ASTM-B-211 Aluminum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Overview of Current Challenges in Self-Pierce Riveting of Lightweight Materials †
Proceedings Overview of Current Challenges in Self-Pierce Riveting of Lightweight Materials † Mathias Jäckel *, Thomas Grimm, Ronald Niegsch and Welf-Guntram Drossel Department Mechanical Joining of the Fraunhofer Institute for Machine Tools and Forming Technology IWU, Nöthnitzer Str. 44, 01187 Dresden, Germany; [email protected] (T.G.); [email protected] (R.N.); [email protected] (W.-G.D.) * Correspondence: [email protected] † Presented at the 18th International Conference on Experimental Mechanics, Brussels, Belgium, 1–5 July 2018. Published: 9 May 2018 Abstract: This paper shows an overview of different analyses regarding current challenges at self-pierce riveting with solid rivets as well as semi-tubular rivets of lightweight materials like aluminum die casting, carbon fiber reinforced plastic and 7xxx series aluminum alloy. The joining process analyses will demonstrate the cause and the development as well as the influence on joint quality of individual joining process-induced defects. In addition, methods are described how these imperfections can be avoided or reduced. Keywords: mechanical joining; lightweight materials; self-pierce riveting 1. Introduction The importance of environment friendly mobility strengthens the need of lightweight design in the automotive industry. Due to this need, lightweight materials such as aluminum and carbon fiber reinforced plastics (CFRP) are used more and more in automotive car body constructions. According to the limited weldability, joining these materials by mechanical joining techniques such as self-pierce riveting with solid (SPR-S) or semi-tubular rivets (SRP-ST) has been established. The challenge in this regard is that these materials have limited forming capacities (e.g., aluminum die casting, CFRP) or vulnerability regarding stress corrosion cracking (e.g., 7xxx series aluminum alloy), while the joining processes locally induce large plastic deformations and tensile stresses. -
Metabo Introduces the 18V Brushless Rivet
Contact: Andrea Brogan Metabo Corp. Phone: (610) 436-5900 1231 Wilson Dr. Fax: (610) 436-9072 West Chester, PA 19380 [email protected] www.metabousa.com PRESS RELEASE Metabo introduces the 18V Brushless Blind Rivet Gun Compact, powerful and ergonomic solution for riveting July 2018 – West Chester, PA - Metabo Corporation, a leading international manufacturer of industrial grade cordless and corded power tools and accessories, introduces the 18V Brushless Blind Rivet Gun. The 18V Brushless Blind Rivet Gun (NP 18 LTX BL 5.0) is perfect for securing steel/stainless steel or aluminum in place. It can rivet up to 3/16” in steel and ¼” in aluminum. And with a compact 4.0 Ah LiHD (Lithium High Density) battery, it can secure 2,000 3/16” rivets on a single charge and has a pulling force of 2,250 lbs. “Metabo has thought of everything when creating this cordless tool. It is not only as fast as an air tool but is a problem solver on many levels. Metabo revolutionizes the sheet metal assembly process by making it cordless,” says Antoine Derché, Metabo’s Director of Product and Marketing. This one-handed rivet gun is extremely fast, lightweight and balanced for maximized ergonomics. It includes safety features, such as; hand protection guard, balancing loop, integrated nose piece storage and a LED light for illumining work. It also has a transparent container attached to the back for convenient storage of pins that doubles as a tool for quick changing nose pieces. The 18V Brushless Blind Cordless Rivet Gun, when combined with the Metabo 18V High-speed Drill (BE 18 LTX 6) creates a powerful duo for all your riveting needs! The 18V High-speed Drill has a no-load speed of 4,000 rpm, 35 inch lbs. -
Review Article Friction Welding of Aluminium and Aluminium Alloys with Steel
Hindawi Publishing Corporation Advances in Materials Science and Engineering Volume 2014, Article ID 981653, 15 pages http://dx.doi.org/10.1155/2014/981653 Review Article Friction Welding of Aluminium and Aluminium Alloys with Steel Andrzej Ambroziak, Marcin Korzeniowski, PaweB KustroN, Marcin Winnicki, PaweB SokoBowski, and Ewa HarapiNska Welding Technology Department, Institute of Production Engineering and Automation, Wroclaw University of Technology, 50-370 Wroclaw, Poland Correspondence should be addressed to Andrzej Ambroziak; [email protected] Received 10 December 2013; Revised 12 February 2014; Accepted 11 March 2014; Published 28 April 2014 Academic Editor: Achilles Vairis Copyright © 2014 Andrzej Ambroziak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The paper presents our actual knowledge and experience in joining dissimilar materials with the use of friction welding method. The joints of aluminium and aluminium alloys with the different types of steel were studied. The structural effects occurring during the welding process were described. The mechanical properties using, for example, (i) microhardness measurements, (ii) tensile tests, (iii) bending tests, and (iv) shearing tests were determined. In order to obtain high-quality joints the influence of different configurations of the process such as (i) changing the geometry of bonding surface, (ii) using the interlayer, or (iii) heat treatment was analyzed. Finally, the issues related to the selection of optimal parameters of friction welding process were also investigated. 1. Introduction often very difficult. To obtain high-quality joint it is necessary toknowandanalyzephasediagramofthetwowelded The family of friction welding processes includes several materials. -
(FSW) on Microstructural and Mechanical Properties of Similar and Dissimilar Materials – an Overview
International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 4 Issue 03, March-2015 Influence of Green Joining Technique (FSW) on Microstructural and Mechanical Properties of Similar and Dissimilar Materials – An Overview Prashant S. H.¹, Dr. M S Ganesha Prasad² ¹Assistant Professor, ²Professor& Head, Dept. ofMechanical Engg., Sir M VIT, Dept. ofMechanical Engg., Bangalore – 562157 NHCE, Bangalore PiyushM³, Abhijit B³, Ashlesh³ and K H Amar³ ³UG Scholars, Dept. of Mechanical Engg. Sir M VIT, Bangalore – 562157 Abstract - Friction stir welding (FSW) is a relatively new solid- In late 1991, a very novel and potentially world beating state joining process which offers various advantages like low welding method was conceived and the process was duly distortion, absence of melt-related defects, high joint strength, named friction stir welding (FSW). Friction Stir Welding is etc. as compared to other conventional fusion welding the only solid state welding processes which do not have techniques. This joining technique is energy efficient, environment friendly and versatile.Joining of similar and drawbacks as other solid state welding processes and can dissimilar materials is a very important aspect of industrial be employed for butt welding and sheet welding of application. Especially joining of dissimilar materials is plates.The main advantage of FSW is that the original considered as a gateway for the implementation of lightweight material characteristic remains unchanged. materials in automobile and aerospace industries.In FSW, the FSW uses a rotating (non-consumable) cylindrical tool that technology diffusion has significantly outpaced the consists of a shoulder and a probe (Fig). The shoulder is fundamental understanding of microstructural evolution and pressed against the surface of the materials being welded, microstructure property relationships In this article, we are while the probe is forced between the two components by a going to study about different heat zones developed during downward force. -
Blind Rivet Nuts Blind Rivet Nuts Easily Adaptable for Your Materials and Production Processes
Blind Rivet Nuts Blind Rivet Nuts Easily adaptable for your materials and production processes. Performance Fasteners For Versatile Assembly Everywhere that you need to join components reliably and efficiently the POP Avdel product range offers innovative fastening systems and the most suitable installation tools and assembly stations. Wherever you need high quality, load bearing threads in thin materials, POP Avdel Blind Rivet Nut Systems offer the ideal solution. Installation Quickly and reliably installed without rework or damage to the parent application, even with painted sheet materials and tubes where there is no blind side access. Applications Our blind rivet nuts are most commonly used in the automotive, vehicle, electronics chassis manufacturing, equipment manufacturing and shipbuilding industries. The wide variety of POP Avdel blind rivet nuts provides perfect engineering results and economic solutions in every application. Mission STANLEY Engineered Fastening provides assembly systems that simplify your production process and improve the quality of your products. We are not just a provider of fasteners and equipment, together we are a design and development partner for our customers engineering teams. - 2 - stanleyengineeredfastening.com Table of Contents Systems Range Overview Blind Rivet Nuts 4 Benefits of Assembly 5 Design Features and Benefits 6 Customised Designs 7 Design Parameters 8 Selecting a Blind Rivet Nut 9 Selection Guide 10-12 The Range of POP Avdel Eurosert® 13 Blind Rivet Nuts Nutsert® 14 Hexsert®/Euro Hexsert® -
Machining of Aluminum and Aluminum Alloys / 763
ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool. -
Magnesium Casting Technology for Structural Applications
Available online at www.sciencedirect.com Journal of Magnesium and Alloys 1 (2013) 2e22 www.elsevier.com/journals/journal-of-magnesium-and-alloys/2213-9567 Full length article Magnesium casting technology for structural applications Alan A. Luo a,b,* a Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA b Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA Abstract This paper summarizes the melting and casting processes for magnesium alloys. It also reviews the historical development of magnesium castings and their structural uses in the western world since 1921 when Dow began producing magnesium pistons. Magnesium casting technology was well developed during and after World War II, both in gravity sand and permanent mold casting as well as high-pressure die casting, for aerospace, defense and automotive applications. In the last 20 years, most of the development has been focused on thin-wall die casting ap- plications in the automotive industry, taking advantages of the excellent castability of modern magnesium alloys. Recently, the continued expansion of magnesium casting applications into automotive, defense, aerospace, electronics and power tools has led to the diversification of casting processes into vacuum die casting, low-pressure die casting, squeeze casting, lost foam casting, ablation casting as well as semi-solid casting. This paper will also review the historical, current and potential structural use of magnesium with a focus on automotive applications. The technical challenges of magnesium structural applications are also discussed. Increasing worldwide energy demand, environment protection and government regulations will stimulate more applications of lightweight magnesium castings in the next few decades. -
Aluminium Alloys Chemical Composition Pdf
Aluminium alloys chemical composition pdf Continue Alloy in which aluminum is the predominant lye frame of aluminum welded aluminium alloy, manufactured in 1990. Aluminum alloys (or aluminium alloys; see spelling differences) are alloys in which aluminium (Al) is the predominant metal. Typical alloy elements are copper, magnesium, manganese, silicon, tin and zinc. There are two main classifications, namely casting alloys and forged alloys, both further subdivided into heat-treatable and heat-free categories. Approximately 85% of aluminium is used for forged products, e.g. laminated plates, foils and extrusions. Aluminum cast alloys produce cost-effective products due to their low melting point, although they generally have lower tensile strength than forged alloys. The most important cast aluminium alloy system is Al–Si, where high silicon levels (4.0–13%) contributes to giving good casting features. Aluminum alloys are widely used in engineering structures and components where a low weight or corrosion resistance is required. [1] Alloys composed mostly of aluminium have been very important in aerospace production since the introduction of metal leather aircraft. Aluminum-magnesium alloys are both lighter than other aluminium alloys and much less flammable than other alloys containing a very high percentage of magnesium. [2] Aluminum alloy surfaces will develop a white layer, protective of aluminum oxide, if not protected by proper anodization and/or dyeing procedures. In a wet environment, galvanic corrosion can occur when an aluminum alloy is placed in electrical contact with other metals with a more positive corrosion potential than aluminum, and an electrolyte is present that allows the exchange of ions. -
85 Fabrication And
[Verma*, 4.(9): September, 2015] ISSN: 2277-9655 (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY FABRICATION AND CHARACTERIZATION OF FRICTION STIR WELDING USING AL 3105 Smriti Verma*, Amit Tanwar, Bhagwan Das * M Tech Scholar, Mechanical Dept., Roorkee Institute of Technology, Roorkee, India Professors, Mechanical Engg. Dept, Roorkee Institute of Technology, Roorkee, India ABSTRACT In this research study, the characterization of the microstructure evolution of friction stir lap welds (FSLW) of Aluminium incorporated with Titanium Carbide powder to form Aluminium based composites is presented. The Titanium Carbide powder was infused at the weld interface to produce a composite. The FSLW were conducted on an Intelligent Stir Welding for Industry and Research (I-STIR) Process Development System (PDS). Different welding parameters were used for the welding process. Rotational speeds of 1600 rpm and 2000 rpm and transverse speeds of 100 mm/min, 200 mm/min and 300 mm/min were employed. The process parameters were carefully selected to represent a low, medium and high setting for the feed rates. The microstructural evolution of the samples were studied. Optical microscope and scanning electron microscopy (SEM) techniques were used to investigate the particle distribution of the welded samples. The results obtained revealed the influence of the welding parameters on the particle distribution of the welded samples. A homogenous mixture of the materials was observed at higher rotational speed of 2000 rpm. KEYWORDS: aluminium, friction stir welding, microstructure, Titanium Carbide (TiC) INTRODUCTION In recent years, demands for light weight and high strength sheets such as aluminium alloys have increased steadily in aerospace, aircraft and automotive applications due to their extra-ordinary strength to weight ratio with their resistance properties in adverse environments. -
International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys
International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys 1525 Wilson Boulevard, Arlington, VA 22209 www.aluminum.org With Support for On-line Access From: Aluminum Extruders Council Australian Aluminium Council Ltd. European Aluminium Association Japan Aluminium Association Alro S.A, R omania Revised: January 2015 Supersedes: February 2009 © Copyright 2015, The Aluminum Association, Inc. Unauthorized reproduction and sale by photocopy or any other method is illegal . Use of the Information The Aluminum Association has used its best efforts in compiling the information contained in this publication. Although the Association believes that its compilation procedures are reliable, it does not warrant, either expressly or impliedly, the accuracy or completeness of this information. The Aluminum Association assumes no responsibility or liability for the use of the information herein. All Aluminum Association published standards, data, specifications and other material are reviewed at least every five years and revised, reaffirmed or withdrawn. Users are advised to contact The Aluminum Association to ascertain whether the information in this publication has been superseded in the interim between publication and proposed use. CONTENTS Page FOREWORD ........................................................................................................... i SIGNATORIES TO THE DECLARATION OF ACCORD ..................................... ii-iii REGISTERED DESIGNATIONS AND CHEMICAL COMPOSITION -
Effect of Friction Stir Welding Process Parameters on Tensile Strength of Dissimilar Welded Joint
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296 Effect of Friction Stir Welding Process Parameters on Tensile strength of Dissimilar Welded Joint Nilesh V. Desai1, Dr. K. H. Inamdar2 1P.G. Student, Department of Mechanical Engineering, Walchand College of Engineering, Sangli, Maharashtra, India 2Professor, Department of Mechanical Engineering, Walchand College of Engineering, Sangli, Maharashtra, India Abstract: In the present work, the effect friction stir welding (FSW) process parameters on the mechanical properties of dissimilar friction stir butt welded aluminium (Al) alloy, AA6061-T6 and stainless steel, 304L were investigated. FSW tools having fixed shoulder diameter, pin tip diameter and pin length with tapered cylindrical (TC) pin profile was used for experimental work. The FSW parameters used were; tool rotational speed (rpm), welding speed (mm/min), plunge depth (mm) and tool offset (mm). The ultimate tensile strength (UTS) of the joint is considered as the main criterion of the joint performance. Taguchi method of optimization was used to determine optimum level of parameter and Analysis of Variance (ANOVA) is done in order to determine significance of each parameter. The results showed that the rotational speed has more contribution among all other parameter followed by welding speed. Keywords: Friction Stir Welding, Dissimilar Metals, Tensile Strength, Analysis of Variance 1. Introduction alloys used in the aerospace industry could be joined with a minor loss in strength [2]. Fast depletion of primary fossil fuel reserves, hike and fluctuation in fuel prices and environmental degradation and 1.1 Friction Stir welding process its after effects as a result of burning of fossil fuel are looming problems the world is facing today. -
Alloys for Pressure Die Casting RHEINFELDEN ALLOYS
Primary Aluminium Alloys for Pressure Die Casting RHEINFELDEN ALLOYS Table of contents RHEINFELDEN ALLOYS – Aluminium Alloys for Pressure Die Casting General 2 ALUMINIUM RHEINFELDEN group 3 RHEINFELDEN FAST ALLOYS 4 Forms of delivery 5 Customer support and research and development 6 – 7 Aluminium casting alloys by RHEINFELDEN ALLOYS 8 – 9 Profile of the alloys for the die casters 10 Publications Alloys 11 – 20 Castasil ®-37 – AlSi9MnMoZr 21 – 24 Castasil ®-21 – AlSi9Sr 25 – 36 Silafont ®-36 – AlSi10MnMg 37 – 38 Silafont ®-38 – AlSi9MnMgZn 39 – 40 Castaman ®-35 – AlSi10MnMg 41 – 42 Thermodur ®-72/-73 – AlMg7Si3Mn – AlSi11Cu2Ni2Mg2Mn 43 – 53 Magsimal ®-59 – AlMg5Si2Mn Processing datasheets 54 Technical informations / Processing datasheets 55 Castasil ®-37 56 Castasil ®-21 57 Silafont ®-36 58 Silafont ®-38 59 Thermodur ®-72 60 Magsimal ®-59 Technical information 61 – 62 Surface coating 63 Joining techniques for die castings 64 Eight target levels for HPDC 65 Disclaimer and imprint 1 ALUMINIUM RHEINFELDEN group “Progress by tradition” Our policy ALUMINIUM RHEINFELDEN group: This history of aluminium Our RHEINFELDEN ALLOYS GmbH & Co. KG innovative char- in Germany started at Rheinfelden. In 1898 Europe’s first acter is what allows us to adapt rapidly to fast changing market river power station brought about the establishment of the first needs. The agility of a private family owned operated company, aluminium smelter in Germany, at Rheinfelden, Baden. the central geographic location in the European cast metal The company has always operated in three business segments market, the know-how and experience of our team, are factors and in October 2008 restructuring turned ALUMINIUM making a difference for Customers looking for reliable tradition RHEINFELDEN GmbH into a holding company and the former and modern innovation.