Neurologie, Hˆopital des Sp´ecialit´es, Rabat, Morocco 7Service de Neurologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland 8Service D’EMG et de pathologie neuromusculaire, Hˆopital neurologique Pierre Wertheimer, Lyon, France Charcot-Marie-Tooth disease is an heterogeneous group of inherited peripheral motor and sensory neuropathies with several modes of inheritance: autosomal dominant, X-linked and autosomal recessive. By homozygosity mapping, we have identified, in the 5q23–q33 region, a third locus responsible for an autosomal recessive form of demyelinating CMT. Haplotype reconstruction and determination of the minimal region of homozygosity restricted the candidate region to a 4 cM interval. A physical map of the candidate region was established by screening YACs for microsatellites used for genetic analysis. Combined genetic, cytogenetic and physical mapping restricted the locus to a less than 2 Mb interval on chromosome 5q32. Seventeen consanguineous families with demyelinating ARCMT of various origins were screened for linkage to 5q31–q33.
    [Show full text]
  • Update on Scoliosis
    Update on Evaluation and Treatment of Scoliosis Ron El-Hawary, MD, MSc, FRCS(C)*, Chukwudi Chukwunyerenwa, MD, MCh, FRCS(C) KEYWORDS Scoliosis Bracing Surgery VEPTR KEY POINTS Scoliosis can arise from a variety of causes and is defined as a lateral curvature of the spine greater than 10. The most common cause of scoliosis is idiopathic, which accounts for up to 80% of scoli- osis in children. The Adam’s forward bending test is a clinical evaluation of axial plane rotation that is asso- ciated with scoliosis. The goal of treatment is to prevent curve progression. If a curve progresses beyond 50,it will likely continue to progress into adulthood. For children with early onset scoliosis, the goal of treatment is also to maintain spine, chest, and pulmonary development throughout childhood. INTRODUCTION Scoliosis can arise from a variety of causes and is defined as a lateral curvature of the spine greater than 10 on an anterior-posterior standing radiograph (Fig. 1). However, in reality, it is a 3-dimensional structural deformity that includes a curvature in the anterior-posterior plane, angulation in the sagittal plane, and rotation in the transverse plane. This 3-dimensional deformity differentiates scoliosis from nonstructural spine deformities, which arise as compensation for abnormalities in other regions (eg, lower limb disorders resulting in limb length discrepancy), in which case the deformity is mono-planer and resolves when the primary abnormality is treated. IDIOPATHIC SCOLIOSIS The most common cause of scoliosis is idiopathic, which accounts for up to 80% of scoliosis in children.1 The cause of idiopathic scoliosis is unknown and is a diagnosis Disclosures: Consulting Depuy-Synthes Spine, Medtronic Canada, Halifax Biomedical Inc, research/educational support Depuy-Synthes Spine, Medtronic Canada (R.
    [Show full text]
  • Clinical and Genetic Findings of Two Cases with Apert Syndrome
    BoletínMédicodel HospitalInfantildeMéxico CLINICALCASE ClinicalandgeneticfindingsoftwocaseswithApertsyndrome Francisco Cammarata-Scalisi1*, Elanur Yilmaz2, Michele Callea3, Andrea Avendaño1, Ercan Mıhçı4 and Ozgul M. Alper2 © Permanyer 2019 1 2 Unit of Medical Genetics, Department of Pediatrics, Faculty of Medicine, University of The Andes, Mérida, Venezuela; Department of Medical . Biology and Genetics, Akdeniz University Medical School, Antalya, Turkey; 3Unit of Dentistry, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 4Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey of the publisher Abstract Background: Craniosynostosis is described as the premature fusion of cranial sutures that belongs to a group of alterations which produce an abnormal phenotype. Case report: Two unrelated female patients with clinical findings of Apert syndro- me—characterized by acrocephaly, prominent frontal region, flat occiput, ocular proptosis, hypertelorism, down-slanted pal- pebral fissures, midfacial hypoplasia, high-arched or cleft palate, short neck, cardiac anomalies and symmetrical syndactyly of the hands and feet—are present. In both patients, a heterozygous missense mutation (c.755C>G, p.Ser252Trp) in the FGFR2 gene was identified. Conclusions: Two cases of Apert syndrome are described. It is important to recognize this uncommon entity through clinical findings, highlight interdisciplinary medical evaluation, and provide timely genetic counse- ling for the family. Key words: Apert syndrome. Clinical. FGFR2
    [Show full text]
  • Tumor in Patients with 9Q22.3 Microdeletion Syndrome Suggests a Role for PTCH1 in Nephroblastomas
    European Journal of Human Genetics (2013) 21, 784–787 & 2013 Macmillan Publishers Limited All rights reserved 1018-4813/13 www.nature.com/ejhg SHORT REPORT Wilms’ tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas Bertrand Isidor*,1,2,14, Franck Bourdeaut3,4,5,14, Delfine Lafon6, Ghislaine Plessis7, Elodie Lacaze7, Caroline Kannengiesser8, Sylvie Rossignol9, Olivier Pichon1, Annaig Briand1, Dominique Martin-Coignard10, Maria Piccione11, Albert David1, Olivier Delattre2,Ce´cile Jeanpierre12, Nicolas Se´venet6 and Ce´dric Le Caignec1,13 Nephroblastoma (Wilms’ tumor; WT) is the most common renal tumor of childhood. To date, several genetic abnormalities predisposing to WT have been identified in rare overgrowth syndromes. Among them, abnormal methylation of the 11p15 region, GPC3 and DIS3L2 mutations, which are responsible for Beckwith–Wiedemann, Simpson–Golabi–Behmel and Perlman syndromes, respectively. However, the underlying cause of WT remains unknown in the majority of cases. We report three unrelated patients who presented with WT in addition to a constitutional 9q22.3 microdeletion and dysmorphic/overgrowth syndrome. The size of the deletions was variable (ie, from 1.7 to 8.9 Mb) but invariably encompassed the PTCH1 gene. Subsequently, we identified a somatic PTCH1 nonsense mutation in the renal tumor of one patient. In addition, by array comparative genomic hybridization method, we analyzed the DNA extracted from the blood samples of nine patients with overgrowth syndrome and WT, but did not identify any deleterious chromosomal imbalances in these patients. These findings strongly suggest that patients with constitutional 9q22.3 microdeletion have an increased risk of WT, and that PTCH1 have a role in the pathogenesis of nephroblastomas.
    [Show full text]
  • Pes Cavus – Not Just a Clinical Sign Diagnosis, Aetiology and Management
    ACNRJF13_Layout 1 13/01/2013 22:33 Page 16 REHABILITATION ARTICLE Pes Cavus – Not Just a Clinical Sign Diagnosis, Aetiology and Management Mr Thomas Ball, he term Pes cavus describes the deformity of Figure 1 MRCS, MRCP, MA(Cantab) is a Specialty Registrar in Trauma a high arched, relatively stiff foot. It has a and Orthopaedics in the South T variety of neurological and other causes. West Peninsula, currently working Management depends on the aetiology, rapidity of at Royal Cornwall Hospital. He progression and the severity of symptoms. aims to specialise in foot and ankle surgery and correction of lower limb deformity. Definition Pes cavus is an umbrella term describing a spec- trum of foot shapes with a high arch.1 Pure Pes cavus occurs when the metatarsal bones are plan- tarflexed relative to the hindfoot – described as ‘forefoot plantaris’ – which increases the height and curvature of the medial longitudinal arch (Figure 1). When the patient weight-bears, the hindfoot is pushed into dorsiflexion by the plan- tarflexed forefoot (Figure 2). Mr Michael Butler, A high arch accompanied by a medially angu- MA MB BS FRCS (TR&Orth) lated heel is termed pes cavovarus (Figure 3). is a Consultant Orthopaedic Surgeon and Foot and Ankle When this is complicated by foot drop and Specialist at the Royal Cornwall equinus of the ankle, it is described as pes Hospital in Truro and is a regular equinocavovarus. A n o t h e r va r i a n t , pes calcaneo- officer in the Army. Mr Butler varus, occurs when the primary deformity is treats patients for complex excessive ankle and hindfoot dorsiflexion; in problems of the foot and ankle Box 1: Causes of Pes cavus and is a Review Board Member for order to place the foot flat on the ground, the fore- Foot and Ankle Surgery.
    [Show full text]
  • A Rare Intermetatarsal Coalition with Rigid Fifth Metatarsal Deformity and Symptomatic Plantar Lesion
    The Journal of Foot & Ankle Surgery xxx (2015) 1–6 Contents lists available at ScienceDirect The Journal of Foot & Ankle Surgery journal homepage: www.jfas.org Case Reports and Series A Rare Intermetatarsal Coalition With Rigid Fifth Metatarsal Deformity and Symptomatic Plantar Lesion Antonio Cordoba-Fern andez, DP, PhD 1, Rafael Rayo-Rosado, DP, PhD 2, Daniel Lopez-Garc ıa, DP 3, Jose MarıaJuarez-Jim enez, DP, PhD 2 1 Professor of Podiatric Surgery, Department of Podiatry, Universidad de Sevilla, Sevilla, Spain 2 Assistant Professor, Department of Podiatry, Universidad de Sevilla, Sevilla, Spain 3 Private Practice, Jerez de la Frontera, Spain article info abstract Level of Clinical Evidence: 4 Coalition or synostosis of the foot is a relatively uncommon abnormality. Some cases of synostosis of the foot, primarily involving the midfoot and hindfoot, have been reported. However, intermetatarsal coalition is Keywords: bone bridge extremely rare, with only a small number of cases reported. We report a case of a unilateral, congenital fi metatarsal coalition metatarsal coalition between the fourth and fth metatarsal bones in a 27-year-old female. She had initially oblique metatarsal osteotomy been referred because of a symptomatic plantar lesion under the fifth metatarsal head. Surgery consisted of synostosis separating the affected metatarsals, combined with a proximal osteotomy, which proved successful in establishing pain-free and more natural weightbearing. Ó 2015 by the American College of Foot and Ankle Surgeons. All rights reserved. Congenital coalitions of the foot are relatively uncommon abnor- malities and occur in approximately 1% of the population (1). Talo- calcaneal and calcaneonavicular are the most common types of coalitions.
    [Show full text]
  • Congenital Anomalies of the Upper Extremity
    I have no disclosures Provide an overview of the spectrum of congenital upper extremity anomalies Describe the key imaging findings of these abnormalities Discuss the important clinical features of these entities Not enough bones (deficiencies) Extra bones Fusion/failure of separation Malalignment Abnormal bone morphology Big bones/soft tissues Not enough bones (deficiencies) Extra bones Fusion/failure of separation Malalignment Abnormal bone morphology Big bones/soft tissues Phocomelia: deficiency/absence of the proximal-mid extremity Autosomal recessive › ESCO2 gene involved in chromosome separation Rare; 150 cases reported All extremities affected Multisystem disorder Absent radii, (near) normal thumbs Possibly more extensive upper limb and even lower limb deficiencies Autosomal recessive, 1q21.1, 1:1,000,000 Thrombocytopenia › Severe at birth; bleeding complications › Transfusion requirements decrease by age 1 › Normalization of platelet count by adulthood Radial anomaly most commonly limited to the thumb Autosomal dominant 12q24.1, 1:100,000 Cardiac manifestations › Septal defects (atrial most common) › Pulmonic stenosis Vertebral Anal Cardiac Tracheoesophageal fistula Esophageal atresia RADIAL/Renal Limb incidence 16/100,000 Tend to be associated with other non- MSK abnormalities/syndromes Goldfarb et al. (2006) › Reviewed 56 years of surgical data (Wash U) › 146 patients with radial deficiencies › 55 syndromic Goal is to preserve thumb function to be able to perform basic functions (i.e., grab objects,
    [Show full text]
  • Appendix 3.1 Birth Defects Descriptions for NBDPN Core, Recommended, and Extended Conditions Updated March 2017
    Appendix 3.1 Birth Defects Descriptions for NBDPN Core, Recommended, and Extended Conditions Updated March 2017 Participating members of the Birth Defects Definitions Group: Lorenzo Botto (UT) John Carey (UT) Cynthia Cassell (CDC) Tiffany Colarusso (CDC) Janet Cragan (CDC) Marcia Feldkamp (UT) Jamie Frias (CDC) Angela Lin (MA) Cara Mai (CDC) Richard Olney (CDC) Carol Stanton (CO) Csaba Siffel (GA) Table of Contents LIST OF BIRTH DEFECTS ................................................................................................................................................. I DETAILED DESCRIPTIONS OF BIRTH DEFECTS ...................................................................................................... 1 FORMAT FOR BIRTH DEFECT DESCRIPTIONS ................................................................................................................................. 1 CENTRAL NERVOUS SYSTEM ....................................................................................................................................... 2 ANENCEPHALY ........................................................................................................................................................................ 2 ENCEPHALOCELE ..................................................................................................................................................................... 3 HOLOPROSENCEPHALY.............................................................................................................................................................
    [Show full text]
  • Pes Cavus: a Clinical Study with Special Reference to Its Etiology
    PES CAVUS: A CLINICAL STUDY WITH SPECIAL REFERENCE TO ITS ETIOLOGY. By ESME GILROY, M.B., Ch.B. Pes Cavus has long been recognised as a distinct clinical entity, but its etiology is still a controversial subject and the theories concerning its nature and significance are so numerous as to suggest that none is in itself adequate to explain the clinical facts observed. Definition.?Pes cavus or hollow claw-foot is a deformity exhibiting three cardinal features (Steindler n). (1) An increase in the height of the longitudinal arch. (2) A dropping of the anterior arch with plantar flexion of the front of the foot. (3) A variable amount of dorsal retraction of the toes, the claw-foot deformity proper, with hyperextension of the metatarsophalangeal and flexion of the phalangeal joints. Although this paper is primarily intended as a detailed record of six cases, it was found that a proper appreciation of the points presented by these could only be attained by the analysis of a larger number. The records of a further series ?f cases have therefore been investigated ; the tabulated results are appended and form the basis for discussion. An attempt has been made to discover what condition is most frequently responsible for the deformity at different age periods, and whether there is any correlation between clinical and etiological types or a significant difference in sex or age incidence. Etiological Aspects. In 1889, F. R- Fisher3 drew attention to the prevalence of a mild degree of pes cavus and to its association with specific fevers and other acute illness.
    [Show full text]
  • Biomechanical Explanations for Selective Sport Injuries of the Lower Extremity • DR
    Biomechanical Explanations for Selective Sport Injuries of the Lower Extremity • DR. LEE S. COHEN • Podiatric Consultant: – Philadelphia Eagles – Philadelphia 76ers – Philadelphia Wings Understanding Normalcy What is “Normal”? Rearfoot/heel to leg Perpendicular forefoot in straight line to rearfoot Thighs and legs in straight line Understanding Normalcy Inverted Normal/Neutral Forefoot varus Heel varus or supinatus Bow-legged = Genu varum Understanding Normalcy Everted Normal/Neutral Heel valgus Forefoot valgus Knock-kneed = Genu valgum The Arches of Your Feet Rear foot High High Low (Back foot) Forefoot Arch High Low Low (Front foot) High Combo Low Arch Arch (Flatfoot) Understanding Normalcy, cont. These are abnormal foot types…a normal or neutral foot type is a happy medium between the high and low arch feet. Pes cavus = High arch foot Pes planus = Flatfoot “High-Low” = Combo foot Best Foot Forward • A person who runs or • A person who runs or walks properly: walks with a high arch: – Lands on lateral heel – Foot rolls to medial arch – Lands hard on lateral heel (pronates) while turning – Doesn’t pronate enough to inward to toe off great allow the impact of running toe to be absorbed through • A person who runs or walks flat footed: the body – Lands on lateral heel – The feet and outer part of – Foot rolls inward knee and hip bear the (pronates) excessively, brunt of each step which also causes the lower leg to turn inward excessively – With NO direct toe off Iliotibial Band Syndrome • Most common etiology of lateral knee pain in runners
    [Show full text]