Kinetic Studies of Sodium and Metforminium Decavanadates Decomposition and in Vitro Cytotoxicity and Insulin- Like Activity

Total Page:16

File Type:pdf, Size:1020Kb

Kinetic Studies of Sodium and Metforminium Decavanadates Decomposition and in Vitro Cytotoxicity and Insulin- Like Activity inorganics Article Kinetic Studies of Sodium and Metforminium Decavanadates Decomposition and In Vitro Cytotoxicity and Insulin- Like Activity Aniela M. Silva-Nolasco 1,2, Luz Camacho 2 , Rafael Omar Saavedra-Díaz 1, Oswaldo Hernández-Abreu 1 , Ignacio E. León 3 and Irma Sánchez-Lombardo 1,* 1 Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas (CICTAT), Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1 Col. La Esmeralda, Cunduacán 86690, Tabasco, Mexico; [email protected] (A.M.S.-N.); [email protected] (R.O.S.-D.); [email protected] (O.H.-A.) 2 Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Ciudad de Mexico 04530, Mexico; [email protected] 3 Centro de Química Inorgánica CEQUINOR (CONICET, UNLP), Bv 120 1465, La Plata 1900, Argentina; [email protected] * Correspondence: [email protected] Received: 22 October 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: The kinetics of the decomposition of 0.5 and 1.0 mM sodium decavanadate (NaDeca) and metforminium decavanadate (MetfDeca) solutions were studied by 51V NMR in Dulbecco’s modified Eagle’s medium (DMEM) medium (pH 7.4) at 25 ◦C. The results showed that decomposition products 2 4 are orthovanadate [H2VO4]− (V1) and metavanadate species like [H2V2O7] − (V2), [V4O12] − (V4) 5 and [V5O15] − (V5) for both compounds. The calculated half-life times of the decomposition reaction were 9 and 11 h for NaDeca and MetfDeca, respectively, at 1 mM concentration. The hydrolysis products that presented the highest rate constants were V1 and V4 for both compounds. Cytotoxic activity studies using non-tumorigenic HEK293 cell line and human liver cancer HEPG2 cells showed that decavanadates compounds exhibit selectivity action toward HEPG2 cells after 24 h. The effect of vanadium compounds (8–30 µM concentration) on the protein expression of AKT and AMPK were investigated in HEPG2 cell lines, showing that NaDeca and MetfDeca compounds exhibit a dose-dependence increase in phosphorylated AKT. Additionally, NaDeca at 30 µM concentration stimulated the glucose cell uptake moderately (62%) in 3T3-L1 adipocytes. Finally, an insulin release assay in βTC-6 cells (30 µM concentration) showed that sodium orthovanadate (MetV) and MetfDeca enhanced insulin release by 0.7 and 1-fold, respectively. Keywords: polyoxometalates; decavanadate; cytotoxicity; insulin-like activity; diabetes therapy; vanadium biochemistry; vanadium speciation 1. Introduction Polyoxometalates (POMs) have several applications in biology and medicine. Interactions between the highly charged POM molecules and biological molecules frequently occur through hydrogen-bonding and electrostatic interactions [1]. Moreover, POMs have shown pharmacological activities in vitro and in vivo, such as antitumor, antimicrobial, and antidiabetic [2,3]. Their roles in biological systems are non-functional or functional kind of interactions with biomolecules [4], like the tungstate cluster that helps to solve the X-ray structure of ribosome [5] or the insulin-like properties of the decavanadates [6]. Inorganics 2020, 8, 67; doi:10.3390/inorganics8120067 www.mdpi.com/journal/inorganics InorganicsInorganics2020, 208,20 67, 8, x FOR PEER REVIEW 2 of 202 of 20 the tungstate cluster that helps to solve the X-ray structure of ribosome [5] or the insulin-like Inproperties recent years,of the decavanadates several organic [6] and. inorganic decavanadate compounds have been synthesized, exhibitingIn a rece wident years structural, several supramolecular organic and inorganic diversity decavanadate in one, two compound or three dimensionss have been synthesized [7–9]. However,, the interactionexhibiting a of wide decavanadates structural supramolecular with biological diversity targets in under one, physiologicaltwo or three dimensions conditions are[7–9] scarce. However, the interaction of decavanadates with biological targets under physiological conditions are reported since the decavanadate anion can be formed at vanadium concentrations up to 0.1 mM and in scarce reported since the decavanadate anion can be formed at vanadium concentrations up to 0.1 the pH range of 2–6 [10], and some organic decavanadates compounds are water-insoluble [11]. mM and in the pH range of 2–6 [10], and some organic decavanadates compounds are water-insoluble In[11] biological. studies, buffer solutions are extensively used, although just a few studies have addressedIn thebiological speciation studies of, thebuffer decomposition solutions are extensively products ofused, the although decavanadate just a few compounds studies have in such reactionaddress media.ed the The speciation decomposition of the decomposition of the decameric products species of at the neutral decavanadate pH can becompounds followed byin 51suchV NMR showingreaction a decrease media. T inhe thedecomposition peaks associated of the decameric with the threespecies magnetic at neutral independent pH can be followed vanadium by 51V nuclei of theNMR decavanadate showing a VdecreaseA,VB and in the VC peaks(Figure associated1), albeit with an increasethe three ofmagnetic the signals independent for the metavanadatevanadium nuclei of the decavanadate VA, VB and VC (Figure 1), albeit an increase of the signals for the2 peak [H2VO4]− (V1) and the appearance of the orthovanadates species signals like [H2V2O7] − (V2), metavanadate4 peak [H2VO5 4]− (V1) and the appearance of the orthovanadates species signals like [V4O12] − (V4) and [V5O15] − (V5)[12–14]. Moreover, monomeric vanadate is always present in [H2V2O7]2− (V2), [V4O12]4− (V4) and [V5O15]5− (V5) [12–14]. Moreover, monomeric vanadate is always decavanadate solutions at neutral pH [15]. The decavanadate decomposition rate is faster in acid than present in decavanadate solutions at neutral pH [15]. The decavanadate decomposition rate is faster in basic solutions [16,17]. In the latter, the reaction proceeds via base-dependent or base-independent in acid than in basic solutions [16,17]. In the latter, the reaction proceeds via base-dependent or base- paths,independent and it depends paths, on and the it depends counterions on the present counterions in the present solution in the [17 solution]. [17]. O O 6- O O VC VC O O O O O O O O V VA V O O O B O O B O O VB VA VB V V V O O - OH - O O- O O O O O O O OH OH OH VC VC O O O a) b) c) O O - O O O- O- O O O V O V O - NH+ V V O N NH2 O O O O - O + - O V NH2 NH2 O V V V O O O O O O- O O- V - O d) e) O f) 6− 6 - - FigureFigure 1. Schematic 1. Schematic structure structure ofof (a) decavanadate decavanadate anion anion [V10 [VO2810]O, 28(b]) −orthovanadate,(b) orthovanadate [H2VO4] [H(V12),VO 4] metavanadate species like (c) [H2V2O7]2− (V2), (d2) [V4O12]4− (V4), (e) [V5O4 15]5− (V5) and (f) diprotonated5 (V1), metavanadate species like (c) [H2V2O7] − (V2), (d) [V4O12] − (V4), (e) [V5O15] − (V5) and (f) diprotonatedmetformin (Metf). metformin (Metf). VanadiumVanadium speciation speciation is is complicated complicated underunder physiological conditions conditions,, many many known known forms forms of of vanadium V4+ and V5+ species have been shown to readily interconvert through redox and hydrolytic vanadium V4+ and V5+ species have been shown to readily interconvert through redox and hydrolytic reactions, and it is, therefore, difficult to determine which are the active species [18]. Additionally, in reactions, and it is, therefore, difficult to determine which are the active species [18]. Additionally, biological studies, the active vanadium species will depend on the sample preparation and handling, in biologicalthat is, whether studies, the the compounds active vanadium were dissolved species in will media depend or buffer on the before sample addition preparation to the cell and culture handling, that is,and whether for how thelong compounds the complexes were have dissolved been in solution in media before or buaddffinger beforealiquots addition to the medium to the [19] cell. culture and for howMetabolic long the diseases complexes like diabetes have been mellitus in solution type 2 before(DM2) adding and cancer aliquots are tonon the-communicable medium [19 ]. Metabolicdiseases (NCD) diseases that have like diabetesbecome one mellitus of the typemajor 2health (DM2) hazard andscancer of the aremodern non-communicable world [20]. diseasesCarcinogenesis (NCD) that occurs have when become normal one cells of thereceive major genetic health “hits” hazards, after ofwhich the a modern full neoplastic world [20]. Carcinogenesisphenotype occursof growth, when invasion, normal cellsand receivemetastasis genetic develops. “hits”, Diabetes after which may ainfluence full neoplastic this process phenotype of growth,through invasion, chronic inflammation, and metastasis endogenous develops. or Diabetesexogenous may hyperinsulinemia, influence this or process hyperglycemia through, but chronic potential biologic links between the two diseases are incompletely understood [21]. The development inflammation, endogenous or exogenous hyperinsulinemia, or hyperglycemia, but potential biologic links between the two diseases are incompletely understood [21]. The development of innovative therapeutic modalities [22] that increase the effectiveness of clinical drugs like cis-platin or metformin hydrochloride and arrest their chemoresistance or side effects is a topic trend for scientists. In this context, AMP-activated kinase (AMPK) signaling has become a promising therapeutic target in hepatocellular
Recommended publications
  • Vanadium Pentoxide and Other Inorganic Vanadium Compounds
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 29 VANADIUM PENTOXIDE AND OTHER INORGANIC VANADIUM COMPOUNDS Note that the layout and pagination of this pdf file are not identical to the printed CICAD First draft prepared by Dr M. Costigan and Mr R. Cary, Health and Safety Executive, Liverpool, United Kingdom, and Dr S. Dobson, Centre for Ecology and Hydrology, Huntingdon, United Kingdom Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2001 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management
    [Show full text]
  • Rosamonde Banks Phd Thesis
    1> 9>E5BC971C9?> DB9>7 3D<CDA54 8D=1> 35<< <9>5B# ?6 C85 9>E?<E5=5>C ?6 E1>149D=# 31C9?> CA1>B@?AC 1>4 @8?B@81C94F<9>?B9C?< 9> C85 15C9?<?7F ?6 29@?<1A =1>93$45@A5BB9E5 @BF38?B9B A?B1=?>45 5<9G125C8 21>;B 1 COLXPX BZISPYYLK MUW YOL 4LNWLL UM @O4 HY YOL DTP[LWXPY^ UM BY 1TKWL\X (.-, 6ZRR SLYHKHYH MUW YOPX PYLS PX H[HPRHIRL PT ALXLHWJO0BY1TKWL\X/6ZRRCL]Y HY/ OYYV/&&WLXLHWJO$WLVUXPYUW^%XY$HTKWL\X%HJ%ZQ& @RLHXL ZXL YOPX PKLTYPMPLW YU JPYL UW RPTQ YU YOPX PYLS/ OYYV/&&OKR%OHTKRL%TLY&('')*&,+), COPX PYLS PX VWUYLJYLK I^ UWPNPTHR JUV^WPNOY COPX PYLS PX RPJLTXLK ZTKLW H 3WLHYP[L 3USSUTX <PJLTJL AN INVESTIGATION USING CULTURED HUMAN CELL LINES, OF THE INVOLVEMENT OF VANADIUM, CATION TRANSPORT AND PHOSPHATIDYLINOSITDL IN THE AETIOLOGY OF BIPOLAR MANIC-DEPRESSIVE PSYCHOSIS A thesis submitted to the University of St. Andrews for the degree of Doctor of Philosophy by ROSAMONDE ELIZABETH BANKS Department of Physiology and Pharmacology, December, 1986 University of St. Andrews. QUESTIONS ANSWERED AND ANSWERS WITHOUT QUESTIONS If the human brain was so simple that we could understand it we would be so simple that we couldn't. EMERSON PUGH (Cited by Von Scheele and Nordgren, 1986, in "The mind-body problem in medicine", Lancet, February 1st., 258-261.) DECLARATION a). I, Rosamonde Elizabeth Banks, hereby certify that this thesis has been composed by myself, that it is a record of my own work, and that it has not been accepted in partial or complete fulfilment of any other degree or professional qualification.
    [Show full text]
  • PROVISIONAL PEER-REVIEWED TOXICITY VALUES for VANADIUM and ITS SOLUBLE INORGANIC COMPOUNDS OTHER THAN VANADIUM PENTOXIDE (CASRN 7440-62-2 and Others)
    EPA/690/R-09/070F l Final 9-30-2009 Provisional Peer-Reviewed Toxicity Values for Vanadium and Its Soluble Inorganic Compounds Other Than Vanadium Pentoxide (CASRN 7440-62-2 and Others) Derivation of Subchronic and Chronic Oral RfDs Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 Commonly Used Abbreviations BMD Benchmark Dose IRIS Integrated Risk Information System IUR inhalation unit risk LOAEL lowest-observed-adverse-effect level LOAELADJ LOAEL adjusted to continuous exposure duration LOAELHEC LOAEL adjusted for dosimetric differences across species to a human NOAEL no-observed-adverse-effect level NOAELADJ NOAEL adjusted to continuous exposure duration NOAELHEC NOAEL adjusted for dosimetric differences across species to a human NOEL no-observed-effect level OSF oral slope factor p-IUR provisional inhalation unit risk p-OSF provisional oral slope factor p-RfC provisional inhalation reference concentration p-RfD provisional oral reference dose RfC inhalation reference concentration RfD oral reference dose UF uncertainty factor UFA animal to human uncertainty factor UFC composite uncertainty factor UFD incomplete to complete database uncertainty factor UFH interhuman uncertainty factor UFL LOAEL to NOAEL uncertainty factor UFS subchronic to chronic uncertainty factor i FINAL 9-30-2009 PROVISIONAL PEER-REVIEWED TOXICITY VALUES FOR VANADIUM AND ITS SOLUBLE INORGANIC COMPOUNDS OTHER THAN VANADIUM PENTOXIDE (CASRN 7440-62-2 and others) Background On December 5, 2003, the U.S. Environmental Protection Agency's (U.S. EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) revised its hierarchy of human health toxicity values for Superfund risk assessments, establishing the following three tiers as the new hierarchy: 1) U.S.
    [Show full text]
  • Toxicological Profile for Vanadium
    VANADIUM 107 4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY Vanadium is a naturally occurring element that appears in group 5(B5) of the periodic table (Lide 2008). Vanadium is widely distributed in the earth’s crust at an average concentration of 100 ppm nd (approximately 100 mg/kg), similar to that of zinc and nickel (Byerrum 1991). Vanadium is the 22 most abundant element in the earth’s crust (Baroch 2006). Vanadium is found in about 65 different minerals; carnotite, roscoelite, vanadinite, and patronite are important sources of this metal along with bravoite and davidite (Baroch 2006, Lide 2008). It is also found in phosphate rock and certain ores and is present in some crude oils as organic complexes (Lide 2008). Table 4-1 lists common synonyms and other pertinent identification information for vanadium and representative vanadium compounds. 4.2 PHYSICAL AND CHEMICAL PROPERTIES Vanadium is a gray metal with a body-centered cubic crystal system. It is a member of the first transition series. Because of its high melting point, it is referred to as a refractory metal (Baroch 2006). When highly pure, it is a bright white metal that is soft and ductile. It has good structural strength and a low- fission neutron cross section. Vanadium has good corrosion resistance to alkalis, sulfuric and hydrochloric acid, and salt water; however, the metal oxidizes readily above 660 °C (Lide 2008). The chemistry of vanadium compounds is related to the oxidation state of the vanadium (Woolery 2005). Vanadium has oxidation states of +2, +3, +4, and +5. When heated in air at different temperatures, it oxidizes to a brownish black trioxide, a blue black tetraoxide, or a reddish orange pentoxide.
    [Show full text]
  • Studies of Recovery Processes for Western Uranium- Bearing Ores
    STUDIES OF RECOVERY PROCESSES FOR WESTERN URANIUM- BEARING ORES Part VIII EXAMINATION OF CERTAIN ASPECTS OF THE "CARBONATE PROCESSES" AS USED AT MONTICELLO, UTAH By R. S. Lowrie and E:. B. Brown OAK RIDGE NATIONAL LABORATORY Y-12 AREA OPERATED BY CARBIDE AND CARBON CHEMICALS DIVISION UNION CARBIDE AND CARBON CORPORATION OAK RIDGE, TENNESSEE ., Index No. -'----Y::.--'5:..!.7.:::.1'------ Subject Category: Metallurgy Raw­ ·I M9.teria1s STUDIES OF RECOVERY PROCl!SSES FOR limTERN TJRANTUM-BlllARING ORES PART VIII Exam1nation of Certain Aspects of the "Carbonate Processes" as Used at Monticello, Utah R. s. Lowrie K. B. Brown Y-12 ChaRdca1 Research Division Mr. G. H. C1ewett, Division Head OAK RIDGI!: NATIONAL lABORATORY Y - 12 AREA Operated by CARBIDE AND CARBON CHEMICAlS ·DIVISION UNION CARBIDE AND CARBON CORPORATION Oak Ridge, Tennessee Contract No. W-7405-Eng-26 ,v;: ....'"'"' ... >Jm.... _,_:::;:;:::co;w - 2 Index No. Y-571 Metallurg-y-;R;.,a~w:,c-;:;Ma"'te=r"'i7al"s=- Distribution, Series A: No. Copies Atomic Energy Commission, Washington (Jesse Johnson) 2 Atomic Energy Commission, New York (Wilson) 5 Battelle Memorial Institute (Bearse) 1 Dow Chemical Company 1 Massachusetts Institute of Technology (Gaudin) 1 Patent Br'anch, washington 1 Technical Information Branch, ORE 10 U. s. Geological Survey 1 Colorado Area Office (Frank H. MacPherson) 2 Carbide and Carbon Chemicals Division (Y-12 Plant) internal distribution as follows: .Mr. c. E. Center 1 Dr. c. E. larson 1 Dr. A. M. Weinberg 1 Dr. E. D. Shipley 1 .Mr. w. D. Lavers 1 Dr. J. A. Swartout 1 .Mr. c. D.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Toxicological Profile for Vanadium
    TOXICOLOGICAL PROFILE FOR VANADIUM U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 2012 VANADIUM ii DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. VANADIUM iii UPDATE STATEMENT A Toxicological Profile for Vanadium, Draft for Public Comment was released in September 2009. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology and Human Health Sciences (proposed) Environmental Toxicology Branch (proposed) 1600 Clifton Road NE Mailstop F-62 Atlanta, Georgia 30333 VANADIUM iv This page is intentionally blank. VANADIUM v FOREWORD This toxicological profile is prepared in accordance with guidelines* developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the toxic substances each profile describes. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced.
    [Show full text]
  • Vanadium Toxicological Potential Versus Its Pharmacological Activity: New Developments and Research
    Oxidative Medicine and Cellular Longevity Vanadium Toxicological Potential versus Its Pharmacological Activity: New Developments and Research Guest Editors: Agnieszka Ścibior, Juan Llopis, Alvin A. Holder, and Mario Altamirano-Lozano Vanadium Toxicological Potential versus Its Pharmacological Activity: New Developments and Research Oxidative Medicine and Cellular Longevity Vanadium Toxicological Potential versus Its Pharmacological Activity: New Developments and Research Guest Editors: Agnieszka Scibior, Juan Llopis, Alvin A. Holder, and Mario Altamirano-Lozano Copyright © 2016 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Oxidative Medicine and Cellular Longevity.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Mohammad Abdollahi, Iran Daniela Giustarini, Italy David Pattison, Australia Antonio Ayala, Spain Saeid Golbidi, Canada Serafina Perrone, Italy Neelam Azad, USA Tilman Grune, Germany Tiziana Persichini, Italy Peter Backx, Canada Hunjoo Ha, Republic of Korea Vincent Pialoux, France Damian Bailey, UK Nikolas Hodges, UK Chiara Poggi, Italy Consuelo Borrás, Spain Tim Hofer, Norway Aurel Popa-Wagner, Germany Vittorio Calabrese, Italy Silvana Hrelia, Italy Ada Popolo, Italy Angel Catalá, Argentina Maria G. Isaguliants, Sweden José L. Quiles, Spain Shao-Yu Chen, USA Vladimir Jakovljevic, Serbia Walid Rachidi,
    [Show full text]
  • Toxicological Profile for Vanadium
    VANADIUM 165 8. REGULATIONS, ADVISORIES, AND GUIDELINES MRLs are substance specific estimates, which are intended to serve as screening levels, are used by ATSDR health assessors and other responders to identify contaminants and potential health effects that may be of concern at hazardous waste sites. ATSDR has derived an acute-duration inhalation MRL of 0.0008 mg vanadium/m3 based on a LOAEL of 0.56 mg vanadium/m3 for lung inflammation in rats exposed to vanadium pentoxide 6 hours/day, 5 days/week for 13 days (NTP 2002). The MRL was derived by dividing the human equivalent concentration of the LOAEL (0.073 mg vanadium/m3) by an uncertainty factor of 90 (3 for use of a minimal LOAEL, 3 for animal to human extrapolation with dosimetric adjustments, and 10 for human variability). 3 ATSDR has derived a chronic-duration inhalation MRL of 0.0001 mg vanadium/m based on a BMCL10 3 of 0.04 mg vanadium/m for degeneration of epiglottis respiratory epithelium of rats exposed to vanadium pentoxide 6 hours/day, 5 days/week for 2 years (NTP 2002). The MRL was derived by dividing the 3 human equivalent concentration of the BMCL10 (0.003 mg vanadium/m ) by an uncertainty factor of 30 (3 for animal to human extrapolation with dosimetric adjustments and 10 for human variability). ATSDR has derived an intermediate-duration oral MRL of 0.01 mg vanadium/kg/day based on a NOAEL of 0.12 mg vanadium/kg/day for hematological and blood pressure effects in humans exposed to vanadyl sulfate for 12 weeks (Fawcett et al.
    [Show full text]
  • IRIS Assessment Plan for Inhalation Exposure to Vanadium and Compounds (Scoping and Problem Formulation Materials)
    EPA/635/R-21/077 IRIS Assessment Plan www.epa.gov/iris IRIS Assessment Plan for Inhalation Exposure to Vanadium and Compounds (Scoping and Problem Formulation Materials) May 2021 Integrated Risk Information System Center for Public Health and Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency IRIS Assessment Plan for Vanadium (Inhalation) DISCLAIMER This document is a public comment draft for review purposes only. This information is distributed solely for the purpose of public comment. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This document is a draft for review purposes only and does not constitute Agency policy. ii DRAFT DO NOT CITE OR QUOTE ― IRIS Assessment Plan for Vanadium (Inhalation) CONTENTS AUTHORS | CONTRIBUTORS | REVIEWERS .................................................................................................. vi 1. INTRODUCTION ...................................................................................................................................... 1 2. SCOPING AND INITIAL PROBLEM FORMULATION .................................................................................. 3 2.1. BACKGROUND ............................................................................................................................... 3 2.2. SCOPING SUMMARY ....................................................................................................................
    [Show full text]
  • SOLVENT EXTRACTION RECOVERY of VANADIUM (AND URANIUM) from ACID LIQUORS with Dl(2-ETHYLHEXYL) PHOSPHORIC ACID
    <T~ ORNL-2820 Technology-Raw Materials SOLVENT EXTRACTION RECOVERY OF VANADIUM (AND URANIUM) FROM ACID LIQUORS WITH DI(2-ETHYLHEXYL) PHOSPHORIC ACID D. J, Crouse K. B. Brown CENTRAL RESEARCH LIBRARY DOCUMENT COLLECTION LIBRARY LOAN COPY DO NOT TRANSFER TO ANOTHER PERSON If you wish someone else to see this document, send in name vith document and fhe library will arrange a loan. OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION Printed in USA. Price $2.25 Available from the Office of Technical Services Department of Commerce Washington 25, D.C. LEGAL NOTICE" This report was prepared as on account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained In this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report. As used in the above, "person acting on behalf of the Commission'* includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
    [Show full text]
  • Vanadyl Sulfate Indicated Effects on Body Weight in Animals While Studies with Sodium Metavanadate Showed Effects on Urinary Markers
    Chemical Information Review Document for Oral Exposure to Tetravalent and Pentavalent Vanadium Compounds Supporting Nomination for Toxicological Evaluation by the National Toxicology Program January 2008 National Toxicology Program National Institute of Environmental Health Sciences National Institutes of Health U.S. Department of Health and Human Services Research Triangle Park, NC http://ntp.niehs.nih.gov/ Abstract Vanadium (CAS No. 7440-62-2) is an element that exists in a number of oxidation states ranging from -1 to +5 and can be found in various locales around the world. Absorption of vanadium from the gastrointestinal tract is poor and most ingested vanadium is typically converted to vanadyl. Excretion of absorbed vanadium is primarily via urine while unabsorbed vanadium is mainly eliminated in feces. Studies indicate that toxicity is dependent on the valence of vanadium, increasing with increasing valence. Thus, pentavalent vanadium is more toxic than tetravalent vanadium. Acute toxicity studies indicate that administration of vanadium compounds is associated with locomotor impairments and effects on respiratory and cardiovascular systems. Short-term studies indicate that while pentavalent vanadium compounds produced effects on a variety of hematological markers, tetravalent compounds do not appear to have similar effects. Both valence states are associated with alterations in body weight, and food and fluid intake after short-term oral administration. Chronic studies with vanadyl sulfate indicated effects on body weight in animals while studies with sodium metavanadate showed effects on urinary markers. A few studies indicated that toxicological effects of vanadium compounds can be modified by the presence of other compounds. Tetravalent vanadium compounds were shown to have impacts on the structures within reproductive organs, survival rate of weanlings, sperm density and motility, fertility, and litter size.
    [Show full text]