Nuove Politiche Per L'innovazione Nel Settore Delle Scienze Della Vita

Total Page:16

File Type:pdf, Size:1020Kb

Nuove Politiche Per L'innovazione Nel Settore Delle Scienze Della Vita Laura Magazzini Fabio Pammolli Massimo Riccaboni WP CERM 03-2009 NUOVE POLITICHE PER L'INNOVAZIONE NEL SETTORE DELLE SCIENZE DELLA VITA ISBN 978-88-3289-038-9 INDICE EXECUTIVE SUMMARY .................................................................................. 2 1. Risorse e innovazione: fallimenti di mercato e logiche di intervento pubblico........... 2 2. Da raro a generale: nuovi modelli di sostegno mission-oriented alla ricerca e sviluppo nelle scienze della vita............................................................................... 31 2.1. Incentivi pubblici per la ricerca sulle malattie rare: il panorama internazionale.....37 Stati Uniti...........................................................................................................................................................................................37 Giappone.............................................................................................................................................................................................44 Australia..............................................................................................................................................................................................46 Unione Europea.............................................................................................................................................................................46 2.2. Incentivi pubblici per la ricerca sulle malattie rare: il panorama europeo.....................58 Francia ..................................................................................................................................................................................................58 Germania ............................................................................................................................................................................................60 Spagna ...................................................................................................................................................................................................61 Olanda ...................................................................................................................................................................................................63 Belgio......................................................................................................................................................................................................64 Finlandia..............................................................................................................................................................................................64 Italia........................................................................................................................................................................................................65 3. Da raro a generale: nuovi modelli competitivi nel settore delle scienze della vita..... 71 Genzyme..............................................................................................................................................................................................75 Orphan Europe...............................................................................................................................................................................78 Shire HGT............................................................................................................................................................................................80 4. La ricerca sulle malattie rare .................................................................... 84 4.1. Dimensione del mercato e intensità di R&S..................................................................................................88 Rare ma numerose .....................................................................................................................................................................89 La relazione tra prevalenza e intensità di ricerca....................................................................................102 4.2. La ricerca italiana sulle malattie rare nel panorama internazionale.................................108 La ricerca biomedica in Italia: uno sguardo d’insieme.........................................................................108 La ricerca biomedica in Italia: le malattie rare..........................................................................................114 4.3. Casi di eccellenza della ricerca biomedica italiana sulle malattie rare..........................125 Emoglobinuria parossistica notturna.....................................................................................................................127 Mesotelioma: l’esperienza MOLMED.......................................................................................................................132 Telethon: terapia genica nel settore delle Malattie Rare e Ultra Orfane..........................137 Le sindromi di Noonan e Leopard..............................................................................................................................141 La Sindrome di Rett...............................................................................................................................................................146 Conclusioni ........................................................................................... 150 Bibliografia ........................................................................................... 159 Allegati................................................................................................ 164 1 EXECUTIVE SUMMARY Il sistema di ricerca italiano, nelle sue componenti pubblica, privata e no profit, può contare su di un elevato indice di specializzazione relativa, con punte di assoluta eccellenza internazionale, nel settore delle malattie orfane (malattie rare, malattie tropicali), mentre si palesano limiti strutturali nella disponibilità di infrastrutture e competenze post-genomiche avanzate. Questo rapporto raccomanda l’adozione di misure specifiche a sostegno della ricerca nel settore delle malattie orfane. Al di là delle motivazioni specifiche riferite al comparto, sia sul versante della domanda (carenza di incentivi all’investimento privato date le ridotte dimensioni dei mercati di riferiemto) che sul versante dell’offerta (presenza di fattori di potenziale vantaggio comparato per il nostro Paese), il rapporto evidenzia un ulteriore fattore distintivo riferito al settore delle malattie orfane: i benefici di un incremento dei livelli di investimento sulle malattie orfane è suscettibile di produrre conoscenze rilevanti per l’avanzamento della frontiera scientifica e tecnologica in aree più vaste delle scienze della vita. La ricerca su malattie orfane richiede e stimola lo sviluppo di capacità general purpose lungo tutta la filiera dell’innovazione, tra cui in particolare lo sviluppo di piattaforme tecnologiche di postgenomica e proteomica avanzate, la costruzione di banche dati biologiche e dello sviluppo di test diagnostici che vanno nella direzione dello sviluppo di medicinali personalizzati in base ad analisi farmacogenetiche, lo sviluppo di prodotti biologici, la sperimentazione di nuove modalità di conduzione di trial clinici, in considerazione dell'esiguo numero di pazienti trattati e di nuove tecniche di predizione in base a modelli sviluppati in ambito clinico, la scoperta di pathway genetici e di relazioni genotipo/fenotipo. L’attivazione di linee di ricerca stabili nel settore delle malattie neglette, oltre a sviluppare competenze tecnologiche avanzate può concorrere a stimolare la crescita di realtà aziendali ed industriali (PMI e grande industria) ben connesse a cluster pubblico- privati. Tale integrazione appare una condizione necessaria per realizzare quelle condizioni di massa critica necessarie per affrontare le nuove frontiere della medicina traslazionale e personalizzata, secondo le nuove tecniche farmacogenomiche e postgenomiche. La realizzazione di condizioni di massa critica è suscettibile di indurre ricadute socio- 2 economiche occupazionali, con la formazione di figure professionali dalla ricerca di base sino alla ricerca clinica e dello sviluppo farmaceutico, tradizionale e biotecnologico. Il valore aggiunto generato è suscettibile di essere trasmesso ad altri settori terapeutici di rilevanza primaria (oncologia, cardiovascolare, neurologia) o transettoriale, quali lo sviluppo di test diagnostici, dispositivi medici e componenti biomedicali. L’adozione di un piano basato sulla selezione e sul sostegno “technology push” di progetti finalizzati allo sviluppo di nuove terapie per le malattie orfane, se accompagnata da iniziative complementari di posizionamento delle piattaforme bioinformatiche, proteomiche e post-genomiche, può accellerare lo sviluppo di nuove terapie e sostenere la crescita e l’innovatività del settore biofarmaceutico. 3 Presupposti: il modello SCIENCE Il Rapporto identifica sette diverse ambiti di riferimento per la valutazione del posizionamento, delle prospettive strategiche e delle condizioni riferite alle diverse linee di intervento: (S) Servizi a valore aggiunto: erogazione agevolata di servizi di supporto organizzativo, finanziario, legale e manageriale, di produzione e di supporto all’accesso ai mercati di riferimento, ai pazienti e ai medici. (C) Clustering: presenza
Recommended publications
  • Moderate the MAOA-L Allele Expression with CRISPR/Cas9 System
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 April 2018 doi:10.20944/preprints201804.0275.v1 1 Review 2 Moderate the MAOA-L Allele Expression with CRISPR/Cas9 System 3 Martin L. Nelwan 4 Department of Animal Science – Other 5 Nelwan Institution for Human Resource Development 6 Jl. A. Yani No. 24 7 Palu, Sulawesi Tengah, Indonesia 8 Email: [email protected] 9 Abstract: Antisocial behavior is a behavior disorder inherited according to the inheritance of X-linked 10 chromosome. Mutations in the MAOA gene can cause different behaviors in humans. These can comprise 11 violent behavior or antisocial behavior. Low MAOA (MAOA-L) allele activity can cause antisocial 12 behavior in both healthy and unhealthy people. Antisocial from healthy males can originate from 13 maltreatment during childhood. There are no drugs for the treatment of antisocial behavior permanently 14 at this time. MAOA inhibitor can reverse antisocial behavior in animal models. To cure antisocial 15 behavior in the future, the CRISPR/Cas9 system in combination with iPSCs or ssODN methods for 16 instance can be used. This system has succeeded to correct erroneous segments in the F8 gene and F9 17 gene. Both genes occupy the X chromosome. The MAOA gene also occupies the X chromosome. It seems 18 that CRISPR/Cas9 system may be a beneficial tool to edit erroneous segments in the MAOA gene to treat 19 antisocial behavior. 20 Keywords: advanced therapy, aggressive, antisocial, behavior, MAOA. 21 22 1. Introduction 23 Antisocial behavior is a hereditary disorder inherited through an X-linked recessive inheritance 24 pattern.
    [Show full text]
  • Primary Liver Cancer: Epidemiological And
    PRIMARY LIVER CANCER: EPIDEMIOLOGICAL AND BIOMARKER DISCOVERY STUDIES Nimzing Gwamzhi Ladep Imperial College London Department of Medicine December 2013 Thesis submitted for Doctor of Philosophy 1 THESIS ABSTRACT With previous reports indicating changes in mortality, risk factors and management of primary liver cancer (PLC), evaluation of current trends in the incidence and mortality rates was indicated. Late diagnosis has been implicated to be a major contributor to the high fatality rates of PLC. This work aimed at: studying trends of PLC by subcategories globally in general, and in England and Wales, in particular; investigating liver-related morbidities of HIV infected patients in an African setting; and discovering urinary biomarkers of hepatocellular carcinoma. The World Health Organisation (WHO) and Small Area Health Statistics Unit (SAHSU) databases were interrogated respectively, in order to achieve the first aim. The second aim was achieved through utilisation of databases of an African-based HIV treatment programme- AIDS Prevention Initiative in Nigeria (APIN), located in Jos, Nigeria. The European Union-funded Prevention of Liver Fibrosis and Cancer in Africa (PROLIFICA) case-control study in three West African countries was the platform through which urinary metabolic profiling was accomplished. Proton nuclear magnetic resonance spectroscopy (NMR) and parallel ultra-performance liquid chromatography mass spectrometry (UPLC-MS) were used for biomarker discovery studies. Mortality rates of intrahepatic bile duct carcinoma (IHBD) increased in all countries that were studied. Misclassification of hilar cholangiocarcinoma accounted for only a small increase in the rate of IHBD in England and Wales. With over 90% screening rate for viral hepatitides, the rates of hepatitis B (HBV), hepatitis C (HCV) and 2 HBV/HCV in HIV-infected patients in the APIN programme were 17.8%, 11.3% and 2.5% respectively.
    [Show full text]
  • 2016 IES Annual Meeting Final Programme
    ROYAL ACADEMY OF MEDICINE IN IRELAND IRISH JOURNAL OF MEDICAL SCIENCE Irish Endocrine Society 40th Annual Meeting 14th and 15th October 2016 Stormont Hotel, Belfast Local Organiser: Doctor Hamish Courtney, REVISEDRoyal Victoria Hospital, PROOF Belfast Irish Journal of Medical Science Volume XXX Supplement X DOI 10.1007/s11845-016-1482-y 123 123 Journal : Large 11845 Dispatch : 17-8-2016 Pages : 57 Article No. : 1482 h LE h TYPESET MS Code : 1482 h44CP h DISK Ir J Med Sci Disclosure statement This supplement is paid for by the Irish Endocrine Society. However the meeting costs are supported by the following commercial sponsors: Abbott Amgen Astra Zeneca Besins Healthcare BMS Boehringer Ingleheim Consilient Ipsen Janssen-Cilag Kyowa Kirin Lilly Menarini Merck Serono MSD Novartis Novo Nordisk Pfizer Sanofi REVISED PROOF 123 Journal : Large 11845 Dispatch : 17-8-2016 Pages : 57 Article No. : 1482 h LE h TYPESET MS Code : 1482 h44CP h DISK Ir J Med Sci Novo Lecture Nordisk Lecture 1976 D.K. O’Donovan 1977 S. Bloom 1978 J.H.S. Robertson 1979 A.G. Cudworth 1980 D.A.D. Montgomery 1981 Peter Watkins 1982 G. Joplin 1983 D.R. London 1984 A.X. Bertagna 1985 Malcolm Nattrass Laurence Kennedy 1986 Brian Frier JB Ferriss 1987 Maurice Scanlon TJ McKenna 1988 D.A. Heath AB Atkinson 1989 J. Ward GH Tomkin 1990 R. Volpe KD Buchanan 1991 Michael Besser PPA Smyth 1992 R.V. Ragontte DH Hadden 1993 Bruce Weintraub David Powell 1994 Oscar Croffard Patrick Bell 1995 Robert Lindsay Brian Sheridan 1996 C.R.W. Edwards Rosemary Freaney 1997 Stephanie Amiel David McCance 1998 Robert Turner Randle Hayes 1999 Ian Hay Sean K Cunningham 2000 Stephen O’Rahilly Michael Cullen 2001 Andre Lacroix Daphne Owens 2002 J.
    [Show full text]
  • Compensation for Occupational Skin Diseases
    ORIGINAL ARTICLE http://dx.doi.org/10.3346/jkms.2014.29.S.S52 • J Korean Med Sci 2014; 29: S52-58 Compensation for Occupational Skin Diseases Han-Soo Song1 and Hyun-chul Ryou2 The Korean list of occupational skin diseases was amended in July 2013. The past list was constructed according to the causative agent and the target organ, and the items of that 1 Department of Occupational and Environmental list had not been reviewed for a long period. The revised list was reconstructed to include Medicine, College of Medicine, Chosun University, Gwangju; 2Teo Center of Occupational and diseases classified by the International Classification of Diseases (10th version). Therefore, Environmental Medicine, Changwon, Korea the items of compensable occupational skin diseases in the amended list in Korea comprise contact dermatitis; chemical burns; Stevens-Johnson syndrome; tar-related skin diseases; Received: 19 December 2013 infectious skin diseases; skin injury-induced cellulitis; and skin conditions resulting from Accepted: 2 May 2014 physical factors such as heat, cold, sun exposure, and ionized radiation. This list will be Address for Correspondence: more practical and convenient for physicians and workers because it follows a disease- Han-Soo Song, MD based approach. The revised list is in accordance with the International Labor Organization Department of Occupational and Environmental Medicine, Chosun University Hospital, 365 Pilmun-daero, Dong-gu, list and is refined according to Korean worker’s compensation and the actual occurrence of Gwangju 501-717, Korea occupational skin diseases. However, this revised list does not perfectly reflect the actual Tel: +82.62-220-3689, Fax: +82.62-443-5035 E-mail: [email protected] status of skin diseases because of the few cases of occupational skin diseases, incomplete statistics of skin diseases, and insufficient scientific evidence.
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Alport Syndrome of the European Dialysis Population Suffers from AS [26], and Simi- Lar Figures Have Been Found in Other Series
    DOCTOR OF MEDICAL SCIENCE Patients with AS constitute 2.3% (11/476) of the renal transplant population at the Mayo Clinic [24], and 1.3% of 1,000 consecutive kidney transplant patients from Sweden [25]. Approximately 0.56% Alport syndrome of the European dialysis population suffers from AS [26], and simi- lar figures have been found in other series. AS accounts for 18% of Molecular genetic aspects the patients undergoing dialysis or having received a kidney graft in 2003 in French Polynesia [27]. A common founder mutation was in Jens Michael Hertz this area. In Denmark, the percentage of patients with AS among all patients starting treatment for ESRD ranges from 0 to 1.21% (mean: 0.42%) in a twelve year period from 1990 to 2001 (Danish National This review has been accepted as a thesis together with nine previously pub- Registry. Report on Dialysis and Transplantation in Denmark 2001). lished papers by the University of Aarhus, February 5, 2009, and defended on This is probably an underestimate due to the difficulties of establish- May 15, 2009. ing the diagnosis. Department of Clinical Genetics, Aarhus University Hospital, and Faculty of Health Sciences, Aarhus University, Denmark. 1.3 CLINICAL FEATURES OF X-LINKED AS Correspondence: Klinisk Genetisk Afdeling, Århus Sygehus, Århus Univer- 1.3.1 Renal features sitetshospital, Nørrebrogade 44, 8000 Århus C, Denmark. AS in its classic form is a hereditary nephropathy associated with E-mail: [email protected] sensorineural hearing loss and ocular manifestations. The charac- Official opponents: Lisbeth Tranebjærg, Allan Meldgaard Lund, and Torben teristic renal features in AS are persistent microscopic hematuria ap- F.
    [Show full text]
  • Ebf Factors and Myod Cooperate to Regulate Muscle Relaxation Via Atp2a1
    ARTICLE Received 12 Feb 2014 | Accepted 2 Apr 2014 | Published 2 May 2014 DOI: 10.1038/ncomms4793 Ebf factors and MyoD cooperate to regulate muscle relaxation via Atp2a1 Saihong Jin1, Jeehee Kim1, Torsten Willert1, Tanja Klein-Rodewald2, Mario Garcia-Dominguez3,4, Matias Mosqueira5, Rainer Fink5, Irene Esposito2,6, Lorenz C. Hofbauer7, Patrick Charnay3 & Matthias Kieslinger1 Myogenic regulatory factors such as MyoD and Myf5 lie at the core of vertebrate muscle differentiation. However, E-boxes, the cognate binding sites for these transcription factors, are not restricted to the promoters/enhancers of muscle cell-specific genes. Thus, the specificity in myogenic transcription is poorly defined. Here we describe the transcription factor Ebf3 as a new determinant of muscle cell-specific transcription. In the absence of Ebf3 the lung does not unfold at birth, resulting in respiratory failure and perinatal death. This is due to a hypercontractile diaphragm with impaired Ca2 þ efflux-related muscle functions. Expression of the Ca2 þ pump Serca1 (Atp2a1) is downregulated in the absence of Ebf3, and its transgenic expression rescues this phenotype. Ebf3 binds directly to the promoter of Atp2a1 and synergises with MyoD in the induction of Atp2a1. In skeletal muscle, the homologous family member Ebf1 is strongly expressed and together with MyoD induces Atp2a1. Thus, Ebf3 is a new regulator of terminal muscle differentiation in the diaphragm, and Ebf factors cooperate with MyoD in the induction of muscle-specific genes. 1 Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum Mu¨nchen, National Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany. 2 Institute of Pathology, Helmholtz Zentrum Mu¨nchen, National Research Center for Environmental Health, Ingolsta¨dter Landstr.
    [Show full text]
  • The Ehlers–Danlos Syndromes
    PRIMER The Ehlers–Danlos syndromes Fransiska Malfait1 ✉ , Marco Castori2, Clair A. Francomano3, Cecilia Giunta4, Tomoki Kosho5 and Peter H. Byers6 Abstract | The Ehlers–Danlos syndromes (EDS) are a heterogeneous group of hereditary disorders of connective tissue, with common features including joint hypermobility, soft and hyperextensible skin, abnormal wound healing and easy bruising. Fourteen different types of EDS are recognized, of which the molecular cause is known for 13 types. These types are caused by variants in 20 different genes, the majority of which encode the fibrillar collagen types I, III and V, modifying or processing enzymes for those proteins, and enzymes that can modify glycosaminoglycan chains of proteoglycans. For the hypermobile type of EDS, the molecular underpinnings remain unknown. As connective tissue is ubiquitously distributed throughout the body, manifestations of the different types of EDS are present, to varying degrees, in virtually every organ system. This can make these disorders particularly challenging to diagnose and manage. Management consists of a care team responsible for surveillance of major and organ-specific complications (for example, arterial aneurysm and dissection), integrated physical medicine and rehabilitation. No specific medical or genetic therapies are available for any type of EDS. The Ehlers–Danlos syndromes (EDS) comprise a genet­ six EDS types, denominated by a descriptive name6. The ically heterogeneous group of heritable conditions that most recent classification, the revised EDS classification in share several clinical features, such as soft and hyper­ 2017 (Table 1) identified 13 distinct clinical EDS types that extensible skin, abnormal wound healing, easy bruising are caused by alterations in 19 genes7.
    [Show full text]
  • Prevalence and Incidence of Rare Diseases: Bibliographic Data
    Number 1 | January 2019 Prevalence and incidence of rare diseases: Bibliographic data Prevalence, incidence or number of published cases listed by diseases (in alphabetical order) www.orpha.net www.orphadata.org If a range of national data is available, the average is Methodology calculated to estimate the worldwide or European prevalence or incidence. When a range of data sources is available, the most Orphanet carries out a systematic survey of literature in recent data source that meets a certain number of quality order to estimate the prevalence and incidence of rare criteria is favoured (registries, meta-analyses, diseases. This study aims to collect new data regarding population-based studies, large cohorts studies). point prevalence, birth prevalence and incidence, and to update already published data according to new For congenital diseases, the prevalence is estimated, so scientific studies or other available data. that: Prevalence = birth prevalence x (patient life This data is presented in the following reports published expectancy/general population life expectancy). biannually: When only incidence data is documented, the prevalence is estimated when possible, so that : • Prevalence, incidence or number of published cases listed by diseases (in alphabetical order); Prevalence = incidence x disease mean duration. • Diseases listed by decreasing prevalence, incidence When neither prevalence nor incidence data is available, or number of published cases; which is the case for very rare diseases, the number of cases or families documented in the medical literature is Data collection provided. A number of different sources are used : Limitations of the study • Registries (RARECARE, EUROCAT, etc) ; The prevalence and incidence data presented in this report are only estimations and cannot be considered to • National/international health institutes and agencies be absolutely correct.
    [Show full text]
  • WES Gene Package Multiple Congenital Anomalie.Xlsx
    Whole Exome Sequencing Gene package Multiple congenital anomalie, version 5, 1‐2‐2018 Technical information DNA was enriched using Agilent SureSelect Clinical Research Exome V2 capture and paired‐end sequenced on the Illumina platform (outsourced). The aim is to obtain 8.1 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA‐MEM algorithm (reference: http://bio‐bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x A4GALT [Blood group, P1Pk system, P(2) phenotype], 111400 607922 101 100 100 99 [Blood group, P1Pk system, p phenotype], 111400 NOR polyagglutination syndrome, 111400 AAAS Achalasia‐addisonianism‐alacrimia syndrome, 231550 605378 73 100 100 100 AAGAB Keratoderma, palmoplantar,
    [Show full text]
  • AACE Annual Meeting 2021 Abstracts Editorial Board
    June 2021 Volume 27, Number 6S AACE Annual Meeting 2021 Abstracts Editorial board Editor-in-Chief Pauline M. Camacho, MD, FACE Suleiman Mustafa-Kutana, BSC, MB, CHB, MSC Maywood, Illinois, United States Boston, Massachusetts, United States Vin Tangpricha, MD, PhD, FACE Atlanta, Georgia, United States Andrea Coviello, MD, MSE, MMCi Karel Pacak, MD, PhD, DSc Durham, North Carolina, United States Bethesda, Maryland, United States Associate Editors Natalie E. Cusano, MD, MS Amanda Powell, MD Maria Papaleontiou, MD New York, New York, United States Boston, Massachusetts, United States Ann Arbor, Michigan, United States Tobias Else, MD Gregory Randolph, MD Melissa Putman, MD Ann Arbor, Michigan, United States Boston, Massachusetts, United States Boston, Massachusetts, United States Vahab Fatourechi, MD Daniel J. Rubin, MD, MSc Harold Rosen, MD Rochester, Minnesota, United States Philadelphia, Pennsylvania, United States Boston, Massachusetts, United States Ruth Freeman, MD Joshua D. Safer, MD Nicholas Tritos, MD, DS, FACP, FACE New York, New York, United States New York, New York, United States Boston, Massachusetts, United States Rajesh K. Garg, MD Pankaj Shah, MD Boston, Massachusetts, United States Staff Rochester, Minnesota, United States Eliza B. Geer, MD Joseph L. Shaker, MD Paul A. Markowski New York, New York, United States Milwaukee, Wisconsin, United States CEO Roma Gianchandani, MD Lance Sloan, MD, MS Elizabeth Lepkowski Ann Arbor, Michigan, United States Lufkin, Texas, United States Chief Learning Officer Martin M. Grajower, MD, FACP, FACE Takara L. Stanley, MD Lori Clawges The Bronx, New York, United States Boston, Massachusetts, United States Senior Managing Editor Allen S. Ho, MD Devin Steenkamp, MD Corrie Williams Los Angeles, California, United States Boston, Massachusetts, United States Peer Review Manager Michael F.
    [Show full text]
  • Exome Analysis Identifies Brody Myopathy in a Family Diagnosed
    ORIGINAL ARTICLE Exome analysis identifies Brody myopathy in a family diagnosed with malignant hyperthermia susceptibility Nyamkhishig Sambuughin1,2, Elena Zvaritch3, Natasha Kraeva4, Olga Sizova3, Erica Sivak5, Kelley Dickson2, Margaret Weglinski6, John Capacchione2, Sheila Muldoon2, Sheila Riazi4, Susan Hamilton7, Barbara Brandom5 & David H. MacLennan3 1Defense and Veterans Center for Integrated Pain Management, Henry M. Jackson Foundation, Rockville, Maryland 2Department of Anesthesiology, Uniformed Services University, Bethesda, Maryland 3Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada 4Department of Anesthesia, Toronto General Hospital, Toronto, Ontario, Canada 5Department of Anesthesiology, Children’s Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 6Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 7Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas Keywords Abstract Brody myopathy, malignant hyperthermia, RYR1, SERCA1 Whole exome sequencing (WES) was used to determine the primary cause of muscle disorder in a family diagnosed with a mild, undetermined myopathy Correspondence and malignant hyperthermia (MH) susceptibility (MHS). WES revealed the Nyamkhishig Sambuughin, Department of compound heterozygous mutations, p.Ile235Asn and p.Glu982Lys, in ATP2A1, Anesthesiology, Uniformed Services encoding the sarco(endo)plasmic reticulum Ca2+ ATPase type 1 (SERCA1), a University, 4301 Jones Bridge Rd, Bethesda, calcium pump,
    [Show full text]