Studies of Recovery Processes for Western Uranium- Bearing Ores

Total Page:16

File Type:pdf, Size:1020Kb

Studies of Recovery Processes for Western Uranium- Bearing Ores STUDIES OF RECOVERY PROCESSES FOR WESTERN URANIUM- BEARING ORES Part VIII EXAMINATION OF CERTAIN ASPECTS OF THE "CARBONATE PROCESSES" AS USED AT MONTICELLO, UTAH By R. S. Lowrie and E:. B. Brown OAK RIDGE NATIONAL LABORATORY Y-12 AREA OPERATED BY CARBIDE AND CARBON CHEMICALS DIVISION UNION CARBIDE AND CARBON CORPORATION OAK RIDGE, TENNESSEE ., Index No. -'----Y::.--'5:..!.7.:::.1'------ Subject Category: Metallurgy Raw­ ·I M9.teria1s STUDIES OF RECOVERY PROCl!SSES FOR limTERN TJRANTUM-BlllARING ORES PART VIII Exam1nation of Certain Aspects of the "Carbonate Processes" as Used at Monticello, Utah R. s. Lowrie K. B. Brown Y-12 ChaRdca1 Research Division Mr. G. H. C1ewett, Division Head OAK RIDGI!: NATIONAL lABORATORY Y - 12 AREA Operated by CARBIDE AND CARBON CHEMICAlS ·DIVISION UNION CARBIDE AND CARBON CORPORATION Oak Ridge, Tennessee Contract No. W-7405-Eng-26 ,v;: ....'"'"' ... >Jm.... _,_:::;:;:::co;w - 2 Index No. Y-571 Metallurg-y-;R;.,a~w:,c-;:;Ma"'te=r"'i7al"s=- Distribution, Series A: No. Copies Atomic Energy Commission, Washington (Jesse Johnson) 2 Atomic Energy Commission, New York (Wilson) 5 Battelle Memorial Institute (Bearse) 1 Dow Chemical Company 1 Massachusetts Institute of Technology (Gaudin) 1 Patent Br'anch, washington 1 Technical Information Branch, ORE 10 U. s. Geological Survey 1 Colorado Area Office (Frank H. MacPherson) 2 Carbide and Carbon Chemicals Division (Y-12 Plant) internal distribution as follows: .Mr. c. E. Center 1 Dr. c. E. larson 1 Dr. A. M. Weinberg 1 Dr. E. D. Shipley 1 .Mr. w. D. Lavers 1 Dr. J. A. Swartout 1 .Mr. c. D. Susano 1 .Mr. w. R. Grimes 1 Dr. c. F. Coleman 1 .Mr. G. H. Clewett 1 Mr. K. B. Brown 1 .Mr. R. s. Lowrie J. C. R. I. o. 2 TOTAL: 38 Plant Records Department, Y-12 Plant Date Issued: MAR 21 1950 - 3 Abstract The following topics are discussed: ( 1) the maximum build-up of uranium in the recycling carbonate leach liquors of both raw and salt-roasted ore, (2) solubilities of certain uranyl vanadates in sodium carbonate solutions, (3) solubility of sodium uranyl tricarbonate in sodium carbonate solutions, (4) analyses for carbonate in the mill liquor, and (5) carbonate consumption during leaching. Some information is also pre- sented on the organic content of the mill liquors, the filter- ing and settling of raw leach slurries, and the recycle of effluent liquors from the "yellow-cake" precipitation. 4 Table of Contents Introduction 7 Ore Samples 10 Cyclic Leaching of Salt Roasted Ores 11 Experimental Procedures 12 Salt Roasting 12 Q,uenching . 12 Leaching .. 12 Leaching with 3% Na2C03 14 Uranium Build-Up • 14 Vanadium Build-Up 17 Build-Up of Contaminants 18 Leaching with 6% Na2 C0 3 18 Uranium Build-Up • 18 Build-Up of Vanadium and Impurities 22 Leaching with 9% Na2 C0 3 • 22 Uranium and Vanadium Build-Up 22 Summary .•...... 24 Cyclic Leaching of Raw Ores 25 Experimental Procedures 25 First Leach 25 Second Leach 26 5 Table of Contents (cont'd) page Leaching with 3% Na2 co3 25 Indian Reservation Ore 25 Stockpile No. 7 Ore 28 Stockpile No. 9 Ore 28 Leaching with 5% Na2 C0 3 . 28 Stockpile No. 7 Ore 28 Swnmary . • • . • • • 32 Organic Content of Na2 co3 Leach Solutions from Raw Ore 33 Carbonate Consumption during Leaching 34 Analysis for Carbonate in Mill Liquors 34 Filtering and Settling of Raw Ore Leach Slurries 35 Carbonate Leach-Sand ·Slime Separation-Acid Leach 38 Solubility of Synthetic and Natural Minerals in Carbonate Solution • . • • . • • • • • 41 Description of Materials 41 Experimental Procedure 42 Effect of Sodium Carbonate Concentration 43 Effect of Sodium Vanadate Concentration 43 Effect of Sodium Chloride Concentration 47 Effect of Sodium Vanadate in Combination with Sodium ·• Chloride . 6 • • • • • • • • • • • .- • • • • • • • • . 49 Solubility of Natural Mineral in Actual Leach Liquors 49 Solubility Studies on Sodium Uranyl Tricarbonate • 51 6 Table of Contents (~ont'd) page Preparation of Sodium Uranyl Tricarbonate 54 Effect of Sodium Carbonate Concentration 54 'Effect of Sodium Vanadate Concentration 54 Effect of Sodium Chloride Concentration 56 Recycle of Effluents from Yellow-Cake Precipitation 58 Effect of Na~so4 on Solubility of Natural Mineral 58 Effect of Na2so4 on Raw Ore Leaching 58 Acknowledgements 61 Appendix A 62 Appendix B 63 7 EXAMINATION OF CERTAIN ASPECTS OF THE "CARBONATE PROCESSES" AS USED AT MONTICELLO, UTAH INTRODUCTION Sodium carbonate leaching has been employed in Western uranium mills for many years. Currently, such "carbonate processes" are being used at Naturita and other mills of the Vanadium Corporation of America and at the plant at Monticello, Utah, which was recently constructed and placed in operation by the Galagher Company of Salt Lake City, Utah under the auspices of the A.E.C. The term "carbonate process" is often used rather loosely to describe somewhat different processing methods. At the VCA mills, a process is used in which the ore is first roasted with salt to form soluble sodium vanadate, and then leached with sodium carbonate to dissolve the vanadium and uranium values1 • Since the roasting step is included only for vanadium recovery, this process is economically feasible only with ores which have a fair concentration of vanadium minerals ( > 1% V205). Also, because of the formation of insoluble calcium vanadates, the ore must be low in calcite. At the new mill at Monticello, Utah, equipment is available for the salt-roast, carbonate-leach treatment, but, in addition, allowances have been made for other types of processing. The rather copious quantities of ores of low vanadium content and/or high calcite content 1 For simplified flowsheet, see Appendix A. 8 will be processed by leaching the raw ore directly with hot sodium carbon- ate solutions. In instances where the vanadium and calcite are both high, the ore will be leached directly and provision will be made later to remove the calcite by flotation, followed by a roast and leach of the flotation tailings for their vanadium content. These innovations will give rise to processing problems not previously encountered in the Western mills. An extensive study of the roasting and leaching treatment has been made by the Battelle Memorial Institute at Columbus, Ohio, and by the U.S. Bureau of Mines, Salt Lake City station. The direct leaching process and the calcite flotation method were also developed and studied by the Bureau of Mines at Salt Lake City. In April, 1949, the laboratories at Y-12 were requested by, the A.E.C. to investigate whatever solution and analytical chemistry was important to the start-up of the Monticello plant1 After conversation with Messrs. M.G. McGrath2 and John \Vhite3 , a program was set up which included the immediate problems of this nature. These problems may be summarized as follows: (1) The supplying of analytical procedures for use in determining uranium at Monticello. The furnishing of Y-12 analysts to set up these procedures at the plant, help organize the plant laboratory, and train the plant personnel. 1 The Monticello plant started operations in September, 1949. 2 Metallurgist for Colorado Raw Material Operation, A.E.C. 3 In charge of construction and start up of Monticello for the Galagher Company. 9 (2) The supplying of analytical methods for plant control of (a) carbonate concentration in the leach circuit, and (b) yellow cake pre­ cipitation. (3) The determination of the limitations that are imposed on uranium build-up and impurity build-ups when using different concentrations of Na2C03 on raw ores in the Monticello leach circuit. Since raw ore leaching is a recent innovation in the Monticello flowsheet, the critical conditions for such a circuit had not been studied. (4) As explained above, past practice in the Western mills has been to roast the ores with salt (to convert vanadium to soluble sodium vana­ date) and then leach the calcines with Na2C03 eolution to derive the uranium and vanadium values. Direct leach solutions are different from those formerly obtained with roasted ores in that these solutions contain less vanadium as well as some organic matter. It was of immediate inter­ est to the Monticello plant to determine whether the standard, yellow-cake, precipitation technique would apply·to the direct leach solutions •. (5) Since the direct leach solutions are very low in vanadium content, it is not possible to use the same precipitation method for vanadium that was formerly employed. Consequently, some satisfactory method for recover­ ing vanadium (economically) from the dilute vanadium liquors should b~ developed. (6) One way to solve the vanadium recovery problem would be to recycle the plant solutions, after the uranium precipitation step, in order to build-up the vanadium concentration to a normal level -- as well as to conserve water in the process. First, it must be determined whether 10 such an operation can be accomplished without harm to the milling oper- ' ation (liquors from the yellow-cake precipitation contain fairly large amount• of Na2S04). (7) Tests should be made to determine the amount of Na2C03 that will be consumed by an average ore during a direct leaching treatment. (8) Methods for improving the settling and filtration of raw ores should be considered. The results of investigations conducted on items 2, 3, 6, 7, and 8 are discussed in this report. The data collected in studying items 1, 4, and 5 are discussed in other sections of this series. The information on which this report is based has been drawn from results presented in greater detail in previous progress reports. A list of these reports is given in Appendix B. ORE SAMPLES The ores used during most studies of the Monticello operations included samples from Radium 7 and Wild Steer Mine and from Stockpile 7 and 9 at the Monticello site.
Recommended publications
  • Vanadium Pentoxide and Other Inorganic Vanadium Compounds
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 29 VANADIUM PENTOXIDE AND OTHER INORGANIC VANADIUM COMPOUNDS Note that the layout and pagination of this pdf file are not identical to the printed CICAD First draft prepared by Dr M. Costigan and Mr R. Cary, Health and Safety Executive, Liverpool, United Kingdom, and Dr S. Dobson, Centre for Ecology and Hydrology, Huntingdon, United Kingdom Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2001 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management
    [Show full text]
  • Kinetic Studies of Sodium and Metforminium Decavanadates Decomposition and in Vitro Cytotoxicity and Insulin- Like Activity
    inorganics Article Kinetic Studies of Sodium and Metforminium Decavanadates Decomposition and In Vitro Cytotoxicity and Insulin- Like Activity Aniela M. Silva-Nolasco 1,2, Luz Camacho 2 , Rafael Omar Saavedra-Díaz 1, Oswaldo Hernández-Abreu 1 , Ignacio E. León 3 and Irma Sánchez-Lombardo 1,* 1 Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas (CICTAT), Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1 Col. La Esmeralda, Cunduacán 86690, Tabasco, Mexico; [email protected] (A.M.S.-N.); [email protected] (R.O.S.-D.); [email protected] (O.H.-A.) 2 Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Ciudad de Mexico 04530, Mexico; [email protected] 3 Centro de Química Inorgánica CEQUINOR (CONICET, UNLP), Bv 120 1465, La Plata 1900, Argentina; [email protected] * Correspondence: [email protected] Received: 22 October 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: The kinetics of the decomposition of 0.5 and 1.0 mM sodium decavanadate (NaDeca) and metforminium decavanadate (MetfDeca) solutions were studied by 51V NMR in Dulbecco’s modified Eagle’s medium (DMEM) medium (pH 7.4) at 25 ◦C. The results showed that decomposition products 2 4 are orthovanadate [H2VO4]− (V1) and metavanadate species like [H2V2O7] − (V2), [V4O12] − (V4) 5 and [V5O15] − (V5) for both compounds. The calculated half-life times of the decomposition reaction were 9 and 11 h for NaDeca and MetfDeca, respectively, at 1 mM concentration. The hydrolysis products that presented the highest rate constants were V1 and V4 for both compounds.
    [Show full text]
  • PROVISIONAL PEER-REVIEWED TOXICITY VALUES for VANADIUM and ITS SOLUBLE INORGANIC COMPOUNDS OTHER THAN VANADIUM PENTOXIDE (CASRN 7440-62-2 and Others)
    EPA/690/R-09/070F l Final 9-30-2009 Provisional Peer-Reviewed Toxicity Values for Vanadium and Its Soluble Inorganic Compounds Other Than Vanadium Pentoxide (CASRN 7440-62-2 and Others) Derivation of Subchronic and Chronic Oral RfDs Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 Commonly Used Abbreviations BMD Benchmark Dose IRIS Integrated Risk Information System IUR inhalation unit risk LOAEL lowest-observed-adverse-effect level LOAELADJ LOAEL adjusted to continuous exposure duration LOAELHEC LOAEL adjusted for dosimetric differences across species to a human NOAEL no-observed-adverse-effect level NOAELADJ NOAEL adjusted to continuous exposure duration NOAELHEC NOAEL adjusted for dosimetric differences across species to a human NOEL no-observed-effect level OSF oral slope factor p-IUR provisional inhalation unit risk p-OSF provisional oral slope factor p-RfC provisional inhalation reference concentration p-RfD provisional oral reference dose RfC inhalation reference concentration RfD oral reference dose UF uncertainty factor UFA animal to human uncertainty factor UFC composite uncertainty factor UFD incomplete to complete database uncertainty factor UFH interhuman uncertainty factor UFL LOAEL to NOAEL uncertainty factor UFS subchronic to chronic uncertainty factor i FINAL 9-30-2009 PROVISIONAL PEER-REVIEWED TOXICITY VALUES FOR VANADIUM AND ITS SOLUBLE INORGANIC COMPOUNDS OTHER THAN VANADIUM PENTOXIDE (CASRN 7440-62-2 and others) Background On December 5, 2003, the U.S. Environmental Protection Agency's (U.S. EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) revised its hierarchy of human health toxicity values for Superfund risk assessments, establishing the following three tiers as the new hierarchy: 1) U.S.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Toxicological Profile for Vanadium
    TOXICOLOGICAL PROFILE FOR VANADIUM U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 2012 VANADIUM ii DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. VANADIUM iii UPDATE STATEMENT A Toxicological Profile for Vanadium, Draft for Public Comment was released in September 2009. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology and Human Health Sciences (proposed) Environmental Toxicology Branch (proposed) 1600 Clifton Road NE Mailstop F-62 Atlanta, Georgia 30333 VANADIUM iv This page is intentionally blank. VANADIUM v FOREWORD This toxicological profile is prepared in accordance with guidelines* developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the toxic substances each profile describes. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced.
    [Show full text]
  • Toxicological Profile for Vanadium
    VANADIUM 165 8. REGULATIONS, ADVISORIES, AND GUIDELINES MRLs are substance specific estimates, which are intended to serve as screening levels, are used by ATSDR health assessors and other responders to identify contaminants and potential health effects that may be of concern at hazardous waste sites. ATSDR has derived an acute-duration inhalation MRL of 0.0008 mg vanadium/m3 based on a LOAEL of 0.56 mg vanadium/m3 for lung inflammation in rats exposed to vanadium pentoxide 6 hours/day, 5 days/week for 13 days (NTP 2002). The MRL was derived by dividing the human equivalent concentration of the LOAEL (0.073 mg vanadium/m3) by an uncertainty factor of 90 (3 for use of a minimal LOAEL, 3 for animal to human extrapolation with dosimetric adjustments, and 10 for human variability). 3 ATSDR has derived a chronic-duration inhalation MRL of 0.0001 mg vanadium/m based on a BMCL10 3 of 0.04 mg vanadium/m for degeneration of epiglottis respiratory epithelium of rats exposed to vanadium pentoxide 6 hours/day, 5 days/week for 2 years (NTP 2002). The MRL was derived by dividing the 3 human equivalent concentration of the BMCL10 (0.003 mg vanadium/m ) by an uncertainty factor of 30 (3 for animal to human extrapolation with dosimetric adjustments and 10 for human variability). ATSDR has derived an intermediate-duration oral MRL of 0.01 mg vanadium/kg/day based on a NOAEL of 0.12 mg vanadium/kg/day for hematological and blood pressure effects in humans exposed to vanadyl sulfate for 12 weeks (Fawcett et al.
    [Show full text]
  • IRIS Assessment Plan for Inhalation Exposure to Vanadium and Compounds (Scoping and Problem Formulation Materials)
    EPA/635/R-21/077 IRIS Assessment Plan www.epa.gov/iris IRIS Assessment Plan for Inhalation Exposure to Vanadium and Compounds (Scoping and Problem Formulation Materials) May 2021 Integrated Risk Information System Center for Public Health and Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency IRIS Assessment Plan for Vanadium (Inhalation) DISCLAIMER This document is a public comment draft for review purposes only. This information is distributed solely for the purpose of public comment. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This document is a draft for review purposes only and does not constitute Agency policy. ii DRAFT DO NOT CITE OR QUOTE ― IRIS Assessment Plan for Vanadium (Inhalation) CONTENTS AUTHORS | CONTRIBUTORS | REVIEWERS .................................................................................................. vi 1. INTRODUCTION ...................................................................................................................................... 1 2. SCOPING AND INITIAL PROBLEM FORMULATION .................................................................................. 3 2.1. BACKGROUND ............................................................................................................................... 3 2.2. SCOPING SUMMARY ....................................................................................................................
    [Show full text]
  • SOLVENT EXTRACTION RECOVERY of VANADIUM (AND URANIUM) from ACID LIQUORS with Dl(2-ETHYLHEXYL) PHOSPHORIC ACID
    <T~ ORNL-2820 Technology-Raw Materials SOLVENT EXTRACTION RECOVERY OF VANADIUM (AND URANIUM) FROM ACID LIQUORS WITH DI(2-ETHYLHEXYL) PHOSPHORIC ACID D. J, Crouse K. B. Brown CENTRAL RESEARCH LIBRARY DOCUMENT COLLECTION LIBRARY LOAN COPY DO NOT TRANSFER TO ANOTHER PERSON If you wish someone else to see this document, send in name vith document and fhe library will arrange a loan. OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION Printed in USA. Price $2.25 Available from the Office of Technical Services Department of Commerce Washington 25, D.C. LEGAL NOTICE" This report was prepared as on account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained In this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report. As used in the above, "person acting on behalf of the Commission'* includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
    [Show full text]
  • Vanadyl Sulfate Indicated Effects on Body Weight in Animals While Studies with Sodium Metavanadate Showed Effects on Urinary Markers
    Chemical Information Review Document for Oral Exposure to Tetravalent and Pentavalent Vanadium Compounds Supporting Nomination for Toxicological Evaluation by the National Toxicology Program January 2008 National Toxicology Program National Institute of Environmental Health Sciences National Institutes of Health U.S. Department of Health and Human Services Research Triangle Park, NC http://ntp.niehs.nih.gov/ Abstract Vanadium (CAS No. 7440-62-2) is an element that exists in a number of oxidation states ranging from -1 to +5 and can be found in various locales around the world. Absorption of vanadium from the gastrointestinal tract is poor and most ingested vanadium is typically converted to vanadyl. Excretion of absorbed vanadium is primarily via urine while unabsorbed vanadium is mainly eliminated in feces. Studies indicate that toxicity is dependent on the valence of vanadium, increasing with increasing valence. Thus, pentavalent vanadium is more toxic than tetravalent vanadium. Acute toxicity studies indicate that administration of vanadium compounds is associated with locomotor impairments and effects on respiratory and cardiovascular systems. Short-term studies indicate that while pentavalent vanadium compounds produced effects on a variety of hematological markers, tetravalent compounds do not appear to have similar effects. Both valence states are associated with alterations in body weight, and food and fluid intake after short-term oral administration. Chronic studies with vanadyl sulfate indicated effects on body weight in animals while studies with sodium metavanadate showed effects on urinary markers. A few studies indicated that toxicological effects of vanadium compounds can be modified by the presence of other compounds. Tetravalent vanadium compounds were shown to have impacts on the structures within reproductive organs, survival rate of weanlings, sperm density and motility, fertility, and litter size.
    [Show full text]
  • Systematic Review Protocol for the Vanadium and Compounds (Oral Exposure) IRIS Assessment
    [EPA/635/R-21/047] IRIS Assessment Protocol www.epa.gov/iris Systematic Review Protocol for the Vanadium and Compounds (Oral Exposure) IRIS Assessment (Preliminary Assessment Materials) April 2021 Integrated Risk Information System Center for Public Health and Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC Systematic Review Protocol for the Vanadium and Compounds (Oral) IRIS Assessment DISCLAIMER This document is a public comment draft for review purposes only. This information is distributed solely for the purpose of public comment. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This document is a draft for review purposes only and does not constitute Agency policy. ii DRAFT―DO NOT CITE OR QUOTE Systematic Review Protocol for the Vanadium and Compounds (Oral) IRIS Assessment CONTENTS CONTENTS .................................................................................................................................................... iii AUTHORS | CONTRIBUTORS | REVIEWERS ................................................................................................... ix 1. INTRODUCTION ...................................................................................................................................... 1 2. SCOPING AND INITIAL PROBLEM FORMULATION
    [Show full text]
  • Vanadium Uptake and Toxicity in Plants
    Review Article Published: 23 Nov, 2020 SF Journal of Agricultural and Crop Management Vanadium Uptake and Toxicity in Plants Aryadeep Roychoudhury* Department of Biotechnology, St. Xavier’s College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, India Abstract Metal pollution is a global issue in recent times with documented cases of contamination adjacent to mining areas, industries and wastes from agricultural sector. Among all non-essential metals, vanadium is becoming the focus of attention for the environmentalists and plant scientists, since its level in soil, water and atmosphere is gradually increasing day by day, because of several anthropogenic activities, such as burning of fossil fuels, fertilizer and pesticide application and recycling of domestic wastes. Vanadium pentoxide (V2O5) is the most commonly existing and usable form of vanadium, along with ammonium metavanadate (NH4VO3), sodium metavanadate (NaVO3) and sodium orthovanadate (Na3VO4). Because of its mobile nature, vanadium is readily taken up from the soil by the plant roots where it gets immobilized, with only a small fraction being translocated to the above ground organs. Although vanadium, like other trace elements, have been found to stimulate certain physiological processes and improved growth and yield of plants at lower concentrations, its essentiality as minor element is still debated. On the contrary, massive bioaccumulation of vanadium within plant tissues beyond the threshold limit is reported to exert severe consequences like inhibition of growth of plant and plant parts, chlorophyll content and photosynthesis, as well as bringing forth oxidative damages, chromosome breakage and aberrations, disruption in mineral homeostasis and perturbing smooth operation of several metabolic processes.
    [Show full text]
  • 09 Druzynski.Indd
    Polish Journal of Chemical Technology, 13, 4, 53 — 56,Pol. 2011, J. Chem. 10.2478/v10026-011-0049-y Tech., Vol. 13, No. 4, 2011 53 Utilization of the post – fi ltration lye from the soda-chlorine-saltpetre method of soda production Sebastian Drużyński*, Mieczysław Trypuć, Urszula Kiełkowska, Krzysztof Mazurek Nicolaus Copernicus University, Faculty of Chemistry, Department of Chemical Technology, Gagarina 7, 87-100 Toruń, Poland * Corresponding author: e-mail: [email protected] The optimal conditions were determined for the precipitation of ammonium metavanadate from the solutions of ammonium nitrate with the use of sodium metavanadate. The experiments were performed with the molar ratio of salts NH4NO3:NaVO3 1.5:1 at temperatures 293, 303, 313 and 323 K. Based on the obtained results, the optimal time of the process was determined as 5 h at 293–303K. Under these conditions, the achieved yield of the precipitation process was ~98.7%, while the contents of the vana- dium salts in the post – fi ltration solution was ~0.02%. Keywords: SCS method, double exchange, ammonium nitrate and ammonium metavanadate. INTRODUCTION EXPERIMENTAL PART Production of sodium carbonate with the Soda-Chlo- rine-Saltpetre method (SCS) gives valuable by-products Method – chlorine and solution of ammonium-sodium saltpetre Experiments were conducted at 293, 303, 313 and 323 composed of 80% NH4NO3; 18% NaNO3 and 2% NaCl K to determine the infl uence of the addition of sodium as recalculated to solids1. That solution is a material for nitrate on the reaction yield. The time dependence of the production of nitrogenous fertilizer. The authors of the yields ( ) of precipitation relative to ammonium the SCS method had assumed processing of that liquor ions were calculated according to equation (2) where by evaporation and crystallization of ammonium-sodium the excess of the used ammonium nitrate relative to the saltpetre.
    [Show full text]