Synthesis and Biological Evaluation of Trisindolyl-Cycloalkanes and Bis- Indolyl Naphthalene Small Molecules As Potent Antibacterial and Antifungal Agents

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Biological Evaluation of Trisindolyl-Cycloalkanes and Bis- Indolyl Naphthalene Small Molecules As Potent Antibacterial and Antifungal Agents Synthesis and Biological Evaluation of Trisindolyl-Cycloalkanes and Bis- Indolyl Naphthalene Small Molecules as Potent Antibacterial and Antifungal Agents Dissertation Zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Vorgelegt der Naturwissenschaftlichen Fakultät I Institut für Pharmazie Fachbereich für Pharmazeutische Chemie der Martin-Luther-Universität Halle-Wittenberg von Kaveh Yasrebi Geboren am 09.14.1987 in Teheran/Iran (Islamische Republik) Gutachter: 1. Prof. Dr. Andreas Hilgeroth (Martin-Luther-Universität Halle-Wittenberg, Germany) 2. Prof. Dr. Sibel Süzen (Ankara Üniversitesi, Turkey) 3. Prof. Dr. Michael Lalk (Ernst-Moritz-Arndt-Universität Greifswald, Germany) Halle (Saale), den 21. Juli 2020 Selbstständigkeitserklärung Hiermit erkläre ich gemäß § 5 (2) b der Promotionsordnung der Naturwissenschaftlichen Fakultät I – Institut für Pharmazie der Martin-Luther-Universität Halle-Wittenberg, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmittel und Quellen angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen sind, habe ich als solche kenntlich gemacht. Ich erkläre ferner, dass diese Arbeit in gleicher oder ähnlicher Form bisher keiner anderen Prüfbehörde zur Erlangung des Doktorgrades vorgelegt wurde. Halle (Saale), den 21. Juli 2020 Kaveh Yasrebi Acknowledgement This study was carried out from June 2015 to July 2017 in the Research Group of Drug Development and Analysis led by Prof. Dr. Andreas Hilgeroth at the Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg. I would like to thank all the people for their participation who supported my work in this way and helped me obtain good results. First of all, I would like to express my gratitude to Prof. Dr. Andreas Hilgeroth for providing me with opportunity to carry out my Ph.D. studies, supervising adequately, and motivating me to work independently in order to develop myself and accomplish my project. I would also like to thank Dr. Dieter Ströhl at the Institute of Chemistry for measuring the 1D-1HNMR, 2D-1HNMR, and APT spectra and his useful consultations within NMR spectra interpretation, Prof. Dr. Wolfgang Sippl, PD. Dr. habil. Matthias Schmidt and Dr. Tino Heimburg from the Research Group of Medicinal Chemistry for RP-HPLC results, Mrs. Manuela Woigk for Mass spectrometry data, Mrs. Heike Rudolph for IR measurements, Mrs. Monika Lunow and Mr. Dirk Stolzenhain for providing chemicals and glasswares at the Institute of Pharmacy. Many thanks to Pharmacy Diploma Student Kerolos Ashraf for synthesizing the compounds 23-40 as his diploma project and other colleagues Fabian Lentz, Tim Fischer, Nico Schade, Cornelius Hempel, Tobias Mohs, Ansgar Opitz, Marius Seethaler, and Robin Gehrmann for their supports and helps and providing appropriate atmosphere in the laboratory. I would appreciate the chance to thank Prof. Dr. Sibel Süzen from Department of Pharmaceutical Chemistry, Ankara University, Prof. Dr. Michael Lalk from Institute of Biochemistry, Ernst-Moritz-Arndt-Universität Greifswald, PD. Dr. Knut Ohlsen, Dr. Tobias Hertlein, Mr. Emmanuel Tola Adeniyi from Institute of Molecular Infection Biology, Julius Maximillians Universität, Würzburg, and PD. Dr. Frank Erdmann from Institute of Pharmaceutical Biology and Pharmacology, Martin-Luther-Universität Halle- Wittenberg for carrying out the Bioassy part of this project. At the end, I would like to sincerely thank my mother for her supports and encouragements within these four years. Table of Contents 1. Introduction ............................................................................................................................ 1 1.1 Chemistry of indole .............................................................................................................. 1 1.1.1 The structure and reactivity of indole ............................................................................... 1 1.1.2 Electrophilic substitution reactions by indoles ................................................................. 6 1.1.2.1 Michael addition of indoles ........................................................................................... 6 1.1.2.1.2 The factors affecting the Michael Addition of indoles to various α,β unsaturated compounds ................................................................................................................................. 9 1.1.2.2 Anti-Michael addition of indoles ................................................................................. 10 1.1.2.3 Friedel-Crafts (F-C) reactions of indoles to epoxides .................................................. 10 1.1.2.4 Electrophilic substitution reaction of indoles to carbonyl compounds such as aldehydes and ketones .............................................................................................................. 12 1.1.2.4.1 The factors affecting the electrophilic substitution reactions of indoles to aldehydes and ketones ............................................................................................................................... 14 1.1.2.5 The electrophilic substitution reactions of indoles to isatins ....................................... 15 1.2 Indoles in nature ................................................................................................................. 16 1.2.1 Naturally occurring indole-containing compounds in marines and plants ..................... 16 1.2.2 Naturally occurring indole-containing compounds in microorganisms .......................... 19 1.3 Bacteria, cell growth mechanisms, and modes of action of some commercial antibacterial agents ....................................................................................................................................... 20 1.3.1 Inhibition of cell metabolism (antimetabolites) .............................................................. 20 1.3.2 Inhibition of cell wall biosynthesis ................................................................................. 20 1.3.3 Impairing the protein synthesis translation ..................................................................... 23 1.3.4 Inhibition of nucleic acid transcription and replication .................................................. 23 1.3.5 Fatty acid biosynthesis inhibition (FabI) ........................................................................ 24 1.4 Drug resistance, the possible mechanisms, and examples ................................................. 25 1.5 The infections and diseases caused by bacteria ................................................................. 27 1.5.1 Skin infection .................................................................................................................. 27 1.5.2 Urinary tract infection ..................................................................................................... 27 1.5.3 Otitis media ..................................................................................................................... 27 1.5.4 Brain infection ................................................................................................................ 27 1.5.5 Respiratory infections ..................................................................................................... 27 1.6 Structure-Activity Relationship (SAR) .............................................................................. 27 1.7 A review to bioactivities of synthetic indole-containing compounds and their SARs ...... 28 1.7.1 Antibacterial and antifungal activities ............................................................................ 28 1.7.1.1 The Structure-Activity Relationships (SARs) of the above indole-containing compounds ............................................................................................................................... 43 1.7.2 Anti-cancer activity ......................................................................................................... 45 1.7.2.1 The Structure-Activity Relationship (SAR) of the above indolyl-derived compounds as Anti-cancer agent ................................................................................................................. 46 1.7.3 Other biological activities of some indolyl-derived compounds .................................... 47 2. Results and Discussion ....................................................................................................... 48 2.1 Synthesis part ..................................................................................................................... 48 2.1.1 The reactions of indoles with glutaric dialdehyde and malondialdehyde ....................... 48 2.1.2 The formation of (Z)-3,3',3'' tris products ....................................................................... 55 2.1.2.1 The spectral data confirming the formation of (Z)-3,3',3'' tris products ...................... 59 2.1.2.2 The possible stereochemistry of chiral centres in hexahydrocyclohepta[b]indoles and tetrahydrocyclopenta[b]indoles................................................................................................ 61 2.1.3 The electrophilic substitution reactions of indoles to o-phthaldialdehyde ..................... 64 2.1.3.1 The spectral data confirming the structures of 11- and 6-indolylbenzocarbazole compounds (compounds 23-37) ..............................................................................................
Recommended publications
  • Novel Antimicrobial Agents Inhibiting Lipid II Incorporation Into Peptidoglycan Essay MBB
    27 -7-2019 Novel antimicrobial agents inhibiting lipid II incorporation into peptidoglycan Essay MBB Mark Nijland S3265978 Supervisor: Prof. Dr. Dirk-Jan Scheffers Molecular Microbiology University of Groningen Content Abstract..............................................................................................................................................2 1.0 Peptidoglycan biosynthesis of bacteria ........................................................................................3 2.0 Novel antimicrobial agents ...........................................................................................................4 2.1 Teixobactin ...............................................................................................................................4 2.2 tridecaptin A1............................................................................................................................7 2.3 Malacidins ................................................................................................................................8 2.4 Humimycins ..............................................................................................................................9 2.5 LysM ........................................................................................................................................ 10 3.0 Concluding remarks .................................................................................................................... 11 4.0 references .................................................................................................................................
    [Show full text]
  • Parsek Micro410 Lecture
    Microm 410 Fall 2009: Prokaryotic Structure/Function part 1 Dr. Matt Parsek Organization of the Prokaryotic Cell Prokaryotic Structures fimbriae Size Range of Prokaryotes bacillus See Table 4.1 (rigid) vibrio Nanobacteria 0.05‐0.2 µm (0.14‐0.2 µm) (flexible) Thiomargarita namibiensis Mycoplasma are 700‐750 µm (Fig. 4.2) pleomorphic green alga Nanochlorum eukaryotum Mycoplasma 0.1‐ ~1-2 µm in diameter 0.3 µm Fig. 4.1 Microm 410 Fall 2009: Prokaryotic Structure/Function part 1 Dr. Matt Parsek Staining cells for Microscopic observation Cell Arrangements Motility- ~80% of prokaryotes are motile streptococcus Staining properties: Gram Stain staphylococcus Fig. 2.3 Gram Stain (1884) (Bacteria) Gram-negative mixed culture Gram-positive Fig. 2.3 and 2.4 Microm 410 Fall 2009: Prokaryotic Structure/Function part 1 Dr. Matt Parsek Functions of the cytoplasmic membrane The phospholipid bi‐layer Fig. 4.9 Fig. 4.4 What is the structure of bacterial phospholipids? Other components of the cytoplasmic membrane Figs. 4.5‐4.6 Microm 410 Fall 2009: Prokaryotic Structure/Function part 1 Dr. Matt Parsek Archaeal membranes can be a lipid monolayer Archaeal phospholipids have an ether linkage Fig. 4.7 Fig. 4.8 Importance of Cell Wall Schematic diagram cell wall • Provides rigidity to cell allowing cell to withstand the large osmotic/ionic Fig. 4.16 changes a bacterium may experience in its environment, and turgor pressure of cytoplasm (conc. of solutes in cytoplasm). Cell lysis • May have a role in shape determination. • Provides a barrier against certain toxic chemical and biological agents. • Site of action of some of the most commonly used antibiotics used to treat bacterial infections (penicillin family).
    [Show full text]
  • Parsek Lecture #3
    Microm 410 Fall 2009: Prokaryotic Structure/Function: Part 2/3 Dr. Matt Parsek Peptidoglycan Synthesis Peptidoglycan Synthesis cytoplasm cell membrane cell wall Bactoprenol-P Pi UDP-NAM M G pentapeptide G M Bactoprenol Bactoprenol-P-P P M UMP G P NAM G M pentapeptide M G UDP-NAG Bactoprenol G P NAM‐NAG P NAM-NAG UMP pentapeptide Fig. 6.7a Interbridge peptide Peptidoglycan Synthesis Cross-linking of Peptidoglycan Strands cytoplasm cell membrane cell wall autolysins Bactoprenol-P Pi UDP-NAM Bacitracin M G pentapeptide G D-cycloserine Bactoprenol M (Oxamycin) Bactoprenol-P-P P M UMP G P Transpeptidase (FtsI) NAM G M pentapeptide M G UDP-NAG Bactoprenol G Vancomycin P NAM‐NAG P NAM-NAG pentapeptide UMP Fig. 6.7b pentapeptide Interbridge peptide Microm 410 Fall 2009: Prokaryotic Structure/Function: Part 2/3 Dr. Matt Parsek Cross-linking of Peptidoglycan Strands Antibiotic Resistance autolysins • Inactivate antibiotic β-lactamase (penicillinase) Clavulanic acid β-lactams Augmentin and Trimentin (combination of clavulanic acid and transpeptidase amoxicillin or ampicillin respectively) penicillins and cephalosporins lysozyme • Change chemistry of target site • Limit access of the antibiotic to target site Fig. 6.5 Cell Shape Determination • Modifications made to Peptidoglycan: ‐ lysozyme: Protoplasts/spheroplasts ‐ autolysins Bacillus subtilis ‐ endopeptidase Heliobacter pylori • Protein(s) may play a major role ‐ MreB protein Caulobacter crescentus ‐ MreB has homology to actin, a component of the cytoskeleton of eukaryotes. Shape determining protein‐ crescentin Fig. 6.4 Microm 410 Fall 2009: Prokaryotic Structure/Function: Part 2/3 Dr. Matt Parsek Cell Wall Gram-positive Bacteria intermediate filaments in the bacteria Caulobacter crescentus glycerol similar predicted structures of crescentin and intermediate filaments Fig.
    [Show full text]
  • WO 2015/028850 Al 5 March 2015 (05.03.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/028850 Al 5 March 2015 (05.03.2015) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07D 519/00 (2006.01) A61P 39/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07D 487/04 (2006.01) A61P 35/00 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/5517 (2006.01) A61P 37/00 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, A61K 47/48 (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/IB2013/058229 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (22) International Filing Date: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 2 September 2013 (02.09.2013) ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant: HANGZHOU DAC BIOTECH CO., LTD UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [US/CN]; Room B2001-B2019, Building 2, No 452 Sixth TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Street, Hangzhou Economy Development Area, Hangzhou EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, City, Zhejiang 310018 (CN).
    [Show full text]
  • Fluoroquinolones in Children: a Review of Current Literature and Directions for Future Research
    Academic Year 2015 - 2016 Fluoroquinolones in children: a review of current literature and directions for future research Laurens GOEMÉ Promotor: Prof. Dr. Johan Vande Walle Co-promotor: Dr. Kevin Meesters, Dr. Pauline De Bruyne Dissertation presented in the 2nd Master year in the programme of Master of Medicine in Medicine 1 Deze pagina is niet beschikbaar omdat ze persoonsgegevens bevat. Universiteitsbibliotheek Gent, 2021. This page is not available because it contains personal information. Ghent Universit , Librar , 2021. Table of contents Title page Permission for loan Introduction Page 4-6 Methodology Page 6-7 Results Page 7-20 1. Evaluation of found articles Page 7-12 2. Fluoroquinolone characteristics in children Page 12-20 Discussion Page 20-23 Conclusion Page 23-24 Future perspectives Page 24-25 References Page 26-27 3 1. Introduction Fluoroquinolones (FQ) are a class of antibiotics, derived from modification of quinolones, that are highly active against both Gram-positive and Gram-negative bacteria. In 1964,naladixic acid was approved by the US Food and Drug Administration (FDA) as first quinolone (1). Chemical modifications of naladixic acid resulted in the first generation of FQ. The antimicrobial spectrum of FQ is broader when compared to quinolones and the tissue penetration of FQ is significantly deeper (1). The main FQ agents are summed up in table 1. FQ owe its antimicrobial effect to inhibition of the enzymes bacterial gyrase and topoisomerase IV which have essential and distinct roles in DNA replication. The antimicrobial spectrum of FQ include Enterobacteriacae, Haemophilus spp., Moraxella catarrhalis, Neiserria spp. and Pseudomonas aeruginosa (1). And FQ usually have a weak activity against methicillin-resistant Staphylococcus aureus (MRSA).
    [Show full text]
  • Antibiotic Discovery
    ANTIBIOTIC DISCOVERY RESISTANCE PROFILING OF MICROBIAL GENOMES TO REVEAL NOVEL ANTIBIOTIC NATURAL PRODUCTS By CHELSEA WALKER, H. BSc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science McMaster University © Copyright by Chelsea Walker, May 2017 McMaster University MASTER OF SCIENCE (2017) Hamilton, Ontario (Biochemistry and Biomedical Sciences) TITLE: Resistance Profiling of Microbial Genomes to Reveal Novel Antibiotic Natural Products. AUTHOR: Chelsea Walker, H. BSc. (McMaster University) SUPERVISOR: Dr. Nathan A. Magarvey. COMMITTEE MEMBERS: Dr. Eric Brown and Dr. Michael G. Surette. NUMBER OF PAGES: xvii, 168 ii Lay Abstract It would be hard to imagine a world where we could no longer use the antibiotics we are routinely being prescribed for common bacterial infections. Currently, we are in an era where this thought could become a reality. Although we have been able to discover antibiotics in the past from soil dwelling microbes, this approach to discovery is being constantly challenged. At the same time, the bacteria are getting smarter in their ways to evade antibiotics, in the form of resistance, or self-protection mechanisms. As such is it essential to devise methods which can predict the potential for resistance to the antibiotics we use early in the discovery and isolation process. By using what we have learned in the past about how bacteria protect themselves for antibiotics, we can to stay one step ahead of them as we continue to search for new sources of antibiotics from bacteria. iii Abstract Microbial natural products have been an invaluable resource for providing clinically relevant therapeutics for almost a century, including most of the commonly used antibiotics that are still in medical use today.
    [Show full text]
  • A Study on the Efficacy and Corneal Penetration of Besifloxacin in Routine Cataract Surgery Cases
    A STUDY ON THE EFFICACY AND CORNEAL PENETRATION OF BESIFLOXACIN IN ROUTINE CATARACT SURGERY CASES Thesis submitted to THE TAMILNADU Dr.M.G.R. MEDICAL UNIVERSITY Chennai - 600 032. In partial fulfillment of the requirements For the award of the degree of MASTER OF PHARMACY in PHARMACY PRACTICE Submitted by Reg. No.: 261640151 DEPARTMENT OF PHARMACY PRACTICE PERIYAR COLLEGE OF PHARMACEUTICAL SCIENCES TIRUCHIRAPPALLI – 620 021. An ISO 9001:2015 Certified Institution SEPTEMBER – 2018 Dr. A. M. ISMAIL, M.Pharm., Ph.D., Professor Emeritus Periyar College of Pharmaceutical Sciences Tiruchirappalli – 620 021. CERTIFICATE This is to certify that the thesis entitled “A STUDY ON THE EFFICACY AND CORNEAL PENETRATION OF BESIFLOXACIN IN ROUTINE CATARACT SURGERY CASES” submitted by B. NIVETHA, B. Pharm., during September 2018 for the award of the degree of “MASTER OF PHARMACY in PHARMACY PRACTICE” under the Tamilnadu Dr.M.G.R. Medical University, Chennai is a bonafide record of research work done in the Department of Pharmacy Practice, Periyar College of Pharmaceutical Sciences and at Vasan Eye Care Hospital, Tiruchirappalli under my guidance and direct supervision during the academic year 2017-18. Place: Tiruchirappalli – 21. Date: 10th Sep 2018 (Dr. A. M. ISMAIL) Dr. R. SENTHAMARAI, M.Pharm., Ph.D., Principal Periyar College of Pharmaceutical sciences Tiruchirappalli – 620 021. CERTIFICATE This is to certify that the thesis entitled “A STUDY ON THE EFFICACY AND CORNEAL PENETRATION OF BESIFLOXACIN IN ROUTINE CATARACT SURGERY CASES” submitted by B. NIVETHA, B. Pharm., during September 2018 for the award of the degree of “MASTER OF PHARMACY in PHARMACY PRACTICE” under the Tamilnadu Dr.M.G.R.
    [Show full text]
  • E. Coli Pbp1b, Moenomycin-Based
    Investigating the Ligand Interactions Between E. coli PBP1b, Moenomycin-based Compounds, and Beta-Lactam Compounds Peter Alexander MSc by Research 2017 i CERTIFICATE OF ORIGINALITY This is to certify that I am responsible for the work submitted in this thesis, that the original work is my own, except as specified in the acknowledgements and in references, and that neither the thesis nor the original work contained therein has been previously submitted to any institution for a degree. Signature: Name: Date: CERTIFICATE OF COMPLIANCE This is to certify that this project has been carried out in accordance with University principles regarding ethics and health and safety. Forms are available to view on request. Signature: Name: Date: ii Abstract Antimicrobial resistance is a growing problem in this era. Resistance to the majority of clinical antibiotics including those of a ‘last line of defence’ nature has been seen in a number of laboratory and clinical settings. One method aiming at reducing this problem is altering existing antimicrobial compounds, in order to improve pharmacological effects (avoiding resistance mechanisms, improved spectrum of use). Analysis of the interactions between the antimicrobial compounds and their targets can determine whether modifications to current antimicrobials (such as moenomycin A, a glycosyltransferase inhibitor) have altered the mode of action. ecoPBP1B is a bifunctional glycosyltransferase that could be used as a model for beta lactams and moenomycins, aiding in the design and development of novel antimicrobials based on these families. Moenomycin A has not seen high clinical usage due to poor pharmacokinetics and bioavailability. This project aimed to show whether ecoPBP1b can be used as a model for novel antimicrobials, such as seeing whether Moenomycin A analogues (with cell penetrating peptides to facilitate entry into the bacterial cell) still retain their ability to bind to glycosyltransferases.
    [Show full text]
  • Ophthalmic Antibiotics Therapeutic Class Review (TCR)
    Ophthalmic Antibiotics Therapeutic Class Review (TCR) December 1, 2019 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management. All requests for permission should be mailed to: Magellan Rx Management Attention: Legal Department 6950 Columbia Gateway Drive Columbia, Maryland 21046 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to [email protected].
    [Show full text]
  • The Grohe Method and Quinolone Antibiotics
    The Grohe method and quinolone antibiotics Antibiotics are medicines that are used to treat bacterial for modern fluoroquinolones. The Grohe process and the infections. They contain active ingredients belonging to var- synthesis of ciprofloxacin sparked Bayer AG’s extensive ious substance classes, with modern fluoroquinolones one research on fluoroquinolones and the global competition of the most important and an indispensable part of both that produced additional potent antibiotics. human and veterinary medicine. It is largely thanks to Klaus Grohe – the “father of Bayer quinolones” – that this entirely In chemical terms, the antibiotics referred to for simplicity synthetic class of antibiotics now plays such a vital role for as quinolones are derived from 1,4-dihydro-4-oxo-3-quin- medical practitioners. From 1965 to 1997, Grohe worked oline carboxylic acid (1) substituted in position 1. as a chemist, carrying out basic research at Bayer AG’s Fluoroquinolones possess a fluorine atom in position 6. In main research laboratory (WHL) in Leverkusen. During this addition, ciprofloxacin (2) has a cyclopropyl group in posi- period, in 1975, he developed the Grohe process – a new tion 1 and also a piperazine group in position 7 (Figure A). multi-stage synthesis method for quinolones. It was this This substituent pattern plays a key role in its excellent achievement that first enabled him to synthesize active an- antibacterial efficacy. tibacterial substances such as ciprofloxacin – the prototype O 5 O 4 3 6 COOH F COOH 7 2 N N N 8 1 H N R (1) (2) Figure A: Basic structure of quinolone (1) (R = various substituents) and ciprofloxacin (2) Quinolones owe their antibacterial efficacy to their inhibition This unique mode of action also makes fluoroquinolones of essential bacterial enzymes – DNA gyrase (topoisomer- highly effective against a large number of pathogenic ase II) and topoisomerase IV.
    [Show full text]
  • Lipid II: a Central Component in Bacterial Cell Wall Synthesis and a Target for Antibiotics
    ARTICLE IN PRESS Prostaglandins, Leukotrienes and Essential Fatty Acids 79 (2008) 117–121 Contents lists available at ScienceDirect Prostaglandins, Leukotrienes and Essential Fatty Acids journal homepage: www.elsevier.com/locate/plefa Lipid II: A central component in bacterial cell wall synthesis and a target for antibiotics Ben de Kruijff Ã, Vincent van Dam, Eefjan Breukink Chemical Biology and Organic Chemistry, Utrecht University, Padualaan 8, Utrecht, The Netherlands abstract The bacterial cell wall is mainly composed of peptidoglycan, which is a three-dimensional network of long aminosugar strands located on the exterior of the cytoplasmic membrane. These strands consist of alternating MurNAc and GlcNAc units and are interlinked to each other via peptide moieties that are attached to the MurNAc residues. Peptidoglycan subunits are assembled on the cytoplasmic side of the bacterial membrane on a polyisoprenoid anchor and one of the key components in the synthesis of peptidoglycan is Lipid II. Being essential for bacterial cell survival, it forms an attractive target for antibacterial compounds such as vancomycin and several lantibiotics. Lipid II consists of one GlcNAc- MurNAc-pentapeptide subunit linked to a polyiosoprenoid anchor 11 subunits long via a pyrophosphate linker. This review focuses on this special molecule and addresses three questions. First, why are special lipid carriers as polyprenols used in the assembly of peptidoglycan? Secondly, how is Lipid II translocated across the bacterial cytoplasmic membrane? And finally, how is Lipid II used as a receptor for lantibiotics to kill bacteria? & 2008 Elsevier Ltd. All rights reserved. 1. Introduction which will be discussed later. Despite considerable knowledge of cell wall synthesis several key questions remained unanswered so The bacterial cell wall is a unique structure.
    [Show full text]
  • Development of a Broad-Spectrum Antimicrobial Combination for the Treatment of Staphylococcus Aureus and Pseudomonas Aeruginosa Corneal Infections
    EXPERIMENTAL THERAPEUTICS crossm Development of a Broad-Spectrum Antimicrobial Combination for the Treatment of Staphylococcus aureus and Pseudomonas aeruginosa Corneal Infections Michaelle Chojnacki,a Alesa Philbrick,a Benjamin Wucher,a Jordan N. Reed,a Andrew Tomaras,b Paul M. Dunman,a Rachel A. F. Wozniakc Downloaded from aDepartment of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA bBacterioScan, St. Louis, Missouri, USA cDepartment of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA ABSTRACT Staphylococcus aureus and Pseudomonas aeruginosa are two of the most common causes of bacterial keratitis and corresponding corneal blindness. Accord- ingly, such infections are predominantly treated with broad-spectrum fluoroquinolo- http://aac.asm.org/ nes, such as moxifloxacin. Yet, the rising fluoroquinolone resistance has necessitated the development of alternative therapeutic options. Herein, we describe the devel- opment of a polymyxin B-trimethoprim (PT) ophthalmic formulation containing the antibiotic rifampin, which exhibits synergistic antimicrobial activity toward a panel of contemporary ocular clinical S. aureus and P. aeruginosa isolates, low spontaneous resistance frequency, and in vitro bactericidal kinetics and antibiofilm activities equaling or exceeding the antimicrobial properties of moxifloxacin. The PT plus ri- fampin combination also demonstrated increased efficacy in comparison to those of on April 30, 2020 by guest
    [Show full text]