Volume 53, 2012

Total Page:16

File Type:pdf, Size:1020Kb

Volume 53, 2012 BAT RESEARCH NEWS VOLUME 53: NO. 1 SPRING 2012 BAT RESEARCH NEWS VOLUME 53: NUMBER 1 SPRING 2012 Table of Contents Table of Contents . i Letters to the Editor Confirmation of White-nose Syndrome in Bats of Europe and Implications of This Discovery toward Understanding the Disease in Bats of North America Carol Meteyer, David Blehert, and Paul Cryan . 1 Recent Literature Jacques Veilleux . 5 News from Our Subscribers . 13 Announcements and Future Meetings . 13 VOLUME 53: NUMBER 2 SUMMER 2012 Table of Contents Table of Contents . i Mating Eastern Red Bats Found Dead at a Wind-energy Facility Donald I. Solick, Jeffery C. Gruver, Matthew J. Clement, Kevin L. Murray, and Zapata Courage . 15 Book Reviews Bats of the United States and Canada by Michael J. Harvey, J. Scott Altenbach, and Troy L. Best Matina Kalcounis-Rueppell . 19 Bats in Captivity, Volume Three: Diet and Feeding—Environment and Housing by Susan M. Barnard (Ed.) Patrick R. Thomas . 21 Island Bats by Theodore H. Fleming and Paul A. Racey (Eds.) Deanna Byrnes . 22 Recent Literature Jacques Veilleux . 25 News from Our Members . 34 Announcements and Future Meetings . 35 i BAT RESEARCH NEWS VOLUME 53: NUMBER 3 FALL 2012 Table of Contents Table of Contents . i Letters to the Editor Potential Spring Mating Behavior in the Eastern Pipistrelle (Perimyotis subflavus) Luke E. Dodd and Joseph S. Johnson . 37 Book Review Bats of Texas by Loren K. Ammerman, Christine L. Hice, and David J. Schmidly Cullen K. Geiselman . 39 Recent Literature Anne Griffiths, Tom Griffiths, Margaret Griffiths, and Jacques Veilleux . 41 News from Our Members . 49 Announcements and Future Meetings . 50 VOLUME 53: NUMBER 4 WINTER 2012 Table of Contents Table of Contents . i Acoustically Detecting Indiana Bats: How Long Does It Take? Shannon Romeling, C. Ryan Allen, and Lynn Robbins . 51 Letter to the Editor Notes on the Diet of Tonatia bidens (Phyllostomidae) in Paraguay Paul Smith . 59 Abstracts of Papers Presented at the 42nd Annual North American Symposium on Bat Research, San Juan, Puerto Rico Compiled by Gary Kwiecinski, Shahroukh Mistry, and Frank Bonaccorso Edited by Margaret Griffiths . 61 List of Participants at the 42nd Annual North American Symposium on Bat Research Compiled by Armando Rodríguez-Durán . 115 Recent Literature Jacques Veilleux . 119 Announcements and Future Meetings . 128 ii BAT RESEARCH NEWS VOLUME 53: NUMBER 1 SPRING 2012 Table of Contents Table of Contents . i Letters to the Editor Confirmation of White-nose Syndrome in Bats of Europe and Implications of This Discovery toward Understanding the Disease in Bats of North America Carol Meteyer, David Blehert, and Paul Cryan . 1 Recent Literature Jacques Veilleux . 5 News from Our Subscribers . 13 Announcements and Future Meetings . 13 Front Cover The characteristic white fungus (Geomyces destructans) associated with white-nose syndrome covering the nose and wings of a Myotis lucifugus (little brown myotis). The photo was taken by Greg Turner (Pennsylvania Game Commission, Harrisburg, Pennsylvania) in March 2011 at Barton Cave, Fayette County, Pennsylvania. Copyright 2011. All rights reserved. Thanks, Greg, for sharing another of your photos with us. i BAT RESEARCH NEWS Volume 53: Number 1 Spring 2012 Publisher and Managing Editor: Dr. Margaret A. Griffiths, 8594 Berwick Circle, Bloomington, IL 61705; E-mail: [email protected] Editor for Feature Articles: Dr. Allen Kurta, Dept. of Biology, Eastern Michigan University, Ypsilanti MI 48197; E-mail: [email protected] Editor for Recent Literature: Dr. Jacques P. Veilleux, Dept. of Biology, Franklin Pierce University, Rindge NH 03461; E-mail: [email protected] Emeritus Editor: Dr. G. Roy Horst Bat Research News is published four times each year, consisting of one volume of four issues. Bat Research News publishes short feature articles and general interest notes that are reviewed by at least two scholars in that field. Bat Research News also includes abstracts of presentations at bat conferences around the world, letters to the editors, news submitted by our readers, notices and requests, and announcements of future bat conferences worldwide. In addition, Bat Research News provides a listing of recent bat-related articles that were published in English. Bat Research News is abstracted in several databases (e.g., BIOSIS). Communications concerning feature articles and “Letters to the Editor” should be addressed to Dr. Al Kurta ([email protected]), recent literature items to Dr. Jacques Veilleux ([email protected]), and all other correspondence (e.g., news, conservation, or education items; subscription information; cover art) to Dr. Margaret Griffiths ([email protected]). The prices for one volume-year (4 issues within a single volume) are: Institutional/Group subscriptions US $50.00 Individual subscriptions: printed edition (U.S.A.) US $25.00 printed edition (outside U.S.A) US $35.00 Subscriptions may be paid by check or money order, payable to “Bat Research News.” Please include both mailing (postal) and e-mail addresses with your payment, and send to Dr. Margaret Griffiths at the address listed above. To pay by credit card (Visa or MasterCard only) or for further information, please go to the Bat Research News website at http://www.batresearchnews.org/ and click on the "Subscription Information" link. Back issues of Bat Research News are available for a small fee. Please contact Dr. Margaret Griffiths ([email protected]) for more information regarding back issues. Thank you! Bat Research News is ISSN # 0005-6227. Bat Research News is printed and mailed at Illinois Wesleyan University, Bloomington, Illinois, U.S.A. This issue printed March 23, 2012. Copyright 2012 Bat Research News. All rights reserved. All material in this issue is protected by copyright and may not be reproduced, transmitted, posted on a Web site or a listserve, or disseminated in any form or by any means without prior written permission from the Publisher, Dr. Margaret A. Griffiths. ii Letters to the Editor Editor's Note: Unlike technical articles, letters are not peer-reviewed, but they are edited for grammar, style, and clarity. Letters provide an outlet for opinions, speculations, anecdotes, and other interesting observations that, by themselves, may not be sufficient or appropriate for a technical article. Letters should be no longer than two manuscript pages and sent to the Feature Editor. Confirmation of White-nose Syndrome in Bats of Europe and Implications of This Discovery toward Understanding the Disease in Bats of North America Carol Meteyer1, David Blehert1, and Paul Cryan2 1United States Geological Survey, National Wildlife Health Center, Madison, WI 53711, and 2United States Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526 E-mail: [email protected] White-nose syndrome (WNS) is an for understanding this emerging wildlife infectious disease of the skin of hibernating disease. bats caused by the fungus Geomyces White fungal growth on the muzzle of destructans. The disease was first identified hibernating bats in Europe resembles the in 2007 and is estimated to have killed over fungal growth on muzzles of bats with WNS 5.5 million cave-hibernating bats in North in North America (Martínková et al., 2010; America (United States Fish and Wildlife Puechmaille et al., 2010), and photographs Service, 2012). Within 3 years of arrival of from Europe document affected bats as early the disease, bats have disappeared from long- as the 1980s (Feldmann, 1984). Subsequent established winter colonies, and many genetic and morphological analyses have populations of hibernating bats across the confirmed the identity of this European northeastern United States have experienced fungus as G. destructans (Martínková et al., 95–100% mortality (Turner et al., 2011). 2010; Puechmaille et al., 2010, 2011; Wibbelt One of the most intriguing aspects of this et al., 2010). unprecedented disease is that G. destructans Pikula et al. (2012) provide the first also colonizes the skin of multiple species of documentation that G. destructans can cause hibernating bats in at least 12 European the characteristic skin erosions or ulcers that countries (Martínková et al., 2010; define WNS in the bats of Europe. These Puechmaille et al., 2010, 2011; Wibbelt et al., new findings show that WNS occurs in bats 2010). Furthermore, a new study (Pikula et of both Europe and North America. al., 2012) confirms that fungal lesions on a However, the intriguing difference between bat from the Czech Republic are North America and Europe is that infection by indistinguishable from those diagnostic of G. destructans in Europe has not been WNS in bats of North America. With this associated with unusual mortality letter, we hope to draw attention to recent (Martínková et al., 2010; Puechmaille et al., pathological findings associated with WNS in 2010, 2011; Wibbelt et al., 2010). European bats and emphasize the importance In North America, WNS apparently has of comparative analyses between continents spread from a group of closely spaced © 2012 Bat Research News. All rights reserved. 2 Bat Research News Volume 53: No. 1 hibernacula in New York, including a tourist those in Europe (see species accounts in cave (Blehert et al., 2009). Analyses of the Barbour and Davis, 1969 and Dietz et al., sequence of nucleotides of DNA from marker 2009), which may create conditions more regions of ribosomal RNA indicate that conducive to the spread of the fungus. isolates of G. destructans
Recommended publications
  • Bat Conservation 2021
    Bat Conservation Global evidence for the effects of interventions 2021 Edition Anna Berthinussen, Olivia C. Richardson & John D. Altringham Conservation Evidence Series Synopses 2 © 2021 William J. Sutherland This document should be cited as: Berthinussen, A., Richardson O.C. and Altringham J.D. (2021) Bat Conservation: Global Evidence for the Effects of Interventions. Conservation Evidence Series Synopses. University of Cambridge, Cambridge, UK. Cover image: Leucistic lesser horseshoe bat Rhinolophus hipposideros hibernating in a former water mill, Wales, UK. Credit: Thomas Kitching Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/ 3 Contents Advisory Board.................................................................................... 11 About the authors ............................................................................... 12 Acknowledgements ............................................................................. 13 1. About this book ........................................................... 14 1.1 The Conservation Evidence project ................................................................................. 14 1.2 The purpose of Conservation Evidence synopses ............................................................ 14 1.3 Who this synopsis is for ................................................................................................... 15 1.4 Background .....................................................................................................................
    [Show full text]
  • EU Action Plan for the Conservation of All Bat Species in the European Union
    Action Plan for the Conservation of All Bat Species in the European Union 2018 – 2024 October 2018 Action Plan for the Conservation of All Bat Species in the European Union 2018 - 2024 EDITORS: BAROVA Sylvia (European Commission) & STREIT Andreas (UNEP/EUROBATS) COMPILERS: MARCHAIS Guillaume & THAURONT Marc (Ecosphère, France/The N2K Group) CONTRIBUTORS (in alphabetical order): BOYAN Petrov * (Bat Research & Conservation Centre, Bulgaria) DEKKER Jasja (Animal ecologist, Netherlands) ECOSPHERE: JUNG Lise, LOUTFI Emilie, NUNINGER Lise & ROUÉ Sébastien GAZARYAN Suren (EUROBATS) HAMIDOVIĆ Daniela (State Institute for Nature Protection, Croatia) JUSTE Javier (Spanish association for the study and conservation of bats, Spain) KADLEČÍK Ján (Štátna ochrana prírody Slovenskej republiky, Slovakia) KYHERÖINEN Eeva-Maria (Finnish Museum of Natural History, Finland) HANMER Julia (Bat Conservation Trust, United Kingdom) LEIVITS Meelis (Environmental Agency of the Ministry of Environment, Estonia) MARNELl Ferdia (National Parks & Wildlife Service, Ireland) PETERMANN Ruth (Federal Agency for Nature Conservation, Germany) PETERSONS Gunărs (Latvia University of Agriculture, Latvia) PRESETNIK Primož (Centre for Cartography of Fauna and Flora, Slovenia) RAINHO Ana (Institute for the Nature and Forest Conservation, Portugal) REITER Guido (Foundation for the protection of our bats in Switzerland) RODRIGUES Luisa (Institute for the Nature and Forest Conservation, Portugal) RUSSO Danilo (University of Napoli Frederico II, Italy) SCHEMBRI
    [Show full text]
  • Bat Rabies and Other Lyssavirus Infections
    Prepared by the USGS National Wildlife Health Center Bat Rabies and Other Lyssavirus Infections Circular 1329 U.S. Department of the Interior U.S. Geological Survey Front cover photo (D.G. Constantine) A Townsend’s big-eared bat. Bat Rabies and Other Lyssavirus Infections By Denny G. Constantine Edited by David S. Blehert Circular 1329 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2009 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Constantine, D.G., 2009, Bat rabies and other lyssavirus infections: Reston, Va., U.S. Geological Survey Circular 1329, 68 p. Library of Congress Cataloging-in-Publication Data Constantine, Denny G., 1925– Bat rabies and other lyssavirus infections / by Denny G. Constantine. p. cm. - - (Geological circular ; 1329) ISBN 978–1–4113–2259–2 1.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • Echolocation and Foraging Behavior of the Lesser Bulldog Bat, Noctilio Albiventris : Preadaptations for Piscivory?
    Behav Ecol Sociobiol (1998) 42: 305±319 Ó Springer-Verlag 1998 Elisabeth K. V. Kalko á Hans-Ulrich Schnitzler Ingrid Kaipf á Alan D. Grinnell Echolocation and foraging behavior of the lesser bulldog bat, Noctilio albiventris : preadaptations for piscivory? Received: 21 April 1997 / Accepted after revision: 12 January 1998 Abstract We studied variability in foraging behavior of can be interpreted as preadaptations favoring the evo- Noctilio albiventris (Chiroptera: Noctilionidae) in Costa lution of piscivory as seen in N. leporinus. Prominent Rica and Panama and related it to properties of its among these specializations are the CF components of echolocation behavior. N. albiventris searches for prey in the echolocation signals which allow detection and high (>20 cm) or low (<20 cm) search ¯ight, mostly evaluation of ¯uttering prey amidst clutter-echoes, high over water. It captures insects in mid-air (aerial cap- variability in foraging strategy and the associated tures) and from the water surface (pointed dip). We once echolocation behavior, as well as morphological spe- observed an individual dragging its feet through the cializations such as enlarged feet for capturing prey from water (directed random rake). In search ¯ight, N. al- the water surface. biventris emits groups of echolocation signals (duration 10±11 ms) containing mixed signals with constant-fre- Key words Bats á Echolocation á Foraging á quency (CF) and frequency-modulated (FM) compo- Evolution á Piscivory nents, or pure CF signals. Sometimes, mostly over land, it produces long FM signals (duration 15±21 ms). When N. albiventris approaches prey in a pointed dip or in aerial captures, pulse duration and pulse interval are Introduction reduced, the CF component is eliminated, and a termi- nal phase with short FM signals (duration 2 ms) at high The development of ¯ight and echolocation give bats repetition rates (150±170 Hz) is emitted.
    [Show full text]
  • Hungary and Slovakia, 2017
    HUNGARY and SLOVAKIA SMALL MAMMAL TOUR - The Bats and Rodents of Central Europe Hangarian hay meadow in warm August sunshine. Steve Morgan ([email protected]), John Smart 25/8/17 HUNGARY and SLOVAKIA SMALL MAMMAL TOUR 1 Introduction I had long intended to visit Hungary for bats and small mammals but had never quite got round to it. Now, however, a chance presented itself to join a tour with both Hungary and Slovakia on the itinerary and a long list of prospective mammalian targets on offer, including Forest Dormouse, European Hamster, Lesser Mole Rat, Common Souslik and a number of highly desirable bats such as Grey Long-eared, Northern and Parti-coloured. The tour was organised by Ecotours of Hungary and led by Istvan Bartol. It ran from 9/8/17 to 17/8/17, the two particpants being John Smart and me, both of us from the UK. 2 Logistics I flew from Luton to Budapest on Wizzair. Frankly, I’d never heard of Wizzair before and, given their two hour delay on the outward leg (resulting in an extremely late check in to my hotel in Budapest), I’m not sure I want to hear about them again! The hotels selected by Ecotours were all very good. In Mezokovesd we stayed at the Hajnal Hotel which was clean and comfortable and offered a good (cooked) buffet breakfast. In Slovakia we stayed at the equally good Penzion Reva which was set in very nice countryside overlooking a picturesque lake. Istvan Bartol led the tour and did all the driving.
    [Show full text]
  • The West European Pond Bat (Myotis Dasycneme) Alters Their Migration and Hibernation Behaviour
    RESEARCH ARTICLE Male long-distance migrant turned sedentary; The West European pond bat (Myotis dasycneme) alters their migration and hibernation behaviour 1,2 2 3 1,4 Anne-Jifke HaarsmaID *, Peter H. C. Lina , Aldo M. Vouà te , Henk Siepel 1 Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, The Netherlands, 2 Naturalis Biodiversity Center, Leiden, The Netherlands, 3 Independent Researcher, Soest, The Netherlands, 4 Wageningen Environmental Science, Animal Ecology Group, Wageningen, The a1111111111 Netherlands a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract During autumn in the temperate zone, insectivorous male bats face a profound energetic challenge, as in the same period they have to make energy choices related to hibernation, OPEN ACCESS mating and migration. To investigate these energetic trade-offs, we compared the body Citation: Haarsma A-J, Lina PHC, VouÃte AM, Siepel mass of male and female pond bats (Myotis dasycneme) through the summer season, char- H (2019) Male long-distance migrant turned acterized the known hibernacula in terms of male or female bias, and subsequently com- sedentary; The West European pond bat (Myotis dasycneme) alters their migration and hibernation pared their population trend during two study periods, between 1930±1980 and 1980±2015. behaviour. PLoS ONE 14(10): e0217810. https:// Towards the end of summer, males began losing weight whilst females were simultaneously doi.org/10.1371/journal.pone.0217810 accumulating fat, suggesting that males were pre-occupied with mating. We also found evi- Editor: Lyi Mingyang, Peking University, CHINA dence for a recent adaptation to this energetic trade-off, males have colonised winter roosts Received: May 17, 2019 in formerly unoccupied areas, which has consequently led to a change in the migration pat- terns for the male population of this species.
    [Show full text]
  • Random Sampling of the Central European Bat Fauna Reveals the Existence of Numerous Hitherto Unknown Adenoviruses+
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Acta Veterinaria Hungarica 63 (4), pp. 508–525 (2015) DOI: 10.1556/004.2015.047 RANDOM SAMPLING OF THE CENTRAL EUROPEAN BAT FAUNA REVEALS THE EXISTENCE OF NUMEROUS + HITHERTO UNKNOWN ADENOVIRUSES 1* 2 3 1,4 Márton Z. VIDOVSZKY , Claudia KOHL , Sándor BOLDOGH , Tamás GÖRFÖL , 5 2 1 Gudrun WIBBELT , Andreas KURTH and Balázs HARRACH 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary; 2Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany; 3Aggtelek National Park Directorate, Jósvafő, Hungary; 4Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary; 5Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany (Received 16 September 2015; accepted 28 October 2015) From over 1250 extant species of the order Chiroptera, 25 and 28 are known to occur in Germany and Hungary, respectively. Close to 350 samples originating from 28 bat species (17 from Germany, 27 from Hungary) were screened for the presence of adenoviruses (AdVs) using a nested PCR that targets the DNA polymerase gene of AdVs. An additional PCR was designed and applied to amplify a fragment from the gene encoding the IVa2 protein of mastadenovi- ruses. All German samples originated from organs of bats found moribund or dead. The Hungarian samples were excrements collected from colonies of known bat species, throat or rectal swab samples, taken from live individuals that had been captured for faunistic surveys and migration studies, as well as internal or- gans of dead specimens.
    [Show full text]
  • Beneficial Forest Mgmt. Practices for WNS Affected Bats
    Beneficial Forest Management Practices for WNS-affected Bats Voluntary Guidance for Land Managers and Woodland Owners in the Eastern United States May 2018 Please cite this document as: Johnson, C.M. and R.A. King, eds. 2018. Beneficial Forest Management Practices for WNS-affected Bats: Voluntary Guidance for Land Managers and Woodland Owners in the Eastern United States. A product of the White-nose Syndrome Conservation and Recovery Working Group established by the White-nose Syndrome National Plan (www.whitenosesyndrome.org). 39 pp. BACKGROUND This document was prepared and reviewed by a diverse group of volunteers from universities, federal and state agencies, and non-governmental organizations functioning as a subgroup of the Conservation and Recovery Working Group (CRWG), which was established via A National Plan for Assisting States, Federal Agencies, and Tribes in Managing White-Nose Syndrome in Bats (a.k.a. the “National Plan”; USFWS 2011a (available at www.whitenosesyndrome.org). The need for beneficial forest management practices (BFMPs) for bats and forest management was identified by the CRWG and conceptualized during the 2013 White-Nose Syndrome Workshop held in Boise, Idaho. This document contains detailed information, including a glossary of bat and forest management- related terms (defined terms are underlined and are linked to the glossary) and citations for pertinent scientific literature to help land managers and others interested in gaining a deeper understanding of the underlying science and related issues that were considered when developing the BFMPs. An abbreviated and condensed version of these BFMPs is being planned and will be available as a user-friendly brochure at https://www.whitenosesyndrome.org when completed.
    [Show full text]
  • Foraging Behaviour of the Long-Fingered Bat Myotis Capaccinii: Implications for Conservation and Management
    Vol. 8: 69–78, 2009 ENDANGERED SPECIES RESEARCH Printed July 2009 doi: 10.3354/esr00183 Endang Species Res Published online April 27, 2009 Contribution to the Theme Section ‘Bats: status, threats and conservation successes’ OPENPEN ACCESSCCESS Foraging behaviour of the long-fingered bat Myotis capaccinii: implications for conservation and management David Almenar, Joxerra Aihartza, Urtzi Goiti, Egoitz Salsamendi, Inazio Garin* Zoologia Saila, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 644 PK, 48080 Bilbao, The Basque Country ABSTRACT: The main factors threatening Myotis capaccinii (Bonaparte, 1837) are considered to be foraging habitat degradation and roost loss. Conservation strategies that focus on the protection of roosts are feasible as long as direct threats by human activities are correctly identified. However, before protection of foraging habitat can be implemented more accurate information is required. We review the available information of relevance to foraging habitat management for the species. Three main topics are considered based on the results of a radiotelemetry study on 45 ind. in 3 seasons: habitat dependence, features of foraging habitat, and spatial range. M. capaccinii foraged almost completely over aquatic habitats as in other telemetry studies. We discuss the importance of terres- trial habitats and the dependence of the species on aquatic habitats. It has been proposed that sev- eral factors affect habitat selection in this species. The presence of smooth, clutter-free water surfaces seems to be the most important structural factor, but we found that prey richness also affected habi- tat selection. Effects of features related to riparian vegetation and water quality are thought to vary according to local conditions.
    [Show full text]
  • Bats, That Is Yet to Be Seen
    Janice Pease (315)328-5793 [email protected] 130 Beebe Rd, Potsdam, N.Y. 13676 August 23, 2018 Via Email Honorable Kathleen H. Burgess, Secretary to the PSC Re: Case 16- F-0268, Application of Atlantic Wind LLC for a certificate of Environmental Compatibility and Public Need Pursuant to Article 10 for Construction of the North Ridge Wind Energy Project in the Towns of Parishville and Hopkinton, St. Lawrence County. Dear Secretary Burgess: Industrial wind is devastating to the bat populations, adding to the many factors which play a role in reducing their numbers worldwide. While the wind industry likes to suggest that the advantage turbines provide to help reduce climate change (inadvertently benefitting all creatures) far outweighs their negative impact on the bats, that is yet to be seen. The data is simply not available to calculate the environmental/financial net losses accurately. With industrial wind’s intermittent and unreliable energy, the advantages are not nearly as the wind lobbyists suggest. The fragmentation/depletion of critical habitat due to wind turbines massive land use affects all animal species reliant on that space, ricocheting down the food chain. The loss of habitat as well as loss of carbon-sinks make the industrial turbine a very unlikely savior for any species. The net loss has simply not been calculated. Farmers are easily drawn into the debate by hosting these “farms”, while receiving large financial payouts. These same farmers are seemingly unaware of the immense benefit that bats provide by eating insect pests, saving farmers billions/year. The weakening of the local ecosystems will most certainly result in lower crop yields as well as contribute to financial losses as well.
    [Show full text]
  • Ixth European Bat Research Symposium Le Havre 26-30 August 2002
    IXth European Bat Research Symposium Le Havre 26-30 August 2002 ABSTRACTS Monday, 26 August Phylogeny and Systematics Oral communications EARLY MYOTIS : COMMENT ON FOSSIL RECORD Ivan Horáèek Department of Zoology, Charles University, Vinicna 7, CZ-128 44 Praha, Czech Republic. [email protected] Recent molecular studies on phylogeny of the genus Myotis (Ruedi & Mayer 2002) show a considerable discrepancy between the late divergence data predicted based on molecular evidence and a fact that most of the Miocene and Oligocene records of vespertilionid bats is identified just as Myotis. The present paper reports results of a revision of the Early Miocene and Oligocene material of these forms, and an extensive material of them obtained from the N-Bohemian MN3 site Ahníkov- Merkur -north. It is demonstrated that almost all European early Myotis actually do not belong to that genus but represent ancestral grades of the other vespertilionid clades. Two new genera (Hanakia, Quinetia) are described and their possible relations are discussed. The fossil forms which for sure can be identified as Myotis appear first in Vallesian, i.e. just in the period that is in quite a good agreement with predictions by molecular clock. MEGA- AND MICROCHIROPTERA: OLD CLADES AND NEW VIEWS Pavel Hulva & Ivan Horáèek Department of Zoology, Charles University, Vinicna 7, CZ-128 44 Praha, Czech Republic. [email protected] Extensive discussions on mutual relations of the two traditional suborders of Chiroptera, vivid in nineties, turned recently to another topics: monophyly of Microchiroptera and reality and actual content of Yango- and Yinochiroptera. The strong molecular evidence, recently published, suggests that Rhinolophoidea is a sister group of Pteropodidae.
    [Show full text]