Bat Conservation 2021

Total Page:16

File Type:pdf, Size:1020Kb

Bat Conservation 2021 Bat Conservation Global evidence for the effects of interventions 2021 Edition Anna Berthinussen, Olivia C. Richardson & John D. Altringham Conservation Evidence Series Synopses 2 © 2021 William J. Sutherland This document should be cited as: Berthinussen, A., Richardson O.C. and Altringham J.D. (2021) Bat Conservation: Global Evidence for the Effects of Interventions. Conservation Evidence Series Synopses. University of Cambridge, Cambridge, UK. Cover image: Leucistic lesser horseshoe bat Rhinolophus hipposideros hibernating in a former water mill, Wales, UK. Credit: Thomas Kitching Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/ 3 Contents Advisory Board.................................................................................... 11 About the authors ............................................................................... 12 Acknowledgements ............................................................................. 13 1. About this book ........................................................... 14 1.1 The Conservation Evidence project ................................................................................. 14 1.2 The purpose of Conservation Evidence synopses ............................................................ 14 1.3 Who this synopsis is for ................................................................................................... 15 1.4 Background ...................................................................................................................... 15 1.5 Scope of the review ......................................................................................................... 17 1.6 Methods ........................................................................................................................... 18 1.7 How to use the information provided ............................................................................. 34 1.8 How you can help to change conservation practice ........................................................ 35 1.9 References ....................................................................................................................... 35 2. Threat: Residential and commercial development ........ 37 2.1. Retain existing bat roosts and access points within developments ................................. 37 2.2. Relocate access points to bat roosts within developments ............................................. 39 2.3. Install sound-proofing insulation between bat roosts and areas occupied by humans within developments ....................................................................................................... 40 2.4. Create alternative bat roosts within developments ........................................................ 41 2.5. Change timing of building work ....................................................................................... 45 2.6. Exclude bats from roosts during building work ............................................................... 46 2.7. Educate homeowners about building and planning laws relating to bats to reduce disturbance to bat roosts ................................................................................................. 47 2.8. Plant gardens with night-scented flowers ....................................................................... 47 2.9. Increase semi-natural habitat within gardens ................................................................. 48 2.10. Protect brownfield or ex-industrial sites.......................................................................... 48 2.11. Protect greenfield sites or undeveloped land in urban areas .......................................... 49 2.12. Create or restore bat foraging habitat in urban areas ..................................................... 49 2.13. Legally protect bats during development ........................................................................ 51 3. Threat: Agriculture ....................................................... 54 All farming systems .............................................................................................................. 54 3.1. Use organic farming instead of conventional farming ..................................................... 54 3.2. Pay farmers to cover the costs of conservation measures (e.g. agri-environment schemes) .......................................................................................................................... 60 3.3. Engage farmers and landowners to manage land for bats .............................................. 62 3.4. Provide or retain set-aside areas in farmland .................................................................. 63 3.5. Increase the proportion of semi-natural habitat in the farmed landscape ..................... 63 3.6. Reduce field size (or maintain small fields) ...................................................................... 64 3.7. Retain unmown field margins .......................................................................................... 64 3.8. Plant field margins with a diverse mix of plant species ................................................... 65 3.9. Plant new hedges ............................................................................................................. 66 4 3.10. Manage hedges to benefit bats ....................................................................................... 67 3.11. Manage ditches to benefit bats ....................................................................................... 69 3.12. Retain existing in-field trees ............................................................................................ 69 3.13. Plant in-field trees ............................................................................................................ 70 3.14. Create tree plantations on agricultural land .................................................................... 70 3.15. Retain remnant forest or woodland on agricultural land ................................................ 72 3.16. Retain riparian buffers on agricultural land ..................................................................... 73 3.17. Retain or plant native trees and shrubs amongst crops (agroforestry) ........................... 74 Livestock farming ................................................................................................................. 79 3.18. Avoid the use of antiparasitic drugs for livestock ............................................................ 79 3.19. Manage grazing regimes to increase invertebrate prey .................................................. 79 3.20. Replace culling of bats with non-lethal methods of preventing vampire bats from spreading rabies to livestock ............................................................................................ 80 3.21. Manage livestock water troughs as a drinking resource for bats .................................... 81 Perennial, non-timber crops ................................................................................................. 82 3.22. Prevent culling of bats around fruit orchards .................................................................. 82 3.23. Use non-lethal measures to prevent bats from accessing fruit in orchards to reduce human-wildlife conflict .................................................................................................... 83 3.24. Restore and manage abandoned orchards for bats......................................................... 84 3.25. Introduce certification for bat-friendly crop harvesting regimes .................................... 85 4. Threat: Energy production and mining .......................... 86 Wind turbines ....................................................................................................................... 86 4.1. Apply textured coating to turbines .................................................................................. 87 4.2. Deter bats from turbines using radar .............................................................................. 88 4.3. Deter bats from turbines using ultrasound ...................................................................... 88 4.4. Deter bats from turbines using low-level ultraviolet light ............................................... 91 4.5. Remove turbine lighting to reduce bat and insect attraction .......................................... 91 4.6. Paint turbines to reduce insect attraction ....................................................................... 92 4.7. Close off potential access points on turbines to prevent roosting bats .......................... 92 4.8. Modify turbine placement to reduce bat fatalities .......................................................... 93 4.9. Retain a buffer between turbines and habitat features used by bats ............................. 93 4.10. Prevent turbine blades from turning at low wind speeds (‘feathering’) ......................... 94 4.11. Slow rotation of turbine blades at low wind speeds ........................................................ 98 4.12. Increase the wind speed at which turbines become operational (‘cut-in speed’) ........... 99 4.13. Automatically reduce turbine blade rotation when bat activity is high......................... 105 Mining ...............................................................................................................................
Recommended publications
  • What Bats Do You Have and How Can You Help Them • About British Bats
    What bats do you have and how can you help them • About British bats • What bats you have – including rarities • Projects of interest • What we can all do for all bats UK bat species British bats Horseshoe Horseshoes Greater horseshoe family Lesser horseshoe Myotis bats Alcathoe bat Bechstein’s bat Brandt’s bat Daubenton’s bat Natterer’s bat Whiskered Big bats Noctule Vesper family Leisler’s bat - evening bats or common Serotine bat Pipistrelles Common pipistrelle (Pipistrellus) Soprano pipistrelle Nathusius’ pipistrelle Long-eareds Brown long-eared bat (Plecotus) © Ash Murray © Ash Murray Grey long-eared bat Barbastelle 17 species of bats breed in the UK Unique in their power of flight Where bats live Bats use different roosts at different times of the year Bats often roost in buildings and other built structures Some bats only roost in trees Some bats will also roost in bat boxes Bat habitats: roosts Where bats feed Bats need good foraging habitat near to where they roost Good foraging habitats are those that support insects (and a range of other biodiversity) Bats will feed over water, woodland, marshy areas, hedgerows, grazed and semi-improved grassland Connectivity and unlit green infrastructure is important Bat habitats: foraging • Suitable feeding areas close to roost sites • Good variety and number of insects • Sheltered areas where insects can be caught more easily Bat habitats: linkages • Linear features such as hedgerows and other flight-line features • Vital for bats to navigate from roost to feeding area How do they
    [Show full text]
  • Bat Calls of New South Wales
    Bat calls of New South Wales Region based guide to the echolocation calls of microchiropteran bats Michael Pennay1 , Brad Law2 & Linda Reinhold3 1 New South Wales Department of Environment and Conservation 2 State Forests of New South Wales 3 Queensland Department of Natural Resources and Mines Bat calls of New South Wales Bat calls of New South Wales Published by the NSW Department of Environment and Conservation May 2004 Copyright © NSW Department of Environment and Conservation ISBN 0 7313 6786 3 This guide is the result of a co-operative project between NSW National Parks and Wildlife Service, now the NSW Department of Environment and Conservation (DEC) and State Forests of NSW (SFNSW). DEC provided project funding, management, staff, reference calls, preparation and printing. SFNSW provided part funding and granted support of staff time and expertise, reference calls and editing. Research was conducted under NPWS scientific licence number A2753 and SFNSW special purpose permit for research number 05466. Material presented in this publication may be copied for personal use or republished for non-commercial purposes provided that NSW Department of Environment and Conservation is fully acknowledged as the copyright owner. Apart from these purposes or for private study, research, criticism or review, as permitted under the Australian Copyright Act, no part of this publication may be reproduced by any process without written permission from NSW Department of Environment and Conservation. Inquiries should be addressed to the NSW Department of Environment and Conservation. This publication should be cited as follows: Pennay, M., Law, B., Reinhold, L. (2004). Bat calls of New South Wales: Region based guide to the echolocation calls of Microchiropteran bats.
    [Show full text]
  • Bat Echolocation Research a Handbook for Planning and Conducting Acoustic Studies Second Edition
    Bat Echolocation Research A handbook for planning and conducting acoustic studies Second Edition Erin E. Fraser, Alexander Silvis, R. Mark Brigham, and Zenon J. Czenze EDITORS Bat Echolocation Research A handbook for planning and conducting acoustic studies Second Edition Editors Erin E. Fraser, Alexander Silvis, R. Mark Brigham, and Zenon J. Czenze Citation Fraser et al., eds. 2020. Bat Echolocation Research: A handbook for planning and conducting acoustic studies. Second Edition. Bat Conservation International. Austin, Texas, USA. Tucson, Arizona 2020 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ii Table of Contents Table of Figures ....................................................................................................................................................................... vi Table of Tables ........................................................................................................................................................................ vii Contributing Authors .......................................................................................................................................................... viii Dedication…… .......................................................................................................................................................................... xi Foreword…….. ..........................................................................................................................................................................
    [Show full text]
  • A Survey of the Bat Fauna
    __________________________________________________________________________________ Assessment of risk to Large Forest Bat on Lord Howe Isand from proposed wind turbines. An assessment of the risk to the Large Forest Bat Vespadelus darlingtoni from proposed wind turbines on Lord Howe Island, New South Wales. A report to Lord Howe Island Board G.A. Hoye Fly By Night Bat Surveys Pty Ltd ABN 48 068 562 005 PO Box 271 BELMONT NSW 2280 Tel 4947 7794 Fax 4947 7537 January 2016 January 2016 Fly By Night Bat Surveys Pty Ltd __________________________________________________________________________________ 1 __________________________________________________________________________________ Assessment of risk to Large Forest Bat on Lord Howe Isand from proposed wind turbines. 1 INTRODUCTION Fly By Night Bat Surveys PL was requested by the Lord Howe Island Board to assess potential impacts to the Large Forest Bat from two proposed wind turbines to be sited in pasture on the southern flank of Transit Hill. This species is currently the only native mammal known to breed on the island. Previous survey has confirmed the presence of this species in the lower elevated parts of the island including the area where the two turbines are proposed (Fly By Night Bat Surveys 2010). A population of approximately 500 breeding females exists north of the airstrip, with a second smaller population centred around Mount Gower and Mount Lidgebird (Fly By Night Bat Surveys 2010-2014). Significant mortality of microchiropteran bats has occurred at utility wind farms in North America and Europe (eg Kunz 2007b). In eastern North America mortality from turbine strike along forested ridge tops varies from 15.3 to 41.1 bats per megawatt (MW) of installed capacity per year Kunz (2007b).
    [Show full text]
  • Ausgabe 11/2019
    Amtsblatt für das Amt Biesenthal-Barnim 29. Jahrgang Biesenthal, 27. August 2019 Nummer 11 | Woche 35 I. Amtlicher Teil Amtliche Bekanntmachungen Öffentliche Bekanntmachung über die Kommunalwahl am 15.07.2019 – Wahl des Ortsbeirates des Ortsteiles Ruhlsdorf, Gemeinde Marienwerder Seite 2 Bekanntmachung über die Auslegung von geänderten Planunterlagen zum Zwecke der Planfeststellung für den Neubau der Ortsumgehung B 167 Finowfurt/Eberswalde (L 220 – L 200) einschließlich der trassenfernen landschaftspflegerischen Begleitmaßnahmen in den Gemarkungen Eberswalde, Finow und Spechthausen (Stadt Eberswalde), Werneuchen (Stadt Werneuchen), Joachimsthal und Friedrichswalde (Amt Joachimsthal), Hohenfinow und Britz (Amt Britz-Chorin-Oderberg), Ruhlsdorf und Marienwerder (Amt Biesenthal-Barnim), Schorfheide, Finowfurt, Groß Schönebeck, Werbellin und Lichterfelde (Gemeinde Schorfheide), Prenden und Zerpenschleuse (Gemeinde Wandlitz), Lobetal (Stadt Bernau bei Berlin) im Landkreis Barnim sowie Kreuzbruch (Stadt Liebenwalde), Fürstenberg/Havel (Stadt Fürstenberg/Havel), Borgsdorf (Stadt Hohen Neuendorf), Velten (Stadt Velten) im Landkreis Oberhavel sowie Templin (Stadt Templin), Gerswalde, Temmen und Groß Fredenwalde (Amt Gerswalde) im Landkreis Uckermark sowie Eggersdorf bei Müncheberg (Stadt Müncheberg) im Landkreis Märkisch-Oderland Seite 2 | 2 | 27. August | Nr. 11 | Woche 35 AMTSBLATT FÜR DAS AMT BIESENTHAL-BARNIM I. AMTLICHER TEIL Amtliche Bekanntmachungen Öffentliche Bekanntmachung – Kommunalwahl am 15. Juli 2019 Wahl des Ortsbeirates des Ortsteiles Ruhlsdorf, Gemeinde Marienwerder Vorläufiges Wahlergebnis: Gewählte Bewerber: 1. Herr Frank Lützow 49 Stimmen Einwohneranzahl: 462 2. Frau Sabine Schröer-Seidler 25 Stimmen wahlberechtigt: 417 3. Frau Eva-Maria Hettwer 24 Stimmen (anwesend müssen fünf v. H. der wahlberechtigten Personen sein) Zahl der Wähler: 49 Stimmabgabe: 147 gültige Stimmen: 98 ungültige Stimmen: 49 Biesenthal, den 13.08.2019 Zahl der Sitze: 3 BEWERBER: 1. Herr Frank Lützow 2.
    [Show full text]
  • Insights Into Australian Bat Lyssavirus in Insectivorous Bats of Western Australia
    Tropical Medicine and Infectious Disease Article Insights into Australian Bat Lyssavirus in Insectivorous Bats of Western Australia Diana Prada 1,*, Victoria Boyd 2, Michelle Baker 2, Bethany Jackson 1,† and Mark O’Dea 1,† 1 School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; [email protected] (B.J.); [email protected] (M.O.) 2 Australian Animal Health Laboratory, CSIRO, Geelong, VIC 3220, Australia; [email protected] (V.B.); [email protected] (M.B.) * Correspondence: [email protected]; Tel.: +61-893607418 † These authors contributed equally. Received: 21 February 2019; Accepted: 7 March 2019; Published: 11 March 2019 Abstract: Australian bat lyssavirus (ABLV) is a known causative agent of neurological disease in bats, humans and horses. It has been isolated from four species of pteropid bats and a single microbat species (Saccolaimus flaviventris). To date, ABLV surveillance has primarily been passive, with active surveillance concentrating on eastern and northern Australian bat populations. As a result, there is scant regional ABLV information for large areas of the country. To better inform the local public health risks associated with human-bat interactions, this study describes the lyssavirus prevalence in microbat communities in the South West Botanical Province of Western Australia. We used targeted real-time PCR assays to detect viral RNA shedding in 839 oral swabs representing 12 species of microbats, which were sampled over two consecutive summers spanning 2016–2018. Additionally, we tested 649 serum samples via Luminex® assay for reactivity to lyssavirus antigens. Active lyssavirus infection was not detected in any of the samples.
    [Show full text]
  • … Simply Beautiful About the Uckermark
    … Simply beautiful About the uckermArk Area: 3,o77 km2 ++ Population: 121,o14 ++ Population density: 39 inhabitants per km2 – one of the most sparsely populated areas in Germany ++ 5 % of the region is covered by water (compared with 2.4 % of Germany as a whole) ++ The Uckermark border to Poland runs mainly along the River Oder and is 52 km long. the uckermark – naturally What we want to do: Eco-friendly holidays Enable low-impact tourism close to nature Ensure products and services are high quality Create lasting natural and cultural experiences Generate value for the region What you can do: Treat nature with respect Buy regional products With its freshwater lakes, woodland swamps, Stay in climate-friendly accommodation natural river floodplains, and rare animals and Go by train, bicycle, canoe or on foot, and plants, almost half of the Uckermark is desig- treat your car to a break nated a protected landscape. We want to safe- guard this landscape for future generations. Our nature park and national park partners feel a close connection to these conservation areas, run their businesses sustainably and focus on high-quality services, including guid- ed canoe trips, eco-friendly accommodation, and regional cuisine. As winners of the Germany-wide competition holidaying in the uckermark: 1 Taking a break in the Uckermark Lakes Nature Park 2 Horses in the Uckermark meadows for sustainable tourism, we strive to achieve 3 Relaxing with a book by the Oberuckersee lake near Potzlow 4 Discovering nature 5 Places with history 6 Regional products long-term, sustainable goals. Large image: Canoe trip in the Lower Oder Valley National Park – starting off near Gartz 2 The Uckermark – naTURALLY The Uckermark – naTURALLY 3 enjoy nature Space to breathe NAture protectioN zoNes ANd LAkes The Uckermark Lakes Natural Park is a huge net- work of lakes with 1oo km of waterways for canoeists, more than 5o freshwater lakes and optimal nesting condi- tions for ospreys.
    [Show full text]
  • Conservation and Management of Eastern Big-Eared Bats a Symposium
    Conservation and Management of Eastern Big-eared Bats A Symposium y Edited b Susan C. Loeb, Michael J. Lacki, and Darren A. Miller U.S. Department of Agriculture Forest Service Southern Research Station General Technical Report SRS-145 DISCLAIMER The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service. Papers published in these proceedings were submitted by authors in electronic media. Some editing was done to ensure a consistent format. Authors are responsible for content and accuracy of their individual papers and the quality of illustrative materials. Cover photos: Large photo: Craig W. Stihler; small left photo: Joseph S. Johnson; small middle photo: Craig W. Stihler; small right photo: Matthew J. Clement. December 2011 Southern Research Station 200 W.T. Weaver Blvd. Asheville, NC 28804 Conservation and Management of Eastern Big-eared Bats: A Symposium Athens, Georgia March 9–10, 2010 Edited by: Susan C. Loeb U.S Department of Agriculture Forest Service Southern Research Station Michael J. Lacki University of Kentucky Darren A. Miller Weyerhaeuser NR Company Sponsored by: Forest Service Bat Conservation International National Council for Air and Stream Improvement (NCASI) Warnell School of Forestry and Natural Resources Offield Family Foundation ContEntS Preface . v Conservation and Management of Eastern Big-Eared Bats: An Introduction . 1 Susan C. Loeb, Michael J. Lacki, and Darren A. Miller Distribution and Status of Eastern Big-eared Bats (Corynorhinus Spp .) . 13 Mylea L. Bayless, Mary Kay Clark, Richard C. Stark, Barbara S.
    [Show full text]
  • Is Bat Hair Morphology Exceptional?
    Vespertilio 17: 171–183, 2014 ISSN 1213-6123 Is bat hair morphology exceptional? Britten D. SESSIONS1, Chanell E. Nielson2, John M. SOWA3, Wilford M. HESS4, Wesley “Skip” Skidmore5 & Bradley A. Carmack6 1 Patent Attorney, Zilka-Kotab, 1155 N. First Street Ste. 105, San Jose, CA 95112, U.S.A.; [email protected] 2 Department of English, Brigham Young University, Provo, UT 84602, U.S.A. 3 Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, U.S.A. 4 Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, U.S.A. 5 Life Sciences Museum, Brigham Young University, Provo, UT 84602, U.S.A. 6 HR Professional, Sunnyvale, CA 94089, U.S.A. Abstract. Surface hair scale patterns from 19 bat species (families Vespertilionidae and Molossidae) from Utah were studied using scanning electron microscopy (SEM). Hair width, scale length, pattern, and position in relation to the long axis were used to characterize morphology within species, and fa- milies within the order Chiroptera. Previous studies indicate variations within families. Hair morphology results make it evident that large variations and similarities within the families can be seen visually and codified for the order. In the family Vespertilionidae, variations in hair morphology necessitated better terminology, including two new terms for morphology patterns. In the family Molossidae, distinctions between species, and possibly within the family, may be evident using SEM imaging to characterize morphology characteristics, although only two species were studied in this family. More precise morpho- logical measurements than used for this study may be necessary to construct useful keys for species within at least some families of bat.
    [Show full text]
  • Information Synthesis on the Potential for Bat Interactions with Offshore Wind Facilities
    _______________ OCS Study BOEM 2013-01163 Information Synthesis on the Potential for Bat Interactions with Offshore Wind Facilities Final Report U.S. Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs www.boem.gov OCS Study BOEM 2013-01163 Information Synthesis on the Potential for Bat Interactions with Offshore Wind Facilities Final Report Authors Steven K. Pelletier Kristian S. Omland Kristen S. Watrous Trevor S. Peterson Prepared under BOEM Contract M11PD00212 by Stantec Consulting Services Inc. 30 Park Drive Topsham, ME 04086 Published by U.S. Department of the Interior Bureau of Ocean Energy Management Herndon, VA Office of Renewable Energy Programs June 2013 DISCLAIMER This report was prepared under contract between the Bureau of Ocean Energy Management (BOEM) and Stantec Consulting Services Inc. This report has been technically reviewed by BOEM, and it has been approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of BOEM, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with BOEM editorial standards. REPORT AVAILABILITY The report may be downloaded from the boem.gov website through the Environmental Studies Program Information System (ESPIS). You will be able to obtain this report from BOEM or the National Technical Information Service. U.S. Department of the Interior U.S. Department of Commerce Bureau of Ocean Energy Management National Technical Information Service Office of Renewable Energy Programs 5285 Port Royal Road 381 Elden Street, HM-1328 Springfield, Virginia 22161 Herndon, VA 20170 Phone: (703) 605-6040 Fax: (703) 605-6900 Email: [email protected] CITATION Pelletier, S.K., K.
    [Show full text]
  • EU Action Plan for the Conservation of All Bat Species in the European Union
    Action Plan for the Conservation of All Bat Species in the European Union 2018 – 2024 October 2018 Action Plan for the Conservation of All Bat Species in the European Union 2018 - 2024 EDITORS: BAROVA Sylvia (European Commission) & STREIT Andreas (UNEP/EUROBATS) COMPILERS: MARCHAIS Guillaume & THAURONT Marc (Ecosphère, France/The N2K Group) CONTRIBUTORS (in alphabetical order): BOYAN Petrov * (Bat Research & Conservation Centre, Bulgaria) DEKKER Jasja (Animal ecologist, Netherlands) ECOSPHERE: JUNG Lise, LOUTFI Emilie, NUNINGER Lise & ROUÉ Sébastien GAZARYAN Suren (EUROBATS) HAMIDOVIĆ Daniela (State Institute for Nature Protection, Croatia) JUSTE Javier (Spanish association for the study and conservation of bats, Spain) KADLEČÍK Ján (Štátna ochrana prírody Slovenskej republiky, Slovakia) KYHERÖINEN Eeva-Maria (Finnish Museum of Natural History, Finland) HANMER Julia (Bat Conservation Trust, United Kingdom) LEIVITS Meelis (Environmental Agency of the Ministry of Environment, Estonia) MARNELl Ferdia (National Parks & Wildlife Service, Ireland) PETERMANN Ruth (Federal Agency for Nature Conservation, Germany) PETERSONS Gunărs (Latvia University of Agriculture, Latvia) PRESETNIK Primož (Centre for Cartography of Fauna and Flora, Slovenia) RAINHO Ana (Institute for the Nature and Forest Conservation, Portugal) REITER Guido (Foundation for the protection of our bats in Switzerland) RODRIGUES Luisa (Institute for the Nature and Forest Conservation, Portugal) RUSSO Danilo (University of Napoli Frederico II, Italy) SCHEMBRI
    [Show full text]
  • Vocalisations of the Seychelles Sheath-Tailed Bat Coleura Seychellensis
    Le Rhinolophe (2009) 18 : 17-24 Vocalisations of the seychelles sheath-tailed bat Coleura seychellensis Justin Gerlach 133 Cherry Hinton Road, Cambridge CB1 7BX, U.K. E-mail : [email protected] Abstract. The vocalisations of the Critically Endangered Seychelles sheath-tailed bat Coleura seychellensis are described. Four call types are identified : complex social calls, orientation calls within the roost, open habitat orientation calls and foraging calls. The open habitat orientation calls and foraging calls are quasi-CF, the latter having alternating frequencies. The function of the alternating calls is discussed and it is concluded that in this species the lower frequency tone is used for navigation (being identical to the open habitat orientation calls) and the higher frequency tone for prey detection in cluttered environments. Key words : Coleura, echolocation, Emballonuridae, foraging, orientation. INTRODUCTION MeThODs Auditory communication is used by a wide range of Two sets of recordings were analysed from Silhouette animals, from insects to vertebrates. In most species and Mahé islands. On Silhouette an automated recording this is used for communication between individuals ; system comprising the Anabat II bat detector and ZCAIM in the case of bats vocalisations provide information storage system was used for recording bat calls at La Passe both to other individuals and to the calling individual in July 2005. The bat detector was left in place overnight in the form of sonar. This mechanism and use of such (18:00-07:00 hours) in the roost and in foraging areas. communication in bats is relatively well understood and The recordings were analysed with Analook 4.9j.
    [Show full text]