Syndromes and Constitutional Chromosomal Abnormalities

Total Page:16

File Type:pdf, Size:1020Kb

Syndromes and Constitutional Chromosomal Abnormalities Downloaded from jmg.bmj.com on May 16, 2013 - Published by group.bmj.com 705 REVIEW Syndromes and constitutional chromosomal abnormalities associated This article is available free on JMG online via the JMG Unlocked open access trial, with Wilms tumour funded by the Joint Information Systems Committee. For further information, see R H Scott, C A Stiller, L Walker, N Rahman http://jmg.bmjjournals.com/cgi/content/ full/42/2/97 ............................................................................................................................... J Med Genet 2006;43:705–715. doi: 10.1136/jmg.2006.041723 Wilms tumour has been reported in association with over Multiple nephrogenic rests throughout the kid- ney are sometimes present and can be referred to 50 different clinical conditions and several abnormal as nephroblastomatosis. constitutional karyotypes. Conclusive evidence of an The dramatic advances in the treatment of increased risk of Wilms tumour exists for only a minority of Wilms tumour are such that long term survival is now the norm: exceeding 90% for disease these conditions, including WT1 associated syndromes, localised to the abdomen (stages 1–3), and over familial Wilms tumour, and certain overgrowth conditions 70% in metastatic disease (stage 4).7 The treat- such as Beckwith-Wiedemann syndrome. In many reported ment of Wilms tumour is determined both by stage and histological classification of the conditions the rare co-occurrence of Wilms tumour is tumour, with treatment protocols varying probably due to chance. However, for several conditions between countries. Surgical resection is comple- the available evidence cannot either confirm or exclude an mented in the majority of individuals by chemo- therapy. Currently in the United Kingdom increased risk, usually because of the rarity of the around 30% of individuals with Wilms tumour syndrome. In addition, emerging evidence suggests that an also receive radiotherapy. increased risk of Wilms tumour occurs only in a subset of A wide range of syndromes, congenital anomalies, and constitutional chromosomal individuals for some syndromes. The complex clinical and abnormalities have been reported in association molecular heterogeneity of disorders associated with with Wilms tumour. Data from the British Wilms tumour, together with the apparent absence of National Registry of Childhood Tumours showed that around 9% of individuals with Wilms functional links between most of the known predisposition tumour have a congenital anomaly, and a study genes, suggests that abrogation of a variety of pathways of long term childhood cancer survivors revealed can promote Wilms tumorigenesis. a syndrome diagnosis in 23 of 136 individuals (17%) with Wilms tumour.89This is the highest ........................................................................... proportion seen in any childhood malignancy. The aim of this article is to document the ilms tumour is the commonest child- syndromes, congenital abnormalities, and con- hood tumour of the kidney and has an stitutional chromosomal aberrations reported to Wincidence of 1 in 10 000.1 It is primarily occur in association with Wilms tumour, and to a sporadic disease and only 1–2% of individuals review the evidence for an increased risk of with Wilms tumour have a relative with this Wilms tumour in these conditions. Accurate tumour.2 The median age of diagnosis is between estimation of risk can be difficult in the absence 3 and 4 years; 80% of individuals are diagnosed of large prospective studies, which are rarely before the age of 5 years and diagnosis over the feasible in conditions reported in association age of 15 years is extremely rare.34 In 5% of with Wilms tumour, many of which are very See end of article for individuals with Wilms tumour both kidneys are rare. Where Wilms tumour is a diagnostic authors’ affiliations affected.5 criterion for the condition, risk estimation is ....................... The histology of Wilms tumour mimics the particularly difficult. It is probable that cases of a Correspondence to: differentiation of the developing kidney and is syndrome with Wilms tumour are more likely to Prof Nazneen Rahman, classically ‘‘triphasic’’, consisting of blastemal, be reported than cases without tumours, and Section of Cancer epithelial, and stromal components. Tumours are Genetics, Institute of that such reporter bias leads to an overestimate Cancer Research, 15 most often of mixed or blastemal histology, but of the tumour risk. Because of this difficulty of Cotswold Road, Sutton, various other histological patterns are seen. accurate risk estimation we have generally given Surrey SM2 5NG, UK; Persistent islands of embryonal cells, known as a qualitative risk estimate (for example, high, [email protected]. nephrogenic rests, are believed to be precursor uk moderate, or low) rather than a precise figure. lesions with the potential to develop into Wilms For a comprehensive assessment of conditions Received13February2006 tumour. Nephrogenic rests are classified accord- reported in association with Wilms tumour, Revised version received ing to their position within the renal lobe as we undertook extensive searches for relevant 7 April 2006 perilobar nephrogenic rests or intralobar nephro- articles using the PubMed, Online Mendelian Accepted for publication genic rests. They are reported to occur in 1% of 10 April 2006 Published Online First perinatal necropsies and in up to 40% of kidneys Abbreviations: BWS, Beckwith-Wiedemann syndrome; 11 May 2006 removed in the treatment of Wilms tumour IHH, isolated hemihypertrophy; WAGR, Wilms-aniridia- ....................... (,25% intralobar and ,15% perilobar).6 genitourinary-mental retardation www.jmedgenet.com Downloaded from jmg.bmj.com on May 16, 2013 - Published by group.bmj.com 706 Scott, Stiller, Walker, et al Inheritance in Man (OMIM), and the Winter-Baraitser tions of three cardinal features: Wilms tumour, genitourinary dysmorphology databases (see electronic database section at abnormalities, and renal dysfunction. the end of the paper). To facilitate searches we created a database of more than 8000 references with ‘‘Wilms tumour’’ WAGR syndrome or ‘‘nephroblastoma’’ in the title or abstract, which we WAGR (Wilms-aniridia-genitourinary-mental retardation) downloaded from PubMed. We then searched this database syndrome (OMIM 194072) was the first WT1 associated for generic terms such as ‘‘syndrome’’ and ‘‘malformation’’. condition to be characterised and is found in around 7–8/ We also reviewed the references of identified papers for 1000 individuals with Wilms tumour.12 It manifests with additional relevant literature. complete or partial aniridia, ambiguous external genitalia and cryptorchidism in males, and intellectual impairment. CONDITIONS WITH AN INCREASED RISK OF WILMS The risk of renal failure is high, affecting around 40% of TUMOUR individuals by the age of 20 years (median age of diagnosis 15 The conditions in which there is conclusive evidence of an years).13 Heterozygous constitutional microdeletions at 11p13 increased risk of Wilms tumour are shown in table 1. They encompassing both WT1 and PAX6 are responsible for WAGR, can be broadly classified into five groups: WT1 associated with the WT1 deletion causing the genitourinary features and phenotypes caused by mutations or deletions of the WT1 Wilms tumour predisposition and deletion of PAX6 resulting gene; familial Wilms tumour; overgrowth conditions; tumour in aniridia. Approximately 30% of individuals with aniridia predisposition syndromes in which Wilms tumour is one of a carry microdeletions that encompass WT1, with the remain- number of benign or malignant tumours that can occur; and der usually harbouring smaller deletions or intragenic PAX6 constitutional chromosomal disorders. mutations.14 These latter individuals are not at increased risk of Wilms tumour. Rare individuals with 11p13 microdele- WT1 associated syndromes tions involving WT1 but excluding PAX6 have been reported The Wilms tumour 1 (WT1) gene is located at 11p13 and and present with Wilms tumour or genitourinary abnormal- encodes a zinc finger transcription factor with a crucial role in ities, or both, but without aniridia.15 16 renal and gonadal development. It consists of a C-terminal zinc finger DNA binding domain and an N-terminal Denys-Drash syndrome transactivational domain, and occurs in multiple alternatively Denys-Drash syndrome (OMIM 194080) classically describes spliced isoforms.10 WT1 acts as a classic tumour suppressor the triad of Wilms tumour, nephropathy, and genitourinary gene and the wild type allele is somatically inactivated in abnormalities in males, which may be severe enough to result tumours occurring in individuals with constitutional WT1 in pseudohermaphroditism.17 18 The nephropathy results from mutations or deletions. The median age of Wilms tumour a characteristic mesangial sclerosis and typically presents diagnosis in such individuals is younger than in unselected with hypertension and proteinuria, usually progressing to series of Wilms tumour cases (,1 year in WT1 associated renal failure and requiring renal replacement therapy before syndromes, 3 to 4 years in unselected Wilms tumour series) the age of 10 years.19 Genitourinary abnormalities in males and tumours are more likely to be bilateral (38% in WT1 are very common but are highly variable in severity, ranging associated syndromes; 5% in unselected Wilms tumour from mild hypospadias to female external genitalia and series). The tumours
Recommended publications
  • Clinical Utility Gene Card For: 3-M Syndrome – Update 2013
    European Journal of Human Genetics (2014) 22, doi:10.1038/ejhg.2013.156 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg CLINICAL UTILITY GENE CARD UPDATE Clinical utility gene card for: 3-M syndrome – Update 2013 Muriel Holder-Espinasse*,1, Melita Irving1 and Vale´rie Cormier-Daire2 European Journal of Human Genetics (2014) 22, doi:10.1038/ejhg.2013.156; published online 31 July 2013 Update to: European Journal of Human Genetics (2011) 19, doi:10.1038/ejhg.2011.32; published online 2 March 2011 1. DISEASE CHARACTERISTICS nonsense and missense mutations c.4333C4T (p.Arg1445*) and 1.1 Name of the disease (synonyms) c.4391A4C (p.His1464Pro), respectively, render CUL7 deficient 3-M syndrome (gloomy face syndrome, dolichospondylic dysplasia). in recruiting ROC1, leading to impaired ubiquitination. OBSL1: microsatellites analysis of the locus (2q35-36.1) in con- 1.2 OMIM# of the disease sanguineous families. OBSL1: microsatellites analysis of the locus 273750. (2q35-36.1) in consanguineous families. Mutations induce non- sense mediated decay. Knockdown of OBSL1 in HEK293 cells 1.3 Name of the analysed genes or DNA/chromosome segments shows the role of this gene in the maintenance of normal levels of CUL7, OBSL1 and CCDC8.1–5 CUL7. Abnormal IGFBP2 andIGFBP5 mRNA levels in two patients with OBSL1 mutations, suggesting that OBSL1 modulates the 1.4 OMIM# of the gene(s) expression of IGFBP proteins. CCDC8: microsatellites analysis 609577 (CUL7), 610991 (OBSL1) and 614145 (CCDC8). at the locus (19q13.2-q13.32). CCDC8, 1-BP DUP, 612G and CCDC8, 1-BP.
    [Show full text]
  • Genetic Syndromes with an Increased Risk of Developing Cancer As an Example of the Use of New Technologies
    Genetics and Molecular Biology, 37, 1 (suppl), 241-249 (2014) Copyright © 2014, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Review Article Impact of NGS in the medical sciences: Genetic syndromes with an increased risk of developing cancer as an example of the use of new technologies Pablo Lapunzina1,2, Rocío Ortiz López3,4, Lara Rodríguez-Laguna2, Purificación García-Miguel5, Augusto Rojas Martínez3,4 and Víctor Martínez-Glez1,2 1Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain. 2Instituto de Genética Médica y Molecular, Hospital Universitario la Paz, Madrid, Spain. 3Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León. Monterrey, Nuevo León, México. 4Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. 5Unidad de Oncología Pediátrica, Hospital Infantil La Paz, Madrid, Spain. Abstract The increased speed and decreasing cost of sequencing, along with an understanding of the clinical relevance of emerging information for patient management, has led to an explosion of potential applications in healthcare. Cur- rently, SNP arrays and Next-Generation Sequencing (NGS) technologies are relatively new techniques used to scan genomes for gains and losses, losses of heterozygosity (LOH), SNPs, and indel variants as well as to perform com- plete sequencing of a panel of candidate genes, the entire exome (whole exome sequencing) or even the whole ge- nome. As a result, these new high-throughput technologies have facilitated progress in the understanding and diagnosis of genetic syndromes and cancers, two disorders traditionally considered to be separate diseases but that can share causal genetic alterations in a group of developmental disorders associated with congenital malformations and cancer risk.
    [Show full text]
  • Patient Advocacy Organizations, Industry Funding, and Conflicts of Interest
    Supplementary Online Content Rose SL, Highland J, Karafa MT, Joffe S. Patient advocacy organizations, industry funding, and conflicts of interest. JAMA Intern Med. Published online January 17, 2017. doi:10.1001/jamainternmed.2016.8443 eTable 1. Search Terms Used to Identify Organizations eTable 2. Inclusion and Exclusion Criteria eTable 3. Sensitivity Analysis Comparing Survey Responses of Executive and Non-Executive Respondents of Patient Advocacy Organizations (PAOs) eFigure. Survey This supplementary material has been provided by the authors to give readers additional information about their work. © 2017 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable 1. Search Terms Used to Identify Organizations Aagenaes Syndrome Anoxia Carcinoid Aarskog Syndrome Antiphospholipid Syndrome Carcinoma Aase-Smith Syndrome II Antley-Bixler Syndrome Cardiac Abdominal Cystic Phenotype Cardiogenic Lymphangioma Anxiety Cardiogenic Shock Abdominal Obesity Metabolic Aphasia Cardiomyopathy Syndrome Apraxia Cardiovascular Achondroplasia Arrhythmia Carotid Artery Disease Achromatopsia Arteriosclerosis Celiac Acid Lipase Disease Arthritis Central Cord Syndrome Acoustic Neuroma Asperger Syndrome Cervical Cancer Acquired Hyperostosis Aspergers Chondrodysplasia Punctata Syndrome Asthma Acrocephalosyndactylia Chordoma Astrocytoma Addison Disease Churg-Strauss Syndrome Ataxia ADHD Colon Cancer Atherosclerosis Adie's syndrome Colorectal Cancer Atrial Adrenal Hyperplasia Conduct Disorder Atrial Fibulation
    [Show full text]
  • Trim37-Deficient Mice Recapitulate Several Features of the Multi-Organ
    © 2016. Published by The Company of Biologists Ltd | Biology Open (2016) 5, 584-595 doi:10.1242/bio.016246 RESEARCH ARTICLE Trim37-deficient mice recapitulate several features of the multi- organ disorder Mulibrey nanism Kaisa M. Kettunen1,2,3,4, Riitta Karikoski5, Riikka H. Hämäläinen6, Teija T. Toivonen1, Vasily D. Antonenkov7, Natalia Kulesskaya3, Vootele Voikar3, Maarit Hölttä-Vuori8,9, Elina Ikonen8,9, Kirsi Sainio10, Anu Jalanko11, Susann Karlberg12, Niklas Karlberg12, Marita Lipsanen-Nyman12, Jorma Toppari13, Matti Jauhiainen11, J. Kalervo Hiltunen7, Hannu Jalanko14 and Anna-Elina Lehesjoki1,2,3,* ABSTRACT of the human MUL disease and thus provide a good model to study Mulibrey nanism (MUL) is a rare autosomal recessive multi-organ disease pathogenesis related to TRIM37 deficiency, including disorder characterized by severe prenatal-onset growth failure, infertility, non-alcoholic fatty liver disease, cardiomyopathy and infertility, cardiopathy, risk for tumors, fatty liver, and type 2 tumorigenesis. diabetes. MUL is caused by loss-of-function mutations in TRIM37, KEY WORDS: Mulibrey nanism, Infertility, Fatty liver, which encodes an E3 ubiquitin ligase belonging to the tripartite motif Cardiomyopathy, Tumorigenesis, Growth failure (TRIM) protein family and having both peroxisomal and nuclear localization. We describe a congenic Trim37 knock-out mouse INTRODUCTION (Trim37−/−) model for MUL. Trim37−/− mice were viable and had Mulibrey nanism (MUL) is a rare autosomal recessive multi-organ normal weight development until approximately
    [Show full text]
  • Repercussions of Inborn Errors of Immunity on Growth☆ Jornal De Pediatria, Vol
    Jornal de Pediatria ISSN: 0021-7557 ISSN: 1678-4782 Sociedade Brasileira de Pediatria Goudouris, Ekaterini Simões; Segundo, Gesmar Rodrigues Silva; Poli, Cecilia Repercussions of inborn errors of immunity on growth☆ Jornal de Pediatria, vol. 95, no. 1, Suppl., 2019, pp. S49-S58 Sociedade Brasileira de Pediatria DOI: https://doi.org/10.1016/j.jped.2018.11.006 Available in: https://www.redalyc.org/articulo.oa?id=399759353007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative J Pediatr (Rio J). 2019;95(S1):S49---S58 www.jped.com.br REVIEW ARTICLE ଝ Repercussions of inborn errors of immunity on growth a,b,∗ c,d e Ekaterini Simões Goudouris , Gesmar Rodrigues Silva Segundo , Cecilia Poli a Universidade Federal do Rio de Janeiro (UFRJ), Faculdade de Medicina, Departamento de Pediatria, Rio de Janeiro, RJ, Brazil b Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Curso de Especializac¸ão em Alergia e Imunologia Clínica, Rio de Janeiro, RJ, Brazil c Universidade Federal de Uberlândia (UFU), Faculdade de Medicina, Departamento de Pediatria, Uberlândia, MG, Brazil d Universidade Federal de Uberlândia (UFU), Hospital das Clínicas, Programa de Residência Médica em Alergia e Imunologia Pediátrica, Uberlândia, MG, Brazil e Universidad del Desarrollo,
    [Show full text]
  • Megalencephaly and Macrocephaly
    277 Megalencephaly and Macrocephaly KellenD.Winden,MD,PhD1 Christopher J. Yuskaitis, MD, PhD1 Annapurna Poduri, MD, MPH2 1 Department of Neurology, Boston Children’s Hospital, Boston, Address for correspondence Annapurna Poduri, Epilepsy Genetics Massachusetts Program, Division of Epilepsy and Clinical Electrophysiology, 2 Epilepsy Genetics Program, Division of Epilepsy and Clinical Department of Neurology, Fegan 9, Boston Children’s Hospital, 300 Electrophysiology, Department of Neurology, Boston Children’s Longwood Avenue, Boston, MA 02115 Hospital, Boston, Massachusetts (e-mail: [email protected]). Semin Neurol 2015;35:277–287. Abstract Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and Keywords behavioral problems; specific disorders have associations with overgrowth or abnor- ► megalencephaly malities in other tissues. The molecular underpinnings of many of these disorders are ► hemimegalencephaly now understood, providing insight into how dysregulation of critical pathways leads to ►
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • RD-Action Matchmaker – Summary of Disease Expertise Recorded Under
    Summary of disease expertise recorded via RD-ACTION Matchmaker under each Thematic Grouping and EURORDIS Members’ Thematic Grouping Thematic Reported expertise of those completing the EURORDIS Member perspectives on Grouping matchmaker under each heading Grouping RD Thematically Rare Bone Achondroplasia/Hypochondroplasia Achondroplasia Amelia skeletal dysplasia’s including Achondroplasia/Growth hormone cleidocranial dysostosis, arthrogryposis deficiency/MPS/Turner Brachydactyly chondrodysplasia punctate Fibrous dysplasia of bone Collagenopathy and oncologic disease such as Fibrodysplasia ossificans progressive Li-Fraumeni syndrome Osteogenesis imperfecta Congenital hand and fore-foot conditions Sterno Costo Clavicular Hyperostosis Disorders of Sex Development Duchenne Muscular Dystrophy Ehlers –Danlos syndrome Fibrodysplasia Ossificans Progressiva Growth disorders Hypoparathyroidism Hypophosphatemic rickets & Nutritional Rickets Hypophosphatasia Jeune’s syndrome Limb reduction defects Madelung disease Metabolic Osteoporosis Multiple Hereditary Exostoses Osteogenesis imperfecta Osteoporosis Paediatric Osteoporosis Paget’s disease Phocomelia Pseudohypoparathyroidism Radial dysplasia Skeletal dysplasia Thanatophoric dwarfism Ulna dysplasia Rare Cancer and Adrenocortical tumours Acute monoblastic leukaemia Tumours Carcinoid tumours Brain tumour Craniopharyngioma Colon cancer, familial nonpolyposis Embryonal tumours of CNS Craniopharyngioma Ependymoma Desmoid disease Epithelial thymic tumours in
    [Show full text]
  • Appendix A: Organisation of a Craniofacial Unit
    Appendix A: Organisation of a Craniofacial Unit The requirements of patients with craniofacial abnormalities are very complex and demand a multidisciplinary approach. Many body systems are affected, and every detail of patient management has to be given due attention. Care begins at birth and continues until the patient and his family have been relieved of the burden of the anomaly. A team is needed, capable of delivering expert patient care, and representative of all the relevant disciplines. Data, in the form of histories, physical examinations, and special investigations, are needed in planning treatment, and such data should be used to the maximum scientific effect, to improve present methods of management, still far from satisfactory, and to expand knowledge of the biology of cranial growth and its disorders. Craniofacial Units Sporadic craniofacial procedures performed by a surgeon on an irregular basis invite disaster. Tessier (1971a) estimated that each craniofacial centre should serve a population of 10 to 20 million people, provided that the team performed only craniofacial surgery and treated at least 50 new cases annually. As a consequence of Tessier's example and teaching there are now centres of acknowledged excellence in Paris and Nancy, attracting patients not only from France but also from North Africa and elsewhere. In North America there are now important craniofacial centres in Philadelphia, New York, Boston, Toronto, and Mexico City. Munro (1975) proposed that North America should be divided into seven regions, six for the United States and one for Canada, each serving populations of 20 to 40 million people. He believed that such centres would allow a concentration of multidisciplinary skills and accumulation of experience in the treatment of craniofacial anomalies.
    [Show full text]
  • WES Gene Package Multiple Congenital Anomalie.Xlsx
    Whole Exome Sequencing Gene package Multiple congenital anomalie, version 5, 1‐2‐2018 Technical information DNA was enriched using Agilent SureSelect Clinical Research Exome V2 capture and paired‐end sequenced on the Illumina platform (outsourced). The aim is to obtain 8.1 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA‐MEM algorithm (reference: http://bio‐bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x A4GALT [Blood group, P1Pk system, P(2) phenotype], 111400 607922 101 100 100 99 [Blood group, P1Pk system, p phenotype], 111400 NOR polyagglutination syndrome, 111400 AAAS Achalasia‐addisonianism‐alacrimia syndrome, 231550 605378 73 100 100 100 AAGAB Keratoderma, palmoplantar,
    [Show full text]
  • Mackenzie's Mission Gene & Condition List
    Mackenzie’s Mission Gene & Condition List What conditions are being screened for in Mackenzie’s Mission? Genetic carrier screening offered through this research study has been carefully developed. It is focused on providing people with information about their chance of having children with a severe genetic condition occurring in childhood. The screening is designed to provide genetic information that is relevant and useful, and to minimise uncertain and unclear information. How the conditions and genes are selected The Mackenzie’s Mission reproductive genetic carrier screen currently includes approximately 1300 genes which are associated with about 750 conditions. The reason there are fewer conditions than genes is that some genetic conditions can be caused by changes in more than one gene. The gene list is reviewed regularly. To select the conditions and genes to be screened, a committee comprised of experts in genetics and screening was established including: clinical geneticists, genetic scientists, a genetic pathologist, genetic counsellors, an ethicist and a parent of a child with a genetic condition. The following criteria were developed and are used to select the genes to be included: • Screening the gene is technically possible using currently available technology • The gene is known to cause a genetic condition • The condition affects people in childhood • The condition has a serious impact on a person’s quality of life and/or is life-limiting o For many of the conditions there is no treatment or the treatment is very burdensome for the child and their family. For some conditions very early diagnosis and treatment can make a difference for the child.
    [Show full text]
  • 349 D.R. Laub Jr. (Ed.), Congenital Anomalies of the Upper
    Index A dermatological anomalies , 182 Abductor digiti minimi (ADM) transfer , 102–103 skeletal abnormalities , 182 Abductor pollicis brevis (APB) , 186–187 upper extremity anomalies , 182, 183 ABS. See Amniotic band syndrome (ABS) visceral anomalies , 182 Achondroplasia defi nition of , 179 classifi cation/characterization , 338 description , 32, 33 defi nition of , 337–338 epidemiology of , 181 genetics , 338 genetics and embryology management , 338 molecular etiology , 180 Acrocephalosyndactyly syndrome , 32, 33, 179 prenatal diagnosis , 180–181 Acrosyndactyly repair, ABS , 300–302 molecular basis of , 180 Adactylic group IV symbrachydactyly , 129, 131 postoperative care and complications , 187 Al-Awadi syndrome , 154 treatment Amniotic band syndrome (ABS) APB release , 186–187 acrosyndactyly repair , 300–302 border digits syndactylies , 184 anesthesia concerns of fi rst web space release , 186 induction and maintenance of anesthesia , 43 patient age , 183 postoperative concerns , 43 secondary revisions , 187 preoperative preparation , 42–43 symphalangism , 184 classifi cation , 298 syndactyly ( see Syndactyly) clinical presentation thumb radial clinodactyly , 186–187 acrosyndactyly , 297–298 type II apert hand , 187–188 digital malformation , 297 Apical ectodermal ridge (AER) , 3–5 distal skeletal bones tapering , 297–298 Arthrogryposis , 210 hand deformity , 297 classic arthrogryposis , 305–306, 308 complications , 302 classifi cation , 305, 306 constriction band release defi nition of , 229, 230, 305 Upton’s technique , 299, 301 de-rotation osteotomy, shoulder , 308, 309 z-plasty , 299–300 distal , 230–231 ( see Distal arthrogryposis) diagnosis of , 296 elbow treatment digital hypoplasia reconstruction , 302 muscle transfers , 310–311 etiology of , 295–296 nonoperative management , 308 preoperative considerations , 299 posterior elbow capsular release , 309 treatment , 299 radial head dislocations , 311 Amniotic constriction band syndrome.
    [Show full text]