Production of Yellow Cake and Uranium Fluorides

Total Page:16

File Type:pdf, Size:1020Kb

Production of Yellow Cake and Uranium Fluorides Proceedings of an Advisory Group Meeting Paris, 5-8 June 1979 PRODUCTION OF YELLOW CAKE AND URANIUM FLUORIDES fj£±\ ^tyr/ INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1980 PRODUCTION OF YELLOW CAKE AND URANIUM FLUORIDES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL ARGENTINA INDIA QATAR AUSTRALIA INDONESIA ROMANIA AUSTRIA IRAN SAUDI ARABIA BANGLADESH IRAQ SENEGAL BELGIUM IRELAND SIERRA LEONE BOLIVIA ISRAEL SINGAPORE BRAZIL ITALY SOUTH AFRICA BULGARIA IVORY COAST SPAIN BURMA JAMAICA SRI LANKA BYELORUSSIAN SOVIET JAPAN SUDAN SOCIALIST REPUBLIC JORDAN SWEDEN CANADA KENYA SWITZERLAND CHILE KOREA, REPUBLIC OF SYRIAN ARAB REPUBLIC COLOMBIA KUWAIT THAILAND COSTA RICA LEBANON TUNISIA CUBA LIBERIA TURKEY CYPRUS LIBYAN ARAB JAMAHIRIYA UGANDA CZECHOSLOVAKIA LIECHTENSTEIN UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA LUXEMBOURG REPUBLIC DEMOCRATIC PEOPLE'S MADAGASCAR UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALAYSIA REPUBLICS DENMARK MALI UNITED ARAB EMIRATES DOMINICAN REPUBLIC MAURITIUS UNITED KINGDOM OF GREAT ECUADOR MEXICO BRITAIN AND NORTHERN EGYPT MONACO IRELAND EL SALVADOR MONGOLIA UNITED REPUBLIC OF ETHIOPIA MOROCCO CAMEROON FINLAND NETHERLANDS UNITED REPUBLIC OF FRANCE NEW ZEALAND TANZANIA GABON NICARAGUA UNITED STATES OF AMERICA GERMAN DEMOCRATIC REPUBLIC NIGER URUGUAY GERMANY, FEDERAL REPUBLIC OF NIGERIA VENEZUELA GHANA NORWAY VIET NAM GREECE PAKISTAN YUGOSLAVIA GUATEMALA PANAMA ZAIRE HAITI PARAGUAY ZAMBIA PERU The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". (g) IAEA, 1980 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria. Printed by the IAEA in Austria November 1980 PANEL PROCEEDINGS SERIES PRODUCTION OF YELLOW CAKE AND URANIUM FLUORIDES PROCEEDINGS OF AN ADVISORY GROUP MEETING ORGANIZED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY AND HELD IN PARIS, 5-8 JUNE 1979 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 1980 PRODUCTION OF YELLOW CAKE AND URANIUM FLUORIDES IAEA, VIENNA, 1980 STI/PUB/553 ISBN 92-0-041080-4 FOREWORD Several tens of thousands of tonnes of uranium are currently produced per year in the form of 'yellow cake' from over 50 active ore processing plants. In addition there have been a number of plants which have been producers but have become inactive for various reasons over the past two decades, and also a number which are planned to come into operation in the not too distant future. It is therefore not surprising that scientists and engineers engaged in this industry and the research associated with its development have produced many publications describing the overall hydro-metallurgical technology involved and the operating flowsheets of many ore processing plants. However, it is surprising to discover within this literature how little has been devoted to the detailed description of the specific aspects of the processes associated with the actual 'yellow cake' end of the operation. Consideration was therefore given to convening a meeting with the aim of bringing out some of this knowledge and experience and discussing the problems associated with this part of the operation. The basic objective of the processes used for 'yellow cake' preparation is to prepare a uranium concentrate. However, the specifications of the product, which play a major role in determining the conditions used in those processes, are largely determined by the refining and conversion facility. It was therefore apparent that the subject of 'yellow cake' preparation could not be adequately covered in isolation. In addition, although descriptions of refining and conversion processes have appeared, there has been no previous IAEA meeting of experts to consider these subjects. The IAEA thus considered it appropriate to convene an Advisory Group meeting to consider the total technology of that part of the fuel cycle concerned with 'yellow cake' preparation, its refining and conversion to uranium fluorides. At the invitation of the Commissariat a l'Energie Atomique the meeting was held in Paris from 5 to 8 June 1979. A total of 46 participants from 18 countries and one international organi­ zation took part in the meeting, 20 papers and supplementary contributions being presented. Although a number of the papers cover a wide range of the subject matter, so far as possible the papers have been arranged in the Proceedings to follow the natural sequence of the operations and processes involved in taking the uranium from its original source through the various stages of concentration, purification, refining and, finally, conversion to fluorides. The technical sessions concluded with a Panel summary and discussion, the substance of which is also reproduced. The Agency wishes to thank all the scientists and engineers who participated in the meeting. Thanks are especially due to the Panel Chairman, Dr. H. Page, and the Chairmen of the technical sessions: Dr. A.W. Ashworth, Mr. J. Craig, Mr. G. Lyaudet and Dr. S.A. Young. The success of the meeting owes much to Mr. G. Lyaudet who was responsible for the detailed arrangements in Paris. The Agency also wishes to record its appreciation to the French authorities for hosting the meeting and to COGEMA and COMURHEX for the cooperation and hospitality extended to the participants. EDITORIAL NOTE The papers and discussions have been edited by the editorial staff of the International Atomic Energy Agency to the extent considered necessary for the reader's assistance. The views expressed and the general style adopted remain, however, the responsibility of the-named authors or participants. In addition, the views are not necessarily those of the governments of the nominating Member States or of the nominating organizations. Where papers have been incorporated into these Proceedings without resetting by the Agency, this has been done with the knowledge of the authors and their government authorities, and their cooperation is gratefully acknowledged. The Proceedings have been printed by composition typing and photo-offset lithography. Within the limitations imposed by this method, every effort has been made to maintain a high editorial standard, in particular to achieve, wherever practicable, consistency of units and symbols and conformity to the standards recommended by competent international bodies. The use in these Proceedings of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of specific companies or of their products or brand names does not imply any endorsement or recommendation on the part of the IAEA. Authors are themselves responsible for obtaining the necessary permission to reproduce copyright material from other sources. CONTENTS Ore processing and refining of uranium in India 1 S. Sen, T.K.S. Murthy Technological studies on the Manisa-Koprubaji uranium ores of Turkey 11 U. Sagdik Recuperation de uranio desde soluciones de lixiviacion de cobre de la mina Chuquicamata Sur 19 N. Andalaft, R. Soto Impurities in uranium process solutions 29 D. W. Boy dell Production of pure yellow cake by ion exchange processes employing sulphate elution 51 A. Himsley Caractensticas de suspensiones de uranato amonico 63 J.L. Merino Obtencion de concentrados de uranio-Purlex de baja ley en sulfatos 83 B. Rodriguez A review of United States yellow cake precipitation practice 101 J.E. Litz, R.B. Coleman Purification et concentration des solutions uraniferes dans les usines de la Societe industrielle des minerals de l'Ouest 119 G. Vollerin Production of uranium oxide concentrates by the Nuclear Fuels Corporation of South Africa 129 S.A. Young Практика получения желтого кека 141 Б.Бошина (Yellow cake product practice, В. Bosina, CSSR) Australian experience in the production of yellow cake and uranium fluorides 149 P.G. Alfredson Informe sobre evolucion у perspectivas en Espana 179 P. Gasos The quality aspects of uranium mill and conversion plant technology 189 /. W. Craig Du concentre d'uranium a l'hexafluorure 201 A. Perez Uranium refining in South Africa — The production of uranium trioxide considering raw material properties and nuclear purity requirements 229 R.P. Colborn, D.L.G. Bayne, M.N. Slabber A review and update of refining practice in Canada 261 A.W. Ashbrook, B.C. Smart United Kingdom experience of production of uranium fluorides 289 H. Page Studies for producing UF6 fom UF4 nH20 in Japan 309 S. Takenaka, T. Nagasaki Refining of yellow cake by solvent extraction — Pakistan status report .... 329 M. Yunus, A. Muzaffar, M.T. Qureshi, N.K. Qazi, J.R. Khan, N.A. Chughtai, S.M.H. Zaidi Yellow cake produced from Swedish uranium ores (short communication) 341 A. Andersson A note on uranium in the United States of America (short communication) 345 F.E. McGinley Panel Summary .. 347 List of Participants 351 ORE PROCESSING AND REFINING OF URANIUM IN INDIA S. SEN, T.K.S. MURTHY Chemical Engineering Division, Bhabha Atomic
Recommended publications
  • Vanadium Pentoxide and Other Inorganic Vanadium Compounds
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 29 VANADIUM PENTOXIDE AND OTHER INORGANIC VANADIUM COMPOUNDS Note that the layout and pagination of this pdf file are not identical to the printed CICAD First draft prepared by Dr M. Costigan and Mr R. Cary, Health and Safety Executive, Liverpool, United Kingdom, and Dr S. Dobson, Centre for Ecology and Hydrology, Huntingdon, United Kingdom Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2001 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management
    [Show full text]
  • Getinge Lancer LSS 590 Laboratory Steam Sterilizer Specifications GETINGE LANCER LSS 590 2 Basic Specifications
    Getinge Lancer LSS 590 Laboratory Steam Sterilizer Specifications GETINGE LANCER LSS 590 2 Basic specifications Top Top, Recessed 64.7 39.5 63.9 26 63 51 26.5 74 Front Side, Recessed LSS 590 • Internal Volume 20.7 cu. ft. (586 L) • Door Configurations Single Door or Double Door, Pass-through • Design Operating Temperature Gravity/Vacuum Cycles: 230°–275°F (110°–135°C) Liquid Cycles: 219°–275°F (104°–135°C) Optional Low Temp Cycle: 169°–212°F (76°–100°C) • Interior Dimensions (w × h × d) 26.5" × 26.5" × 51" (672 × 672 × 1300 mm) • Exterior Dimensions (w × h × d) Single Door: 39.5" × 74" × 63.9” (1003 × 1880 × 1623 mm) Double Door: 39.5" × 74" × 64.7" (1003 × 1880 × 1643 mm) GETINGE LANCER LSS 590 3 Part 1: Selection Guide Door Configuration • single door • double door, pass-through Steam Source • facility/house steam (standard) • steam generator(s) - 208V, AC, 50/60Hz, 3-phase - 240V, AC, 50/60Hz, 3-phase - 380V, AC, 50Hz, 3-phase - 480V, AC, 60Hz, 3-phase - 600V, AC, 60Hz, 3-phase - carbon steel (standard) - stainless steel - manual blowdown (standard) - automatic blowdown Steam generator is located integral to the sterilizer (possible in combination with vacuum pump for LSS 590). Remotely located Air Removal • ejector (standard) • vacuum pump, liquid ring - 208V, AC, 60Hz, 3-phase - 380V, AC, 50Hz, 3-phase - 480V, AC, 60Hz, 3-phase Additional Programs • Sealed liquids and low temp cycles (vacuum pump and load probe required) Recesses and Barriers • recessed, one-wall • recessed, two-wall • freestanding (cabinet enclosure panels required) • with cross contamination barrier flange GETINGE LANCER LSS 590 DATE: CUSTOMER / FACILITY: 4 Part 2: General Specifications The Getinge Lancer LSS 590 Steam Sterilizer is designed Specifications Index for high- performance sterilization of labware, media and Sterilizer 6 laboratory byproducts used in research, analytical, environ- mental and industrial laboratories.
    [Show full text]
  • In Situ Leach (ISL) Mining of Uranium
    In Situ Leach (ISL) Mining of Uranium (June 2009) l Most uranium mining in the USA and Kazakhstan is now by in situ leach methods, also known as in situ recovery (ISR). l In USA ISL is seen as the most cost effective and environmentally acceptable method of mining, and Australian experience supports this. l Australia's first ISL uranium mine is Beverley, which started operation late in 2000. The proposal for Honeymoon has government approval and it is expected to be operating in 2008. Conventional mining involves removing mineralised rock (ore) from the ground, breaking it up and treating it to remove the minerals being sought. In situ leaching (ISL), also known as solution mining, or in situ recovery (ISR) in North America, involves leaving the ore where it is in the ground, and recovering the minerals from it by dissolving them and pumping the pregnant solution to the surface where the minerals can be recovered. Consequently there is little surface disturbance and no tailings or waste rock generated. However, the orebody needs to be permeable to the liquids used, and located so that they do not contaminate ground water away from the orebody. Uranium ISL uses the native groundwater in the orebody which is fortified with a complexing agent and in most cases an oxidant. It is then pumped through the underground orebody to recover the minerals in it by leaching. Once the pregnant solution is returned to the surface, the uranium is recovered in much the same way as in any other uranium plant (mill). In Australian ISL mines (Beverley and the soon to be opened Honeymoon Mine) the oxidant used is hydrogen peroxide and the complexing agent sulfuric acid.
    [Show full text]
  • Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides Received: 22 January 2018 Batikan Koroglu1, Scott Wagnon 1, Zurong Dai1, Jonathan C
    www.nature.com/scientificreports OPEN Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides Received: 22 January 2018 Batikan Koroglu1, Scott Wagnon 1, Zurong Dai1, Jonathan C. Crowhurst1, Accepted: 19 June 2018 Michael R. Armstrong1, David Weisz1, Marco Mehl1,2, Joseph M. Zaug1, Harry B. Radousky1 & Published: xx xx xxxx Timothy P. Rose1 We use a recently developed plasma-fow reactor to experimentally investigate the formation of oxide nanoparticles from gas phase metal atoms during oxidation, homogeneous nucleation, condensation, and agglomeration processes. Gas phase uranium, aluminum, and iron atoms were cooled from 5000 K to 1000 K over short-time scales (∆t < 30 ms) at atmospheric pressures in the presence of excess oxygen. In-situ emission spectroscopy is used to measure the variation in monoxide/atomic emission intensity ratios as a function of temperature and oxygen fugacity. Condensed oxide nanoparticles are collected inside the reactor for ex-situ analyses using scanning and transmission electron microscopy (SEM, TEM) to determine their structural compositions and sizes. A chemical kinetics model is also developed to describe the gas phase reactions of iron and aluminum metals. The resulting sizes and forms of the crystalline nanoparticles (FeO-wustite, eta-Al2O3, UO2, and alpha-UO3) depend on the thermodynamic properties, kinetically-limited gas phase chemical reactions, and local redox conditions. This work shows the nucleation and growth of metal oxide particles in rapidly-cooling gas is closely coupled to the kinetically-controlled chemical pathways for vapor-phase oxide formation. Gas phase nucleation and growth of metal oxide nanoparticles is an important topic for many areas of chemistry, physics, material science, and engineering1–6.
    [Show full text]
  • The Role of Pe, Ph, and Carbonate on the Solubility of UO2 and Uraninite Under Nominally Reducing Conditions
    Geochimica et Cosmochimica Acta, Vol. 62, No. 13, pp. 2223–2231, 1998 Copyright © 1998 Elsevier Science Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/98 $19.00 1 .00 PII S0016-7037(98)00140-9 The role of pe, pH, and carbonate on the solubility of UO2 and uraninite under nominally reducing conditions 1 1 1 1 2 2 3, IGNASI CASAS, JOAN DE PABLO, JAVIER GIMENEZ´ , M. ELENA TORRERO, JORDI BRUNO, ESTHER CERA, ROBERT J. FINCH, * and 3,† RODNEY C. EWING 1Department of Chemical Engineering, Polytechnic University of Catalunya, Barcelona 08028, Spain 2QuantiSci SL, Parc Tecnolo`gic del Valle`s, Cerdanyola 08290, Spain 3Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA (Received August 14, 1997; accepted in revised form March 26, 1998) Abstract—Experimental data obtained from uranium dioxide solubility studies as a function of pH and under nominally reducing conditions in a 0.008 mol dm23 perchlorate medium and in a 1 mol dm23 chloride solution are presented. The solubility of extensively characterized uraninite samples from Cigar Lake (Canada), Jachymov (Czech Republic), and Oklo (Gabon) was determined in a solution matching the composition of a groundwater associated with granitic terrain. The redox potential of the test solution was monitored throughout the experimental period. The results obtained were modeled using aqueous formation constants compiled by the NEA, using stability constants corrected to appropriate ionic strengths. The solubility curves have been adjusted by calculating the 1 N value of Ks4 (UO2(s) 2H2O U(OH)4(aq)) that gave the best fit with the experimental data.
    [Show full text]
  • Depleted Uranium Hexafluoride: Waste Or Resource?
    UCRGJC-120397 PREPRINT Depleted Uranium Hexafluoride: Waste or Resource? N. Schwertz J. Zoller R Rosen S. Patton C. Bradley A. Murray This paper was prepared for submittal to the Global ‘95 International Conference on Evaluation of Emerging Nuclear Fuel Cycle Systems Versailles, France September 11-14,1995 July 1995 This isa preprint of apaper intended for publication in a jaurnal orproceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permiasion of the anthor. DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United Stat= Government. Neither theunited States Governmentmor theuniversity of California nor any oftheir employees, makes any warranty, express or implied, or assumesanylegalliabilityorrespomibility forthe accuracy,completeness,orusefuin~ of any information, apparatus, pduct, or process disdosed, or represents that its use wouldnotinfringe privatelyowned rights. Referencehemin to anyspe&c commercial prodocis, proms, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constituteor imply its endorsement, reconunendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessady state or reflect those of the United States Government or the University of California, and shall not be used for adveltising or product endorsement purposes. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document . DEPLETED URANIUM HEXAFLUORIDE: WASTE OR RESOURCE? N. Schwertz, J. Zoller, R. Rosen, S. Patton LAWRENCE LIVERMORE NATIONAL LABORATORY P.
    [Show full text]
  • Molecular Characterization of Uranium(VI) Sorption Complexes on Iron(III)-Rich Acid Mine Water Colloids
    Geochimica et Cosmochimica Acta 70 (2006) 5469–5487 www.elsevier.com/locate/gca Molecular characterization of uranium(VI) sorption complexes on iron(III)-rich acid mine water colloids Kai-Uwe Ulrich a,*, Andre´ Rossberg a,b, Harald Foerstendorf a, Harald Za¨nker a, Andreas C. Scheinost a,b a Institute of Radiochemistry, FZ Rossendorf e.V., P.O. Box 510119, D-01314 Dresden, Germany b Rossendorf Beamline at ESRF, B.P. 220, F-38043 Grenoble, France Received 7 November 2005; accepted in revised form 21 August 2006 Abstract A mixing of metal-loaded acid mine drainage with shallow groundwater or surface waters usually initiates oxidation and/or hydrolysis of dissolved metals such as iron (Fe) and aluminum (Al). Colloidal particles may appear and agglomerate with increasing pH. Likewise chemical conditions may occur while flooding abandoned uranium mines. Here, the risk assessment of hazards requires reliable knowl- edge on the mobility of uranium (U). A flooding process was simulated at mesocosm scale by mixing U-contaminated acid mine water with near-neutral groundwater under oxic conditions. The mechanism of U-uptake by fresh precipitates and the molecular structure of U bonding were determined to estimate the mobility of U(VI). Analytical and spectroscopic methods such as Extended X-ray Absorption Fine-Structure (EXAFS) spectroscopy at the Fe K-edge and the U LIII-edge, and Attenuated Total Reflectance Fourier Transform Infra- red (ATR-FTIR) spectroscopy were employed. The freshly formed precipitate was identified as colloidal two-line ferrihydrite. It removed U(VI) from solution by sorption processes, while surface precipitation or structural incorporation of U was not observed.
    [Show full text]
  • Kinetic Studies of Sodium and Metforminium Decavanadates Decomposition and in Vitro Cytotoxicity and Insulin- Like Activity
    inorganics Article Kinetic Studies of Sodium and Metforminium Decavanadates Decomposition and In Vitro Cytotoxicity and Insulin- Like Activity Aniela M. Silva-Nolasco 1,2, Luz Camacho 2 , Rafael Omar Saavedra-Díaz 1, Oswaldo Hernández-Abreu 1 , Ignacio E. León 3 and Irma Sánchez-Lombardo 1,* 1 Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas (CICTAT), Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1 Col. La Esmeralda, Cunduacán 86690, Tabasco, Mexico; [email protected] (A.M.S.-N.); [email protected] (R.O.S.-D.); [email protected] (O.H.-A.) 2 Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Ciudad de Mexico 04530, Mexico; [email protected] 3 Centro de Química Inorgánica CEQUINOR (CONICET, UNLP), Bv 120 1465, La Plata 1900, Argentina; [email protected] * Correspondence: [email protected] Received: 22 October 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: The kinetics of the decomposition of 0.5 and 1.0 mM sodium decavanadate (NaDeca) and metforminium decavanadate (MetfDeca) solutions were studied by 51V NMR in Dulbecco’s modified Eagle’s medium (DMEM) medium (pH 7.4) at 25 ◦C. The results showed that decomposition products 2 4 are orthovanadate [H2VO4]− (V1) and metavanadate species like [H2V2O7] − (V2), [V4O12] − (V4) 5 and [V5O15] − (V5) for both compounds. The calculated half-life times of the decomposition reaction were 9 and 11 h for NaDeca and MetfDeca, respectively, at 1 mM concentration. The hydrolysis products that presented the highest rate constants were V1 and V4 for both compounds.
    [Show full text]
  • Uranium Dioxide Is Voluminous
    r>r 19 i o% ORNL-4755 UC-25 - Metals, Ceramics, and Materials s <-;. CONVERSIOH OF V&&4VWA NITRATE TO i aRAMlC-OR^Dt OXIDE>fs6t THE U&HT W4TBT J- -« .•'--• "" * -„ -' r J* - J * \ ^ --; f % ;~, <r- 4>- >» N< DMSICH0F DAfE -,i M\OH CAR6IDE COft^0tATtOR. U.S. ATOMIC *N**0T COMMAS»OIV 9>f & ^ima®tf»T^^*tB iwww® 1 PH^sarf in «*£ Uf9t«t Stress e* America. A vatfatt» from ---Sri*; -3K- >f ~ - - i ,43^>*£«* «^ ixn^ar»# ac «*, mts&mf of work {passaged b? tfw Lhnw XtitNr tfgr *}~ti$*i $**m «ar t!» untod Soto* Aflymic ^ «^ awy ^ iftw^r itT»i&y*OT« nor mf sd ihev canifiesscs.. ^iU- >*• ^H^ **•-» *-*• V .24, i *~ eta* -4-T" * iL - - IBS kfiE- r-„- 2 • «. "« J" '»' i - ^r'-s^j. •NOTICt ORNL-4755 Contract No. W-7405-eng-26 METAI5 AND CERAMICS DIVISION CONVERSION OF URANIUM NITRATE TO CERAMIC-GRADE OXIDE FOR THE LIGHT WATER ESEEDER REACTOR: PROCESS DEVELOPMENT J. M. Leitnaker M. L. Smith C. M. Fitzpatrick APRIL 1972 OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATIOJN for the U.S. ATOMIC ENERGY COMMISSION W5TWBUTI0N OF THIS DOCUMENT IS UftUMflli iii CONTENTS Page Abstract 1 Introduction 1 Previous Investigations - 3 Stabilisation 4 Behavior of IXfe in Dry Air or Oxygen at Lev Tenpera&ures . 5 Behavior of UCfe in Dry Air or Oxygen at High Temperatures . 5 Behavior of DC^ in Hoist Air 7 Stabilisation of UO2 by Control of Surface Area 7 Stabilization by Addition of Moisture 11 Stabilization of UO2 with Dry Ice 12 Mechanical Stabilization of UO2 13 Reduction of Uranate to UO2 14 General Process Description .
    [Show full text]
  • Vacuum Products 450 455 454 453 452
    VACUUM PRODUCTS 450 PIAB piCOMPACT Integrated Controls Ejectors 452 PIAB piINLINE Vacuum Ejectors 453 PIAB piCLASSIC Classic Pumps ELMO RIETSCHLE Rotary Vane 454 Vacuum Pumps & Blowers ELMO RIETSCHLE Vacuum Pumps 455 & Accessories NINE PIAB PRODUCT OVERVIEW Nine 428 PIAB PRODUCT OVERVIEW Nine 429 AN ECO-FRIENDLY VACUUM SYSTEM By never using more energy than absolutely necessary, companies can reduce their carbon footprint as well as their costs. Piab can work with you to achieve the lowest possible energy consumption. ENVIRONMENTAL INDEX Your pump will require less compressed air when placed close to the point of suction, thus reducing CO2 emissions and energy consumption. The graph demonstrates the relationship between environmental impact and the distance of the pump from the point of suction. BEST TO USE A DECENTRALISED VACUUM SYSTEM A decentralised system with the vacuum pump / cartridge placed directly at the point of suction eliminates the risk of loss in the vacuum piping and the need for expensive, oversized components. A centralised vacuum system is designed to have one vacuum source for multiple suction points. • Lowest energy usage • Fastest cycle time • Safest product handling • Most flexible design for zoning • Easiest troubleshooting • Independently working suction cups Nine • Most consistent / even performance IF NOT, DESIGN A CENTRALISED VACUUM SYSTEM A centralised vacuum system is designed to have one vacuum source for multiple suction points. • Easy installation • Easy vacuum sensing and controls • Light end-of-arm tooling • Simple filtration options • Some loss in system performance due to distance Contact your distributor for further information SUCTION CUPS / GRIPPERS INTRODUCTION SUCTION CUP CATEGORY FEATURES APPLICATIONS • Unique modular suction cup concept with individually optimised lips and bellows for Smooth, textured, uneven gripping, lifting and height compensation on almost any kind of object.
    [Show full text]
  • Precipitation of Aluminum Containing Species in Tank Wastes
    PNNL-13881 Precipitation of Aluminum Containing Species in Tank Wastes S.V. Mattigod K.E. Parker D.T. Hobbs D.E. McCready April 2002 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 PNNL-13881 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RL01830 This document was printed on recycled paper. (8/00 PNNL-13881 Precipitation of Aluminum Containing Species in Tank Wastes S. V. Mattigod D. T. Hobbs K. E. Parker D. E. McCready April 2002 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Summary Aluminisilicate deposit buildup experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999.
    [Show full text]
  • Journal of Luminescence 210 (2019) 425–434
    Journal of Luminescence 210 (2019) 425–434 Contents lists available at ScienceDirect Journal of Luminescence journal homepage: www.elsevier.com/locate/jlumin Insight into the effect of A-site cations on structural and optical properties of T RE2Hf2O7:U nanoparticles ∗ Maya Abdoua, Santosh K. Guptaa,b, Jose P. Zunigaa, Yuanbing Maoa,c, a Department of Chemistry, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA b Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India c School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA ARTICLE INFO ABSTRACT Keywords: A2B2O7 type pyrochlores have been recently proposed as a potential nuclear waste host due to their many Uranium interesting properties. To assess and understand the performance of these compounds as nuclear waste hosts, the Pyrochlore speciation and structural investigations on actinide-doped RE2Hf2O7 are needed since both are imperative from Phase-transition their application perspective. In this work, we investigated the effect of uranium doping at different con- Luminescence centrations in the range of 0–10% on the structural and optical properties of RE Hf O :U (RE = Y, Gd, Nd, and Cotunnite 2 2 7 Lu) nanoparticles (NPs). The Y2Hf2O7 NPs exist in slightly disordered pyrochlore structure and the extent of disordering increases as a function of uranium doping while the structure reaches a cotunnite phase at 10.0% doping level. The Nd2Hf2O7 NPs also exist in a distorted pyrochlore structure and their distortion increases with increasing uranium doping inducing a phase transition into a disordered fluorite structure at 10.0% uranium doping.
    [Show full text]