Machining of Aluminum and Aluminum Alloys / 763

Total Page:16

File Type:pdf, Size:1020Kb

Machining of Aluminum and Aluminum Alloys / 763 ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool. This edge consists "/a to some extent by cold work. In machining, of aluminum particles that have become a continuous chip is formed that must be welded to the tool edge because they were directed away from the workpiece by tools melted by the heat generated in cutting. with generous side and back rake angles, Edge buildup can be minimized by using thus preventing scratching of the finished effective cutting fluids and by employing D :/ D surface with the work-hardened chips. tools with surfaces that are free of grinding These alloys machine easily, although tool marks and scratches. pressures are high as a result of high fric- Alloys containing more than 10% Si are tion. To obtain good surface finish, sharp the most difficult to machine because hard tools are mandatory because the alloys are particles of free silicon cause rapid tool gummy. Machinability is improved by cold wear. Alloys containing more than 5% Si working; alloys in the full-hard temper are ~. easier to machine to a good finish than those will not finish to the bright machined sur- ~. 0 faces of other high-strength aluminum al- in the annealed condition. loys, but will have slightly gray surfaces , ] Heat-Treatable Alloys. Most of the al- with little luster. Chips are torn rather than loys of this group contain fairly high per- sheared from the work, and special precau- centages of alloying elements such as cop- tions (such as the use of lubricant-contain- Machinabllity ndmin Feed, mndrev (in./rev) per, silicon, magnesium, and zinc. They can ing cutting fluids) must be taken to avoid the rating Alloy (sfm) Left photo Right photo be machined to a good finish with or with- out cutting fluid, but a cutting fluid is rec- buildup of burrs on cutting edges. A ........... 2011-T3 120 0.066 0. ! 52 (400) (0.0026) (0.0060) ommended for most operations. Turnings B .......... 2024-T4 30 O. 152 0.264 usually occur as long, continuous curls, Classification of (100) (0.0(0) (0.0104) except for the free-machining alloys, which C .......... 6061-T6 120 0.152 0.264 contain chip-breaking constituents. Heat- Aluminum Alloys (400) (0.0060) (0.0104) D .......... 3004-H32 120 O. 152 0.264 treatable alloys are more machinable in the Cast, wrought, strain hardenable, and (400) (0.0060) (0.0104) heat-treated tempers than in the softer as- heat treatable are the four major classifica- E .......... 1100-HI2 120 0.152 0.264 fabricated or annealed solution. tions of aluminum alloys. Machinability (400) (0.0060) (0.0104) Machinability groupings for aluminum groupings are also used. alloys are useful in specifying tool forms. Typical chips for machinability ratings A to E Cast alloys containing copper, magne- F'U ° I (Table 1)for aluminum alloys. All chips were For this purpose, alloys are classified into sium, or zinc as the principal alloying ele- made with 20 ° rake tool and 2.54 mm (0.100 in.) depth five groups: A, B, C, D, and E, in increasing ments impose few machining problems. of cut. order of chip length and in decreasing order 762 / Machining of Specific Metals and Alloys Table l(a) Machinability ratings of wrought aluminum alloys Hardness, HB Hardness, HB Alloy (500 kg load, Machinabflity Alloy (500 kg load, Machinability designation Temper Product form 10 nun ball) rating(a) designation Temper Product form 10 mm ball) rating(a) 1060 ............ O Extruded rod, bar, 19 E 5154 ....... O Sheet, plate; welding wire 58 D HI2 extruded and drawn 23 E H32 and rod 67 D HI4 tube, pipe 26 D H34 73 C HI6 30 D H36 78 C HI8 35 D H38 80 C 1100 .......... O Sheet, plate; rolled and 23 E H112 63 D HI2 extruded rod, bar; 28 E 5252 .......... H25 Sheet 68 C HI4 extruded and drawn 32 D H38 75 C H 16 tube, pipe; other 38 D 5254 .......... O Sheet, plate 58 D H 18 44 D H32 67 D 2011 .......... T3 Rod, bar, tube, pipe 95 A H34 73 C T8 100 A H36 78 C 2014 .......... O Plate, rod, bar, tube, pipe; 45 D H38 80 C T4 other 105 B H 112 63 D T6 135 B 5257 .......... H25 Sheet 32 C 2017 .......... O Rolled rod, bar; other 45 C H28 43 C T4 105 B 5357 .......... O Sheet, plate 32 D 2018 .......... T61 Forging stock 120 B H25 50 C 2024 .......... O Sheet, plate, rod, bar, tube, 47 D H28 55 C T3 pipe; other 120 B 5454 .......... O Sheet, plate; other 62 D T4 120 B H32 73 D T61 130 B H34 81 C 2025 .......... T6 Forging stock I l0 B HI 11 70 D 2117 .......... T4 Rivet wire, rod 70 C HI 12 62 D 2218 .......... T72 Forging stock 95 B 5456 .......... O Sheet, plate; extruded rod 70 D 2219 .......... O Sheet, plate; extruded rod, • ..... Hill bar; extruded tube, pipe; 75 D T42 bar; extruded and drawn ...... H112 forgings 70 D T351 tube, pipe; forging stock 100 B HI 16 90 D T37 117 B 5457 .......... O Sheet 32 E T62 I 15 B H25 48 C T851 130 B H28 55 C T87 130 B 5557 .......... O Sheet 27 E 2618 .......... T61 Forgings 115 B H25 46 D 3002 .......... O Sheet 25 -.. H28 55 D H25 ...... 5652 .......... O Sheet, plate 47 D 3003 .......... O Sheet, plate; rolled and 28 E H32 60 D HI2 extruded rod, bar; 35 E H34 68 C H 14 extruded and drawn 40 D H36 73 C HI6 tube, pipe; other 47 D H38 77 C H 18 55 D 5657 .......... H25 Sheet 40 D 3004 .......... O Sheet, plate; drawn tube, 45 D H28 50 D H32 pipe 52 D 6005 .......... T5 Extruded rod, bar 95 C H34 63 C 6061 .......... O Sheet, plate, rod, bar, tube, 30 D H36 70 C T4 pipe; forging; other 65 C H38 77 C T6 95 C 4032 .......... T6 Forging stock 120 B 6063 .......... O Extruded rod, bar; 25 D 5005 .......... O Sheet, plate; rolled rod and 28 E T l extruded and drawn 42 D H 12 bar; other 36 E T4 tube, pipe 60 D H14 41 D T5 60 C H 16 46 D T6 73 C H 18 51 D T83 82 C H32 36 E T831 70 C H34 41 D T832 95 C H36 46 D 6066 .......... O Extruded rod, bar; forging 43 D H38 51 D T4 stock 90 C 5050 .......... O Sheet, plate; drawn tube, 36 E T6 120 B H32 pipe 46 D 6070 .......... T6 Rod, bar, tube, pipe 120 C H34 53 D 6151 .......... T6 Forging stock 100 • • • H36 58 C 6262 .......... T9 Rod, bar, tube, pipe 120 B H38 63 C 6463 .......... TI Extruded rod, bar; 42 D 5052 .......... O Sheet, plate; rolled rod, 47 D T5 extruded and drawn 60 C H32 bar; drawn tube, pipe; 60 D T6 tube, pipe 74 C H34 other 68 C 6951 .......... O Sheet 28 • • • H36 73 C T6 82 • • • H38 77 C 7001 .......... O Extruded rod, bar 60 B 5056 .......... O Rivet rod, wire 65 D T6 160 B HI8 105 C 7005 .......... T53 Rod, bar, tube, pipe ...... H38 100 C 7075 .......... O Sheet, plate, rod, bar, tube, 60 D 5083 .......... O Sheet, plate, rod, bar, tube, 67 D T6 pipe; forging stock 150 B H321 pipe, forgings 82 D 7079 .......... O Sheet, plate, rod, bar, tube, • ..... 5086 .......... O Sheet, plate; extruded rod, 60 D T6 pipe; forging stock 145 B H32 bar; extruded and drawn 72 D 7178 .......... O Sheet, plate, rod, bar, tube, 60 • • • H34 tube, pipe 82 C T6 pipe 160 B HI 12 64 D T76 ...... 8280 .......... O Sheet, plate • • • B HI2 • • • A (a) A, B, C, D, and E are relative ratings in increasing order of chip length (see Fig.
Recommended publications
  • Nguyen Quoc Tuan Effects of Substituting Ytterbium for Scandium
    Universidade do Minho Escola de Engenharia Nguyen Quoc Tuan Effects of substituting ytterbium for scandium on the microstructure and properties of Al-Sc and Al-Mg-Sc alloys Effects of substituting ytterbium for scandium on the microstructure and properties of Al-Sc and Al-Mg-Sc alloys Nguyen Quoc Tuan Outubro de 2014 UMinho | 2014 Universidade do Minho Escola de Engenharia Nguyen Quoc Tuan Effects of substituting ytterbium for scandium on the microstructure and properties of Al-Sc and Al-Mg-Sc alloys Tese de Doutoramento Programa Doutoral em Engenharia de Materiais Trabalho efectuado sob a orientação da Professora Ana Maria Pires Pinto e co-orientação do Professor Luís Augusto Marques Sousa Rocha Outubro de 2014 STATEMENT OF INTEGRITY I hereby declare having conducted my thesis with integrity. I confirm that I have not used plagiarism or any form of falsification of results in the process of the thesis elaboration. I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho. University of Minho, Guimarães, 29th October 2014 Full name: Nguyen Quoc Tuan Signature: _________________________________________________________________ Acknowledgments This research have been carried out during my Ph.D program at Centre for Mechanical and Materials Technologies (CT2M), Department of Mechanical Engineering, University of Minho, Guimaraes, Portugal. There are many people who I would like to thank for their assistance in this thesis research. First and foremost, I would like to express my sincere gratitude and warm regards to my advisors Prof. Ana Maria Pinto and Prof. Luis Rocha for giving me opportunity to complete the Ph.D degree at their laboratory.
    [Show full text]
  • Connor Final Highlighted
    Preliminary Development of a PPAM Actuated Pediatric Prosthetic Ankle Connor McNamara-Spackman A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science (Bioengineering) at the University of Otago, Dunedin, New Zealand. February 2021 Abstract The purpose of this research was to develop a preliminary design of a powered pediatric prosthetic ankle. Previous research identified the health risk of improper gait cycle and the lack of powered prosthetic ankle options for children. Costs for powered prosthetic ankles are too high (upwards of $5000 NZD), the sizes are too large and the weight is too significant for a child to benefit from. Current technologies for ankle joint actuation and materials for the prosthetic structure were evaluated and a conclusion of utilizing PPAMs was chosen due to their ability to generate the required 300 N of contraction force. CAD was used to model the structure of a prosthetic ankle and evaluate the FOS of the different material combinations while under static loading and fatigue simulations. HDPE and UHMWPE failed to withstand the simulations, while the aluminium alloy and stainless steel showed minimal faults from the simulations. MatLab was used to simulate the desired PPAM dimensions of 100 mm to determine the contraction force and contraction percentage that can be generated by the PPAM. The smallest PPAM found in research was 110 mm and showed promising results from their mathematical modeling. The overall height of the prosthetic was no greater than 110 mm and the membrane length of the PPAM was no greater than 100 mm, while successfully producing more than 300 N during contraction.
    [Show full text]
  • Reduction of Out-Of-Plane Distortion in Fillet Welded High Strength Aluminum
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1974 Reduction of out-of-plane distortion in fillet welded high strength aluminum. Henry, Robert W. Massachusetts Institute of Technology http://hdl.handle.net/10945/17204 REDUCTION OF OUT-OF-PLANE DISTORTION IN FILLET WELDED HIGH STRENGTH ALUMINUM Robert W. Henry il Postgraduate School vionterey, California 93940 REDUCTION OF OUT-OF-PLANE DISTORTION IN FILLET WELDED HIGH STRENGTH ALUMINUM BY Robert W. Henry B.S., U.S. Coast Guard Academy (1969) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF MASTER OF SCIENCE IN OCEAN ENGINEERING AND MASTERS OF SCIENCE IN MECHANICAL ENGINEERING at the Massachusetts Institute of Technology May, 1974 Tii-c DUDLEY KNOX LIBRARY ^STGRADL'ATE SCHOOU - 93940 REDUCTION OF OUT-OF-PLANE DISTORTION IN FILLET WELDED HIGH STRENGTH ALUMINUM by Robert W. Henry Submitted to the Department of Ocean Engineering in May, 1974, in partial fulfillment of the requirements for the degree of Master of Science in Ocean Engineering and Masters of Science in Mechanical Engineering. ABSTRACT Out-of-plane distortion caused by angular changes at fillet welds in aluminum structural panels was examined from two viewpoints. In the first phase of this work a series of experiments was conducted to examine elastic-plastic prestraining of test specimens to be fillet welded as a means of reducing out-of -plane distortion. Data gathered from these tests was correlated with previous experiments in the use of aluminum. A guide in the use of elastic-plastic prestrain- ing for 3/8" and 1/2" was developed. In phase two of this work a two-dimensional program was adapted to the structural aluminum panels used in phase one and tested for accuracy.
    [Show full text]
  • Trabalho De Diplomação Estudo Da Corrosão
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA ENGENHARIA DE MATERIAIS ENG 02298 - TRABALHO DE DIPLOMAÇÃO ESTUDO DA CORROSÃO LOCALIZADA DAS LIGAS AA 2024 E AA 2198 ENDURECIDAS POR PRECIPITAÇÃO Jéssica Salles Pinheiro 205994 Orientador: Prof. Dr. Luís Frederico Pinheiro Dick Co-orientador: Pedro Atz Dick Dezembro de 2015 1 AGRADECIMENTOS Pelo apoio que recebi direta ou indiretamente para a concretização do presente trabalho sou grata às seguintes pessoas: Ao meu orientador, Luís Frederico Pinheiro Dick, pelos conhecimentos passados e pela confiança em minha independência na execução do trabalho. Ao meu co-orientador, Pedro Atz Dick, pelo auxílio imprescindível em cada etapa do trabalho e por não poupar esforços para repassar seu conhecimento desde o início de minha experiência no laboratório. Ao mestrando Lucas Travi, pelo acesso e ajuda no uso do microdurômetro do LdTM. Aos meus pais, Tânia e Diógenes, que me proporcionaram as melhores oportunidades possíveis até hoje e incentivaram minha vida de estudante desde o início, além de me apoiarem financeira e emocionalmente. À minha irmã, Francielli, que sempre me apoiou em todas as decisões que tomei, lembrando como tenho sorte por ter sua amizade incondicional em minha vida. À minha namorada, Priscila, pela paciência nos dias difíceis e por estar sempre ao meu lado me motivando. À minha amiga Luísa, por ter prontamente me ajudado nas análises de microscopia de varredura, dispondo de mais de um dia para isso, além de ser meu porto seguro emocional em todos os momentos. À minha amiga Alana, por sua amizade valiosa e pela sincera preocupação que demonstrou desde o início do trabalho.
    [Show full text]
  • Parshwamani Metals
    +91-8048554624 Parshwamani Metals https://www.indiamart.com/parshwamanimetals/ Parshwamani Metals is one of the leading manufacturers, supplier and traders of Industrial Metal Tube, Beryllium Product, Shim Sheet, SS Round And Square Bar, Aluminium Products, Aluminum Bronze Products etc. About Us Parshwamani Metals was established in the year 2015 as a professionally managed Manufacturer, Trader and Wholesaler specialized in providing premium grade Copper and Brass Metals Products. Today, we endeavor to revolutionize the industry by fabricating a wide gamut of quality products, which includes Brass Products, Copper Products and Copper Alloy. Our claim to success is hallmarked by the offered quality products that gained us huge recognizance for its high strength, wear and tear resistance, accurate dimensions, flexibility and durable finish. Our products find their wide applications in architectural fittings, hardware and telecommunication. Owing to swift delivery schedules, easy payment modes and overt business practices, we have been successful in earning huge client base. We deal in Jindal Brand. Our efforts are determined with the objective of industrial leadership that equips our team members to manufacture customized products. And, to achieve this, we have developed modernized R&D centers and cutting edge manufacturing facilities. Furthermore, the facility is divided into various functional units like procurement, engineering, production, research & development, quality-testing, warehousing & packaging etc. Our organization is backed
    [Show full text]
  • Linear) Thermal Expansion for Selected Materials (COE Or CTE
    Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of (linear) thermal expansion, α, for selected (continued) − − materials (COE or CTE) (units are ×10 6 °C 1 (i.e. ppm/°C)) Indium–lead 33.0 Lead (95 %) tin solder 28.0 Tin–lead solder 60/40 25.0 A. Pure metals Magnesium, AZ31B 26.0 Aluminium 25 Ni-clad Molybdenum 5–6 Chromium 6 Steel, 1020 12.0 Cobalt 12 Stainless steel (18-8) 17.0 Copper 17 Tungsten/copper (90/10) 6.5 Gold 14 Aluminium MMC with SiC particles 6–14 Iron 12 (80–50 % reinforcement) Lead 29 C. Insulators and substrate materials (for electronic systems)a Magnesium 25 E glass 5.5 Molybdenum 5 S glass 2.6 Nickel 13 Glass–ceramic >3.0 Platinum 9 Silicon 2.6 Silver 19 Diamond 0.9 Tantalum 7 Aluminium nitride 4.5 Tin 20 Silicon nitride 3.7 Titanium 9 Quartz, fused silica 0.5 Tungsten 5 Kevlar 49 –5 Zinc 35 Beryllia 6–9 B. Alloys and MMCs Cubic boron nitride Alloy 42 4.4 x–y 3.7 Aluminium (40 % silicon) 13.5 z 7.2 Aluminium, AA 6061 23.6 E glass/epoxy Aluminium, AA 3003 23.2 x–y 14–17 Aluminium, AA 2017 22.9 z 80–280 Boron aluminium (20 %) 12.7 E glass/polyimide Brass 18.0 x–y 12–16 Copper/invar/copper 20/60/20 thick 5.8 z 40–80 Copper/molybdenum/copper 20/60/20 7.0 E glass/PTFE thick x–y 24 Graphite/aluminium 4–6 z 260 Invar 36 1.6 Kevlar/epoxy Invar 42 4.5 x–y 5–7 Inconel 600 13.0 z 70 Kovar (Fe–Ni–Co) 5.0 (continued) Kevlar/polyimide (continued) © Springer International Publishing Switzerland 2016 557 B.D.
    [Show full text]
  • 924 Iaea-Sm-310/ 69P
    924 IAEA-SM-310/ 69P RESULTS FROM POST-MORTEM TESTS WITH MATERIAL FROM THE OLD CORE-BOX OF THE HIGH FLUX REACTOR (HFR) AT PETTEN M.I. de Vries Netherlands Energy Research Foundation, ECN, Eetten, The Netherlands M.R.. Cundy Joint Research Centre, Patten, The Netherlands 925 RESULTS FROM POST-MORTEM TESTS WITH MATERIAL FROM THE OLD CORE-BOX OF THE HIGH FLUX REACTOR (HFR) AT PETTEN ABSTRACT Results are reported from hardness measurements, tensile tests and fracture mechanics experiments (fatigue crack growth and fracture toughness) on 5154 aluminium specimens, fabricated from remnants of the old HFR core box. The specimen material was exposed to a maximum thermal neutron fluence of 7.5 * 1026n/m2(E < 0.4eV). Test results for this fluence (ratio of the thermal to fast neutron flux density is 1.17) are: hardness 63HR15N, 0.2 - yield strength 525 MPa and total elongation 2.2% strain. Material which was exposed to a lower thermal fluence of 5.6 * 10 n/m , but with a thermal to fast neutron ratio of about 4, shows more radiation hardening : 67HR15N, 0.2 - yield strength 580 MPa and 1.5% total elongation. -5 -3 Fatigue crack growth rates range from 5 * 10 mm/cycle to 10 mm/cycle for AK ranging from 8 to 20 MPa)|m. The most highly exposed (7.5 * 10 n/m ) material shows accelerated fatigue crack growth due to unstable crack extension at AK of about 15 Mpa^m. The lowermost meaningful measure of plane strain fracture toughness is 18 MPa^m. Except for the fracture toughness which is a factor of about 3 higher the results show reasonable agreement with the expected mechanical properties estimated in the "safe end-of-life" assessment of the old HFR vessel.
    [Show full text]
  • Characteristics of Al-Si Alloys with High Melting Point Elements for High Pressure Die Casting
    materials Article Characteristics of Al-Si Alloys with High Melting Point Elements for High Pressure Die Casting Tomasz Szymczak 1,* , Grzegorz Gumienny 1,* , Leszek Klimek 2 , Marcin Goły 3 , Jan Szymszal 4 and Tadeusz Pacyniak 1 1 Department of Materials Engineering and Production Systems, Lodz University of Technology, 90-924 Lodz, Poland; [email protected] 2 Institute of Materials Science and Engineering, Lodz University of Technology, 90-924 Lodz, Poland; [email protected] 3 Department of Physical & Powder Metallurgy, AGH University of Science and Technology, 30-059 Krakow, Poland; [email protected] 4 Department of Technical Sciences and Management, University of Occupational Safety Management in Katowice, 40-007 Katowice, Poland; [email protected] * Correspondence: [email protected] (T.S.); [email protected] (G.G.); Tel.: +48-426312276 (T.S.); +48-426312264 (G.G.) Received: 9 October 2020; Accepted: 29 October 2020; Published: 29 October 2020 Abstract: This paper is devoted to the possibility of increasing the mechanical properties (tensile strength, yield strength, elongation and hardness) of high pressure die casting (HPDC) hypoeutectic Al-Si alloys by high melting point elements: chromium, molybdenum, vanadium and tungsten. EN AC-46000 alloy was used as a base alloy. The paper presents the effect of Cr, Mo, V and W on the crystallization process and the microstructure of HPDC aluminum alloy as well as an alloy from the shell mold. Thermal and derivative analysis was used to study the crystallization process. The possibility of increasing the mechanical properties of HPDC hypoeutectic alloy by addition of high-melting point elements has been demonstrated.
    [Show full text]
  • Tribological Behaviours Influenced by Surface Coatings and Morphology
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 7-11-2015 Tribological Behaviours Influenced yb Surface Coatings and Morphology Guang Wang University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Wang, Guang, "Tribological Behaviours Influenced yb Surface Coatings and Morphology" (2015). Electronic Theses and Dissertations. 5305. https://scholar.uwindsor.ca/etd/5305 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Tribological Behaviours Influenced by Surface Coatings and Morphology By Guang Wang A thesis Submitted to the Faculty of Graduate Studies through the Department of Mechanical, Automotive & Materials Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2015 ©2015 Guang Wang Tribological Behaviours Influenced by Surface Coatings and Morphology By Guang Wang APPROVED BY: Dr.
    [Show full text]
  • The Processing and Characterisation of Recycled Ndfeb Based Magnets
    The Processing and Characterisation of Recycled NdFeB based Magnets By Salahadin Muhammed Ali Adrwish A thesis submitted to the University of Birmingham for the degree of Doctor of Philosphy Supervisors Prof. I.R. Harris Dr. A.J. Williams School of Metallurgy and materials University of Birmingham B15 2TT University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. CONTENTS Acknowledgement List of abbreviations Synopsis Chapter One 1.0 Aims of the Project 1 Chapter Two 2.0 Commercial use of NdFeB magnets 5 2.1 Development of NdFeB-type magnets 5 2. 2 Global NdFeB market 6 2.3 Major NdFeB producers 8 2.4 Applications 12 2.5 Factors affecting NdFeB supply and demand 14 2.5.1 IT sector 14 2.5.2 Global price of Dy and Nd 16 2.5.3 Environmental considerations 18 Chapter Three 3.0 Detailed aspects of NdFeB-type magnets recycling 22 3.1 Introduction 22 3.2 Introduction 22 3.3 Processing of recycled NdFeB over the years 25 3.3.1 Recycling of NdFeB magnets 26 3.3.2 Recycling of machine (internal) waste (sludge) 27
    [Show full text]
  • Planning for Seafood Freezing
    TTTTTTTTTTT Planning for Seafood Freezing Edward KOLBE Donald KRAMER MAB-60 2007 Alaska Sea Grant College Program University of Alaska Fairbanks Fairbanks, Alaska 99775-5040 (888) 789-0090 Fax (907) 474-6285 www.alaskaseagrant.org TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT Elmer E. Rasmuson Library Cataloging-in-Publication Data: Kolbe, Edward. Planning for seafood freezing ⁄ Edward Kolbe and Donald Kramer. – Fairbanks, Alaska : Alaska Sea Grant College Program, University of Alaska Fairbanks, 2007 126 p. : 51 ill. ; cm. (Alaska Sea Grant College Program, University of Alaska Fairbanks ; MAB-60) Includes bibliographical references and index. 1. Frozen seafood—Preservation—Handbooks, manuals, etc. 2. Seafood— Preservation—Handbooks, manuals, etc. 3. Cold storage—Planning—Handbooks, manuals, etc. 4. Fishery management—Handbooks, manuals, etc. 5. Refrigeration and refrigeration machinery—Handbooks, manuals, etc. 6. Frozen fishery products—Handbooks, manuals, etc. I. Title. II. Kramer, Donald E. III. Series: Alaska Sea Grant College Program ; MAB-60. SH336.F7 K65 2007 ISBN 1-56612-119-1 Credits The work for this book was funded in part by the NOAA Office of Sea Grant, U.S. Department of Commerce, under grants NA76RG0476 (OSU), NA86RG0050 (UAF), and NA76RG0119 (UW); projects A/ESG-3 (OSU), A/151-01 (UAF), and A/FP-7 (UW), and by appropriations made by the Oregon, Alaska, and Washington state legislatures. Publishing is supported by grant NA06OAR4170013, project A/161-01. Sea Grant is a unique partnership with public and private sectors, combining research, education, and technology transfer for public service. This national network of universities meets the changing environmental and economic needs of people in our coastal, ocean, and Great Lakes regions.
    [Show full text]
  • Heat Treating of Aluminum Alloys
    ASM Handbook, Volume 4: Heat Treating Copyright © 1991 ASM International® ASM Handbook Committee, p 841-879 All rights reserved. DOI: 10.1361/asmhba0001205 www.asminternational.org Heat Treating of Aluminum Alloys HEAT TREATING in its broadest sense, • Aluminum-copper-magnesium systems The mechanism of strengthening from refers to any of the heating and cooling (magnesium intensifies precipitation) precipitation involves the formation of co- operations that are performed for the pur- • Aluminum-magnesium-silicon systems herent clusters of solute atoms (that is, the pose of changing the mechanical properties, with strengthening from Mg2Si solute atoms have collected into a cluster the metallurgical structure, or the residual • Aluminum-zinc-magnesium systems with but still have the same crystal structure as stress state of a metal product. When the strengthening from MgZn2 the solvent phase). This causes a great deal term is applied to aluminum alloys, howev- • Aluminum-zinc-magnesium-copper sys- of strain because of mismatch in size be- er, its use frequently is restricted to the tems tween the solvent and solute atoms. Conse- specific operations' employed to increase quently, the presence of the precipitate par- strength and hardness of the precipitation- The general requirement for precipitation ticles, and even more importantly the strain hardenable wrought and cast alloys. These strengthening of supersaturated solid solu- fields in the matrix surrounding the coher- usually are referred to as the "heat-treat- tions involves the formation of finely dis- ent particles, provide higher strength by able" alloys to distinguish them from those persed precipitates during aging heat treat- obstructing and retarding the movement of alloys in which no significant strengthening ments (which may include either natural aging dislocations.
    [Show full text]