Characterization of Machinability in Lead-Free Brass Alloys

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Machinability in Lead-Free Brass Alloys DEGREE PROJECT IN MATERIALS DESIGN AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Characterization of machinability in lead-free brass alloys KASIM AYTEKIN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT Abstract Recent legislation has put focus on the toxic nature of lead as an alloying element in brass products. Water supply systems are of biggest concern where suspected lead leakages from brass products are threatening human health. A comprehensive study has been conducted in order to characterize the machinability of lead-free brass alloys to provide the industry with necessary information to assist a replacement of the leaded alternatives. The characterization has focused on two particular machining processes, namely turning and drilling and has been based on cutting force generation and chip formation. While the turning tests aimed to characterize the machinability by comparing two lead-free alloys (CW511L and AquaNordic) with a leaded alloy (CW625N), drilling tests aimed to characterize machinability of the lead-free AquaNordic alloy particularly, with the main focus put on the impact of tool geometry on machinability. The results have shown that significantly higher cutting forces are generated during turning of lead-free alloys as compared to the leaded. There was, however, no significant difference between the two lead-free alloys regarding cutting forces while chip formation is improved for AquaNordic. Drilling tests have shown that the machinability of the lead-free AquaNordic alloy can be improved by increasing the tool rake angle and decreasing tool diameter. Based on the results from this thesis work, it has been concluded that the machinability of lead-free brass alloys is sufficiently good to be able to be adopted by the industry. However, improvement is necessary in order to fulfill the requirement needed to replace the leaded alternatives. Table of Contents 1. Introduction ................................................................................................................................ 1 1.1. Background ......................................................................................................................... 1 1.2. Aim and objective ................................................................................................................ 3 1.2.1. Turning – Alloy comparison .......................................................................................... 3 1.2.2. Drilling – Tool geometry comparison ............................................................................ 3 2. Brass as a workpiece material ..................................................................................................... 4 2.1. α –brass............................................................................................................................... 5 2.2. Duplex brasses .................................................................................................................... 5 2.3. Additional alloying elements................................................................................................ 6 2.3.1. Lead ............................................................................................................................. 7 3. Machinability .............................................................................................................................. 8 3.1. Machining theory ................................................................................................................ 9 3.1.1. Chip formation and morphology .................................................................................. 9 3.1.2. Cutting force generation ............................................................................................ 11 3.2. Effect of tool design on machinability ................................................................................ 12 3.2.1. Tool material and geometry aspects on drills ............................................................. 15 4. Literature review ....................................................................................................................... 17 5. Experimental ............................................................................................................................. 19 5.1. Methodology ..................................................................................................................... 19 5.2. Workpiece materials.......................................................................................................... 20 5.2.1. Turning – Alloy comparison ........................................................................................ 20 5.2.2. Drilling – Tool geometry comparison .......................................................................... 20 5.3. Cutting tools ...................................................................................................................... 21 5.3.1. Turning - Alloy comparison ........................................................................................ 21 5.3.2. Drilling - Tool geometry comparison .......................................................................... 21 5.4. Machining tests ................................................................................................................. 23 5.4.1. Turning ...................................................................................................................... 23 5.4.2. Drilling ....................................................................................................................... 24 5.5. Analysis ............................................................................................................................. 26 5.5.1. Cutting forces ............................................................................................................ 26 5.5.2. Optical analysis .......................................................................................................... 27 5.6. Comparative evaluation of chips ........................................................................................ 28 6. Results ...................................................................................................................................... 28 6.1. Turning .............................................................................................................................. 28 6.1.1. Force measurements ................................................................................................. 28 6.1.2. Chip morphology ....................................................................................................... 38 6.2. Drilling ............................................................................................................................... 42 6.2.1. Force measurements ................................................................................................. 42 6.2.2. Vibrations .................................................................................................................. 50 6.2.3. Chip morphology ....................................................................................................... 51 7. Discussion ................................................................................................................................. 55 7.1. Turning .............................................................................................................................. 55 7.1.1. Force measurement ................................................................................................... 55 7.1.2. Chip formation ........................................................................................................... 56 7.2. Drilling ............................................................................................................................... 57 7.2.1. Force measurement ................................................................................................... 57 7.2.2. Chip formation ........................................................................................................... 58 7.2.3. Vibrations .................................................................................................................. 58 7.3. Comments ......................................................................................................................... 59 8. Summary and conclusions ......................................................................................................... 60 8.1. Recommendations for machining of AquaNordic ............................................................. 61 9. Future work .............................................................................................................................. 62 10. Acknowledgements ............................................................................................................... 63 11. References ............................................................................................................................ 64 Appendix A ..........................................................................................................................................I A1. Chip formation and morphology ................................................................................................I A2. Cutting forces ..........................................................................................................................
Recommended publications
  • 8.10 Drill Grinding Device
    Special Accessories 8.10 Drill Grinding Device 1. Introduction Device can accurately grind precision drill and tools, this drill grinding machine system consists of a motor and grinding wheel head composed of the drill tool in a precision six claw clip manual chuck, and with a rotatable operating handle, when swing operation handle, that produce the following actions: (A) The rotation of the drill blade in contact with the wheel. (B) Drill bit to the forward movement of the wheel, which is determined by a simple plane caused by the cam and the drive arm. (C) By the rotation of the operation 1 and 2 together, can produce about necessary, Forward and backward rotation, and rotation of the left and right around the vertical arm by means of proper adjustment of the cam drive for grinding. 2. Installation Three methods of operation (A) By the arrows in the slider on the scale required in the angle, and then tighten (12) handles. Pulled the latch position behind the locking screws, remember locking. (B) Fitted inside the grinding cam 6, the upper fixed block (2) on the green slot. (C) After setting the required bevel adjustment (1) handle rake angle 0 ° ~ 18 ° can be adjusted after the oblique angle is larger, thinner blade. The higher the M-40 Operating Manual 8-49 Special Accessories hardness of the material to be cut, then the posterior oblique angle should be smaller; lower the hardness of the material to be cut, then the posterior oblique angle should be larger. (D) If a straight shank drill bit, then caught in six claw clip directly to the head; such as slope handle, is mounted on the right sleeve of Mohs, and then to six claw tip drill chuck clamping, which can center of the drill grinding more solid and more accurate.
    [Show full text]
  • IBS, INCORPORATED T a P S B U R S B L a D E S Index
    IBS, INCORPORATED Index 4-40 thru 1/2-10 Tap, Die & Drill Set PT-8 Taps, Burs & Blades 9/16-12 thru 3/4-16 Tap, Die & Drill Set PT-8 A Index 10 Pc NC/NF Power Taps w/Index PT-5, PT-7 10 Pc NC/NF Taper Taps w/Inde PT-5, PT-7 Annular Cutters 18 Pc NC Bottom Taps & Drill Bits w/Index PT-5, PT-7 Carbide Tipped 18 Pc NC Taper Taps & Drill Bits w/Index PT-5, PT-7 CT150 & CT200 PT-14, PT-16 Nitro-Carb Hand Tap PT-5, PT-7 IBS High Speed Steel PT-16 Assortments, Cutting Tools B Advanced Edge Power Reciprocating Saw Blades T Blades with Tool Ease Lubricant Stick PT-45 100 PK Shark Serrated Blades PT-54 Annular Cutters - Carbide Tipped Bandsaw, Bi-Metal A PT-15 General Information PT-36 Annular Cutters - High Speed Steel PT-17 Portable Blades PT-41 P Black Hole Carbide Tipped Cutters Troubleshooting PT-37, PT-38, PT-39, PT-40 1" Depth - 4 Pc.Set PT-23 Bi-Metal 1" Depth - 5 Pcs PT-23 Air Saw Blades PT-51 S 3/16" Depth - 5 Pc. PT-23 Reciprocating Saw PT-46 762R - 5 Pc. - 3/16" Depth PT-22 Boar Blades PT-48 763R - 4 Pc. 1" Depth PT-22 Thick Demolition PT-47 764R - 5 Pc. - 1" Depth PT-23 Sabre/Jig PT-52 Carbide Burs PT-59 Chop Saw-Carbide Tipped B Hole Saws 14" Blade for Aluminum PT-34 Bi-Metal 14" Blade for Stainless Steel PT-34 U Advanced Bi-Metal Hole Saws 2-1/8"- 4" PT-27 14" Blade for Steel PT-34 Advanced Bi-Metal Hole Saws 3/4"- 4" PT-28 Circular Saw Advanced Bi-Metal Hole Saws 5/8"- 2" PT-29 Combination Blade PT-32 R M42 Thin Wall Hole Saws Travel Tray Assortment PT-18 Heavy Duty Deck / Nail Cutting Blade PT-32 Hole Saws - Bi-Metal Miter Saw
    [Show full text]
  • MODEL G0686 LARGE DRILL BIT GRINDER OWNER's MANUAL (For Models Manufactured Since 01/15)
    MODEL G0686 LARGE DRILL BIT GRINDER OWNER'S MANUAL (For models manufactured since 01/15) COPYRIGHT © MAY, 2009 BY GRIZZLY INDUSTRIAL, INC., REVISED MARCH, 2019 (MN) WARNING: NO PORTION OF THIS MANUAL MAY BE REPRODUCED IN ANY SHAPE OR FORM WITHOUT THE WRITTEN APPROVAL OF GRIZZLY INDUSTRIAL, INC. #TS11442 PRINTED IN TAIWAN V2.03.19 This manual provides critical safety instructions on the proper setup, operation, maintenance, and service of this machine/tool. Save this document, refer to it often, and use it to instruct other operators. Failure to read, understand and follow the instructions in this manual may result in fire or serious personal injury—including amputation, electrocution, or death. The owner of this machine/tool is solely responsible for its safe use. This responsibility includes but is not limited to proper installation in a safe environment, personnel training and usage authorization, proper inspection and maintenance, manual availability and compre- hension, application of safety devices, cutting/sanding/grinding tool integrity, and the usage of personal protective equipment. The manufacturer will not be held liable for injury or property damage from negligence, improper training, machine modifications or misuse. Some dust created by power sanding, sawing, grinding, drilling, and other construction activities contains chemicals known to the State of California to cause cancer, birth defects or other reproductive harm. Some examples of these chemicals are: • Lead from lead-based paints. • Crystalline silica from bricks, cement and other masonry products. • Arsenic and chromium from chemically-treated lumber. Your risk from these exposures varies, depending on how often you do this type of work.
    [Show full text]
  • Metal Drill Bits Hammer Drill Stronger Than Steel Chisel Drill Bits Stone and Special Metal Drill Bits
    BITS METAL DRILL BITS HAMMER DRILL STRONGER THAN STEEL CHISEL DRILL BITS STONE AND SPECIAL METAL DRILL BITS 307 | HSS-E DIN 338 cobalt 76–79 WOOD DRILL BITS 311 | HSS TIN DIN 338 steel drill bit 80–81 302 | HSS DIN 338, ground, split point 82–85 300 | HSS DIN 338, standard 86–90 300 | HSS DIN 338, standard, shank reduced 91 340 | HSS DIN 340, ground, split point, long 92 342 | HSS DIN 1869, ground, extra long 93 SAWS 344 | HSS hollow section drill bit / Facade drill bit 94 345 | HSS DIN 345 morse taper 95–96 303 | HSS DIN 1897 pilot drill bit, ground, split point, extra short 97 310 | HSS DIN 8037 carbide tipped 98 312 | HSS-G Speeder DIN 338 RN metal drill bit 99 304 | HSS Double end drill bit, ground, split point 100 315 | HSS Drill bit KEILBIT, ground 101 317 | HSS combination tool KEILBIT 102 329 | HSS countersink KEILBIT 103 327 | HSS countersink 90° DIN 335 C 104 328 | HSS deburring countersink 105 ASSORTMENTS 326 | HSS tube and sheet drill bit 106 325 | HSS step drill 107 140 | Scriber 108 320 | HSS hole saw bi-metal 109–112 SHELVES | From Pros for Pros | www.keil.eu | 73 MODULES - BITS HAMMER DRILL METAL DRILL BITS Nothing stops the metal drill bits because we offer a drill bit for every application. CHISEL HSS-E TWIST DRILL BIT 135° The HSS-E drill bit is a cobalt alloyed high performance drill bit. Even with insufficient cooling it has reserve in heat resistance. Due to the alloying addition of 5 % Co in the cutting material these drill bits can be used for working with work pieces with a tensile strength of over 800N/m².
    [Show full text]
  • 5.1 GRINDING Definitions
    UNIT-V GRINDING AND BROACHING 5.1 Grinding Definitions Cutting conditions in grinding Wheel wear Surface finish and effects of cutting temperature Grinding wheel Grinding operations Finishing Processes Introduction Finishing processes 5.1 GRINDING Definitions Abrasive machining is a material removal process that involves the use of abrasive cutting tools. There are three principle types of abrasive cutting tools according to the degree to which abrasive grains are constrained, bonded abrasive tools: abrasive grains are closely packed into different shapes, the most common is the abrasive wheel. Grains are held together by bonding material. Abrasive machining process that use bonded abrasives include grinding, honing, superfinishing; coated abrasive tools: abrasive grains are glued onto a flexible cloth, paper or resin backing. Coated abrasives are available in sheets, rolls, endless belts. Processes include abrasive belt grinding, abrasive wire cutting; free abrasives: abrasive grains are not bonded or glued. Instead, they are introduced either in oil-based fluids (lapping, ultrasonic machining), or in water (abrasive water jet cutting) or air (abrasive jet machining), or contained in a semisoft binder (buffing). Regardless the form of the abrasive tool and machining operation considered, all abrasive operations can be considered as material removal processes with geometrically undefined cutting edges, a concept illustrated in the figure: The concept of undefined cutting edge in abrasive machining. Grinding Abrasive machining can be likened to the other machining operations with multipoint cutting tools. Each abrasive grain acts like a small single cutting tool with undefined geometry but usually with high negative rake angle. Abrasive machining involves a number of operations, used to achieve ultimate dimensional precision and surface finish.
    [Show full text]
  • Hole Saw and Mandrel Assembly
    Europaisches Patentamt 19 J) European Patent Office Office europeen des brevets (Tj) Publication number : 0 455 420 A2 12 EUROPEAN PATENT APPLICATION (2?) Application number : 91303751.1 (a) Int. CI.5 : B23B 51/04 (2) Date of filing : 25.04.91 (So) Priority : 04.05.90 US 532527 (72) Inventor : Cain, William 100 Brookside Road Orange, Massachusetts 01364 (US) (43) Date of publication of application : Inventor : Emond, Ernest 06.11.91 Bulletin 91/45 28 River Road Millers Falls, Massachusetts 01349 (US) Karl @ Designated Contracting States : Inventor : Glawischnig, DE FR GB IT SE 98 Shelburne Center Road Shelburne Falls, Massachusetts 01370 (US) Inventor : Grant, Robert @ Applicant : RULE INDUSTRIES, INC. 31 Columbian Avenue 70 Blanchard Road Athol, Massachusetts 01331 (US) Burlington, MA 01803 (US) @) Representative : Woodward, John Calvin et al VENNER SHIPLEY & CO. 368 City Road London EC1V 2 OA (GB) (54) Hole saw and mandrel assembly. (57) A one piece hole saw assembly with mandrel permanently affixed to the hole saw cup. The mandrel contains a hollow shaft, a locking flange and reinforcing flange which are integ- rally formed as by machining. The locking flange of the mandrel mates with a locking hole or slot in the top surface of the hole saw cup. The reinforcing flange on the mandrel is welded during manufacture to the top surface of the hole saw cup. A pilot drill bit is inserted into the shaft core and welded to the shaft. The resulting product is a one piece hole saw assembly inten- ded for use by simple insertion of the mandrel or shaft end of the pilot drill into the chuck of a conventional electric drill.
    [Show full text]
  • The MG Chemicals Professional Prototyping Process
    The MG Chemicals Professional Prototyping Process Introduction ..................................................................................................................................................................3 Before you begin ..........................................................................................................................................................4 Read the instructions in their entirety.......................................................................................................................4 Get everything you need...........................................................................................................................................4 Plan for safety...........................................................................................................................................................5 Plan for disposal .......................................................................................................................................................5 Design your circuit for the MG process ...................................................................................................................6 Step 1: Cutting and Routing .........................................................................................................................................6 Ingredients required..................................................................................................................................................6 Overview:
    [Show full text]
  • Investigation of Nondestructive Testing Methods for Friction Stir Welding
    metals Review Investigation of Nondestructive Testing Methods for Friction Stir Welding Hossein Taheri 1,* , Margaret Kilpatrick 2, Matthew Norvalls 3, Warren J. Harper 3, Lucas W. Koester 4, Timothy Bigelow 3,4 and Leonard J. Bond 3,5 1 Department of Manufacturing Engineering, Georgia Southern University, Statesboro, GA 30460, USA 2 Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30460, USA; [email protected] 3 Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; [email protected] (M.N.); [email protected] (W.J.H.); [email protected] (T.B.); [email protected] (L.J.B.) 4 Center for Nondestructive Evaluation (CNDE), Iowa State University, Ames, IA 50011, USA; [email protected] 5 Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA * Correspondence: [email protected]; Tel.: +1-912-478-7463 Received: 15 April 2019; Accepted: 23 May 2019; Published: 29 May 2019 Abstract: Friction stir welding is a method of materials processing that enables the joining of similar and dissimilar materials. The process, as originally designed by The Welding Institute (TWI), provides a unique approach to manufacturing—where materials can be joined in many designs and still retain mechanical properties that are similar to, or greater than, other forms of welding. This process is not free of defects that can alter, limit, and occasionally render the resulting weld unusable. Most common amongst these defects are kissing bonds, wormholes and cracks that are often hidden from visual inspection. To identify these defects, various nondestructive testing methods are being used. This paper presents background to the process of friction stir welding and identifies major process parameters that affect the weld properties, the origin, and types of defects that can occur, and potential nondestructive methods for ex-situ detection and in-situ identification of these potential defects, which can then allow for corrective action to be taken.
    [Show full text]
  • Technical Guidance Reference
    Technical Guidance Reference References N11 to N42 N N Parts Technical Guidance Guidance Technical N Reference Technical Guidance Turning Edition ................................................ N12 Milling Edition ................................................. N17 Endmilling Edition ........................................... N21 Drilling Edition ................................................. N24 SUMIBORON Edition ...................................... N29 References SI Unit Conversion List ................................... N33 Metals Symbols Chart (Excerpt) .................... N34 Steel and Non-Ferrous Metal Symbol Chart (Excerpt) ... N36 Hardness Scale Comparison Chart .............. N37 Dimensional Tolerance of Standard Fittings .... N38 Dimensional Tolerance and Fittings .............. N40 Standard of Tapers ......................................... N41 Surface Roughness ....................................... N42 N11 Technical Guidance The Basics of Turning, Turning Edition Calculating Cutting Speed Calculating Power Requirements f (1) Calculating rotation speed from cutting speed n : Spindle Speed (min-1) P m c : Power requirements (kW) v n 1,000×vc c : Cutting speed (m/min) D n ø v = D c : Cutting speed (m/min) X×Dm m : Inner/outer diameter of workpiece (mm) vc×f×a p×k c p Pc = f : Feed Rate (mm/rev) X : ≈ 3.14 a 60×103×V References ap : Depth of cut (mm) k : Specific cutting force (MPa) N v D c Example: c=150m/min, m=100mm P H = c H : Required horsepower (HP) 1,000 × 150 Feed Direction n = = 478 (min-1) 0.75 3.14 ×
    [Show full text]
  • Guide to Machining Carpenter Specialty Alloys Guide to Machining Carpenter Special Ty All O Ys
    GUIDE TO MACHINING CARPENTER SPECIAL GUIDE TO MACHINING CARPENTER SPECIALTY ALLOYS Carpenter Technology Corporation TY ALL Wyomissing, PA 19610 U.S.A. 1-800-654-6543 Visit us at www.cartech.com O YS For on-line purchasing in the U.S., visit www.carpenterdirect.com GUIDE TO MACHINING CARPENTER SPECIALTY ALLOYS Carpenter Technology Corporation Wyomissing, Pennsylvania 19610 U.S.A. Copyright 2002 CRS Holdings, Inc. All Rights Reserved. Printed in U.S.A. 9-02/7.5M The information and data presented herein are suggested starting point values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available. Unless otherwise noted, all registered trademarks are property of CRS Holdings, Inc., a subsidiary of Carpenter Technology Corporation. ISO 9000 and QS-9000 Registered Headquarters - Reading, PA Guide to Machining CARPENTER SPECIALTY ALLOYS Contents Introduction ............................................................................. 1 General Stainless Material and Machining Characteristics .... 3 Classification of Stainless Steels .............................................. 5 Basic Families and Designations ........................................ 5 Austenitic
    [Show full text]
  • Machining of Aluminum and Aluminum Alloys / 763
    ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool.
    [Show full text]
  • Metalwork-Topics.Pdf
    Published in 2012 by Professional Development Service for Teachers (PDST) Junior Certificate School Programme Blackrock Education Centre Kill Avenue Dún Laoghaire Co. Dublin Phone: 01 236 5000 Fax: 01 236 5071 Email: [email protected] Web: www.jcsp.ie Copyright © PDST, 2012 The Professional Development Service for Teachers (PDST) is funded by the Teacher Education Section of the Department of Education and Skills under the National Development Plan 2007-2013. The Junior Certificate School Programme Literacy and Numeracy Strategy and the Demonstration Library Project are funded by the Early Literacy Initiative and the Delivering Equality of Opportunity in Schools (DEIS) Action Plan within the Teacher Education Section of the Department of Education and Skills. Written by Diarmuid Mooney Edited by Isabel Baker and Mary Clare Higgins, JCSP Associates CONTENTS Page Chapter 1 Health & Safety 2 Chapter 2 Where Iron comes From 5 Chapter 3 Iron to Steel 9 Chapter 4 Metal Families 15 Chapter 5 Plastics 19 Chapter 6 Measuring & Marking Out 23 Chapter 7 Bench Work 27 Chapter 8 The Drill 31 Chapter 9 The Lathe 36 Chapter 10 Thread Cutting 40 Chapter 11 Joining Material 45 Chapter 12 Hot & Cold Forming 50 Chapter 13 Engines 52 Chapter 14 Electricity at Home 60 Chapter 15 Electronics 62 Metalwork at a Glance 1 HEALTH & SAFETY In the metalwork room there are a number of dangers you have to watch out for. Here are some rules you should follow to stay safe. 1) No loose clothing worn whenever you are working on a Loose clothing can get caught in the machine.
    [Show full text]