Genome Wide Identification of Bacterial Genes Required for Plant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metabolic and Genetic Basis for Auxotrophies in Gram-Negative Species
Metabolic and genetic basis for auxotrophies in Gram-negative species Yara Seifa,1 , Kumari Sonal Choudharya,1 , Ying Hefnera, Amitesh Ananda , Laurence Yanga,b , and Bernhard O. Palssona,c,2 aSystems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122; bDepartment of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; and cNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved February 5, 2020 (received for review June 18, 2019) Auxotrophies constrain the interactions of bacteria with their exist in most free-living microorganisms, indicating that they rely environment, but are often difficult to identify. Here, we develop on cross-feeding (25). However, it has been demonstrated that an algorithm (AuxoFind) using genome-scale metabolic recon- amino acid auxotrophies are predicted incorrectly as a result struction to predict auxotrophies and apply it to a series of the insufficient number of known gene paralogs (26). Addi- of available genome sequences of over 1,300 Gram-negative tionally, these methods rely on the identification of pathway strains. We identify 54 auxotrophs, along with the corre- completeness, with a 50% cutoff used to determine auxotrophy sponding metabolic and genetic basis, using a pangenome (25). A mechanistic approach is expected to be more appropriate approach, and highlight auxotrophies conferring a fitness advan- and can be achieved using genome-scale models of metabolism tage in vivo. We show that the metabolic basis of auxotro- (GEMs). For example, requirements can arise by means of a sin- phy is species-dependent and varies with 1) pathway structure, gle deleterious mutation in a conditionally essential gene (CEG), 2) enzyme promiscuity, and 3) network redundancy. -
Yersinia Ruckeri Sp. Nov., the Redmouth (RM) Bacterium
0020-7713/78/0028-0037$02-00/0 INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1978, p. 37-44 Vol. 28, No. 1 Copyright 0 1978 International Association of Microbiological Societies Printed in U.S. A. Yersinia ruckeri sp. nov., the Redmouth (RM) Bacterium W. H. EWING,? A. J. ROSS,?t DON J. BRENNER,??? AND G. R. FANNING Division of Biochemistry, Walter Reed Army Institute of Research, Washington, D.C. 20012 Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine(G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteri- aceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. -
Mouse Anti-Bacteria Yersinia Ruckeri Monoclonal Antibody, Clone 8G6/G7 (DMAB6804) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
Mouse anti-Bacteria Yersinia Ruckeri Monoclonal antibody, clone 8G6/G7 (DMAB6804) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Mouse anti-bacteria yersinia ruckeri monoclonal antibody. Yersinia Ruckeri IgG fraction obtained by immunizing mice with five Chilean isolates of Yersinia ruckeri (whole bacterial cells). The IgG fraction was purified using Protein G-Sepharose. Antigen Description Y. ruckeri is a Gram-negative, rod-shaped bacterium that shows a variable motility due to the presence of flagella. These flagella are not always observed. It is the causative agent of enteric redmouth disease (ERM) which is characterized by a chronic or acute enterosepticemia with high morbidity and mortality rates in salmonids and non-salmonids species. Six serovars have been described according to whole-cell serological typing. Isotype IgG2b Source/Host Mouse Clone 8G6/G7 Conjugate Unconjugated Applications ELISA, WB, IF Stability Stable at least one year at -20oC. Avoid repeated freezing and thawing. Format Solution at 1.0 mg/ml in PBS. Size 100 μg Preservative None Storage Store at -20ºC. BACKGROUND Introduction Yersinia is a genus of bacteria in the family Enterobacteriaceae. Yersinia are Gram-negative rod shaped bacteria, a few micrometers long and fractions of a micrometer in diameter, and are facultative anaerobes. Some members of Yersinia are pathogenic in humans; in particular, Y. 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved pestis is the causative agent of the plague. -
Characterization of Type VI Secretion System in Edwardsiella Ictaluri
Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2017 Characterization of Type VI Secretion System in Edwardsiella Ictaluri Safak Kalindamar Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Kalindamar, Safak, "Characterization of Type VI Secretion System in Edwardsiella Ictaluri" (2017). Theses and Dissertations. 1038. https://scholarsjunction.msstate.edu/td/1038 This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Template A v3.0 (beta): Created by J. Nail 06/2015 Characterization of type VI secretion system in Edwardsiella ictaluri By TITLE PAGE Safak Kalindamar A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctorate of Philosophy in Veterinary Medical Sciences in the College of Veterinary Medicine Mississippi State, Mississippi December 2017 Copyright by COPYRIGHT PAGE Safak Kalindamar 2017 Characterization of type VI secretion system in Edwardsiella ictaluri By APPROVAL PAGE Safak Kalindamar Approved: ____________________________________ Attila Karsi, Associate Professor of Department of Basic Sciences (Major Professor) ____________________________________ Mark L. Lawrence, Professor Department -
Unraveling the Biotechnological Potential of the Secretome of Burkholderia Cepacia Complex, with Focus on Its Antimicrobial Activity
Unraveling the biotechnological potential of the secretome of Burkholderia cepacia complex, with focus on its antimicrobial activity Carina Andreia Ribeiro Galhofa Thesis to obtain the Master of Science Degree in Biotechnology Supervisors: Prof. Doctor Isabel Maria de Sá Correia Leite de Almeida; Doctor Patrick de Oliveira Freire Examination Committee Chairperson: Doctor Arsénio do Carmo Sales Mendes Fialho Supervisor: Prof. Doctor Isabel Maria de Sá Correia Leite de Almeida Members of the Committee: Doctor Inês Batista Guinote December 2017 Acknowledgements The wish to become a future microbiologist and to study the “little bugs” that were able to cause diseases in individuals way bigger than them has been present since I was a child. As such, I would like to acknowledge those that helped me from the beginning to the end of this work, making this possible. To Prof. Dr.Isabel Sá Correia, I would like to express my gratitude not only for advising, but also for accepting me in this project which I enjoyed to do so much. To Dr. Patrick Freire, my advisor within BioMimetx, not only for all the guidance and patience but, most of all, for the motivation and believing in my work and Dr. Carla Coutinho for the support, for bearing my inexperience and for all the tips given that prevented me from exploding the laboratory…and the centrifuge. To the funding of IBB (Institute for Bioengineering and Biosciences) and BioMimetx, that gave me all the resources and conditions that enabled the conduction of my work. To Amir Hassan, for staying up late at the lab waiting for me to finish my work and for the “Goooooodddd woooorkkkkk” motivational screams. -
A Further Characterization of Yersinia Ruckeri (Enteric Redmouth Bacterium)
‹›•aŒ¤‹† Fish Pathology 14 (2) 71-78, 1979. 9 A further Characterization of Yersinia ruckeri (Enteric Redmouth Bacterium) P. J. O'LEARY, J. S. ROHOVEC and J. L. FRYER Department of Microbiology, Oregon State University, Corvallis, OR 97331 (Received May 22, 1979) Seventeen cultures of Enteric Redmouth Bacterium were examined biochemically at selected temperatures. Incubation temperature altered the motility of the bacterium. At 9•Ž non functional peritrichous flagella were produced, while at 18, 22, and 27•Ž the bacterium was motile. The cells were nonmotile at 37•Ž due to a lack of flagellar production. The percent guanine plus cytosine was determined to be 47.95•}0.45 (P=0.05). This work supports the proposal of Yersinia ruckeri as the genus and species designation of the Entric Redmouth Bacterium. hynchus tshawytscha) and coho (O. kisutch) Introduction salmon, and rainbow trout (Salmo gairdneri). In the early 1950's, Rucker isolated a gram Each isolate was stored on Brain Heart In- negative, oxidase negative, motile bacterium fusion (BHI: Difco) slants under sterile mineral from moribund rainbow trout (Salmo gaird oil. neri). The first publication concerning this Biochemical tests bacterium did not appear until 1966 (Ross et The methods used to study most of the al., 1966) in which the definitive taxonomic biochemical properties of this organism have position of the bacterium could not be defined, been described previously (EDWARDSand EWING although it was placed in the family Entero 1972; LENETTE et al., 1974). For carbohydrate bacteriaceae. Hence the name Enteric Red utilization tests, sugars were incorporated into mouth Bacterium (ERMB) arose. -
International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’. -
Scientific Opinion
SCIENTIFIC OPINION ADOPTED: 29 April 2021 doi: 10.2903/j.efsa.2021.6651 Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain EFSA Panel on Biological Hazards (BIOHAZ), Konstantinos Koutsoumanis, Ana Allende, Avelino Alvarez-Ord onez,~ Declan Bolton, Sara Bover-Cid, Marianne Chemaly, Robert Davies, Alessandra De Cesare, Lieve Herman, Friederike Hilbert, Roland Lindqvist, Maarten Nauta, Giuseppe Ru, Marion Simmons, Panagiotis Skandamis, Elisabetta Suffredini, Hector Arguello,€ Thomas Berendonk, Lina Maria Cavaco, William Gaze, Heike Schmitt, Ed Topp, Beatriz Guerra, Ernesto Liebana, Pietro Stella and Luisa Peixe Abstract The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs blaCTX-M, blaVIM, blaNDM, blaOXA-48- like, blaOXA-23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. -
PADLS User Guide
PADLS User Guide Updated - 01/01/2017 [Type text] [Type text] Table of Contents Message from the Secretary .......................................................................................................................................................................... 3 Foreword ...................................................................................................................................................................................................... 4 Animal Health and Diagnostic Commission ..................................................................................................................................................... 5 PA Dept of Agriculture ................................................................................................................................................................................... 6 General information ...................................................................................................................................................................................... 8 Submission information ............................................................................................................................................................................... 13 Results and reports ...................................................................................................................................................................................... 20 Fees and Billing........................................................................................................................................................................................... -
The Impact of Co-Infections on Fish: a Review
Kotob et al. Vet Res (2016) 47:98 DOI 10.1186/s13567-016-0383-4 REVIEW Open Access The impact of co‑infections on fish: a review Mohamed H. Kotob1,2, Simon Menanteau‑Ledouble1, Gokhlesh Kumar1, Mahmoud Abdelzaher2 and Mansour El‑Matbouli1* Abstract Co-infections are very common in nature and occur when hosts are infected by two or more different pathogens either by simultaneous or secondary infections so that two or more infectious agents are active together in the same host. Co-infections have a fundamental effect and can alter the course and the severity of different fish diseases. How‑ ever, co-infection effect has still received limited scrutiny in aquatic animals like fish and available data on this subject is still scarce. The susceptibility of fish to different pathogens could be changed during mixed infections causing the appearance of sudden fish outbreaks. In this review, we focus on the synergistic and antagonistic interactions occur‑ ring during co-infections by homologous or heterologous pathogens. We present a concise summary about the pre‑ sent knowledge regarding co-infections in fish. More research is needed to better understand the immune response of fish during mixed infections as these could have an important impact on the development of new strategies for disease control programs and vaccination in fish. Table of contents 1 Introduction 1 Introduction The subject of co-infections of aquatic animals by differ- 2 Co‑infections with homologous pathogens ent pathogens has received little attention even though such infections are common in nature. Co-infections are 2.1 Bacterial co‑infections defined by infection of the host by two or more geneti- 2.2 Viral co‑infections cally different pathogens where each pathogen has patho- 2.3 Parasitic co‑infections genic effects and causes harm to the host in coincidence 3 Co‑infections with heterologous pathogens with other pathogens [1, 2]. -
Early Pathogenesis of Yersinia Ruckeri Infections in Rainbow Trout (Oncorhynchus Mykiss , Walbaum)
FACULTEIT DIERGENEESKUNDE Early pathogenesis of Yersinia ruckeri infections in rainbow trout (Oncorhynchus mykiss , Walbaum) Els Tobback Thesis submitted in fulfilment of the requirements for the degree of Doctor in Veterinary Sciences (PhD), Faculty of Veterinary Medicine, Ghent University, 2009 Promotors: Prof. Dr. K. Chiers Prof. Dr. K. Hermans Prof. Dr. A. Decostere Faculty of Veterinary Medicine Department of Pathology, Bacteriology and Avian Diseases Table of contents LIST OF ABBREVIATIONS 7 GENERAL INTRODUCTION 9 Introduction 11 1. The micro-organism 11 1.1. Taxonomic position 11 1.2. Characteristics of Y. ruckeri 12 1.3. Typing of Y. ruckeri strains 12 2. The disease 14 2.1. Pathogenesis 14 2.1.1. Transmission 14 2.1.2. Portal of entry 15 2.1.3. Virulence factors 19 2.1.3.1. Extracellular toxins: Yrp1 and YhlA 19 2.1.3.2. Adhesins and invasions 20 2.1.3.3. Ruckerbactin 22 2.1.3.4. Plasmids 23 2.1.3.5. Type three secretion system 24 2.1.3.6. Type four secretion system 24 2.1.4. Importance of environmental factors 25 2.2. Clinical signs 25 2.3. Immune response 27 2.4. Diagnosis 30 2.5. Control and prevention 31 2.5.1. Antimicrobial compounds 31 2.5.2. Vaccines 31 2.5.3. Immunostimulants 32 2.5.4. Probiotics 33 References 34 3 SCIENTIFIC AIMS 47 EXPERIMENTAL STUDIES 51 1. Route of entry and tissue distribution of Yersinia ruckeri in experimentally infected rainbow trout ( Oncorhynchus mykiss , Walbaum) 53 2. Interactions of virulent and avirulent Yersinia ruckeri strains with isolated gill arches and intestinal explants of rainbow trout ( Oncorhynchus mykiss , Walbaum) 75 3. -
Intraspecific Variability of Edwardsiella Piscicida and Cross-Protective Efficacy of A
Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 8-1-2020 Intraspecific ariabilityV of Edwardsiella piscicida and Cross- Protective Efficacy of a Live-Attenuated Edwardsiella ictaluri Vaccine in Channel and Channel × Blue Hybrid Catfi Adrian Lopez Porras Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Lopez Porras, Adrian, "Intraspecific ariabilityV of Edwardsiella piscicida and Cross-Protective Efficacy of a Live-Attenuated Edwardsiella ictaluri Vaccine in Channel and Channel × Blue Hybrid Catfi" (2020). Theses and Dissertations. 2789. https://scholarsjunction.msstate.edu/td/2789 This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Template C with Schemes v4.1 (beta): Created by L. 11/15/19 Intraspecific Variability of Edwardsiella piscicida and Cross-Protective Efficacy of a Live-Attenuated Edwardsiella ictaluri Vaccine in Channel and Channel × Blue Hybrid Catfish By TITLE PAGE Adrian Lopez Porras Approved by: David J. Wise (Major Professor) Suja Aarattuthodiyil (Co-Major Professor) Matthew J. Griffin (Thesis Director) Thomas G. Rosser (Committee Member) Kevin M. Hunt (Graduate Coordinator) George M. Hopper (Dean, College of Forest Resources) A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Wildlife, Fisheries and Aquaculture in the Department of Wildlife, Fisheries and Aquaculture Mississippi State, Mississippi August 2020 Copyright by COPYRIGHT PAGE Adrian Lopez Porras 2020 Name: Adrian Lopez Porras ABSTRACT Date of Degree: August 7, 2020 Institution: Mississippi State University Major Field: Wildlife, Fisheries and Aquaculture Major Professor: David J.