Scientific Opinion

Total Page:16

File Type:pdf, Size:1020Kb

Scientific Opinion SCIENTIFIC OPINION ADOPTED: 29 April 2021 doi: 10.2903/j.efsa.2021.6651 Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain EFSA Panel on Biological Hazards (BIOHAZ), Konstantinos Koutsoumanis, Ana Allende, Avelino Alvarez-Ord onez,~ Declan Bolton, Sara Bover-Cid, Marianne Chemaly, Robert Davies, Alessandra De Cesare, Lieve Herman, Friederike Hilbert, Roland Lindqvist, Maarten Nauta, Giuseppe Ru, Marion Simmons, Panagiotis Skandamis, Elisabetta Suffredini, Hector Arguello,€ Thomas Berendonk, Lina Maria Cavaco, William Gaze, Heike Schmitt, Ed Topp, Beatriz Guerra, Ernesto Liebana, Pietro Stella and Luisa Peixe Abstract The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs blaCTX-M, blaVIM, blaNDM, blaOXA-48- like, blaOXA-23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required. © 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority. Keywords: antimicrobial resistance, food-producing environment, antimicrobial resistance genes, antimicrobial-resistant bacteria, animals, plants, aquaculture, environment, food Requestor: EFSA Question number: EFSA-Q-2019-00343 Correspondence: [email protected] www.efsa.europa.eu/efsajournal EFSA Journal 2021;19(6):6651 AMR in food-producing environment Panel members: Konstantinos Koutsoumanis, Ana Allende, Avelino Alvarez-Ord onez,~ Declan Bolton, Sara Bover-Cid, Marianne Chemaly, Robert Davies, Alessandra De Cesare, Lieve Herman, Friederike Hilbert, Roland Lindqvist, Maarten Nauta, Luisa Peixe, Giuseppe Ru, Marion Simmons, Panagiotis Skandamis and Elisabetta Suffredini. Declarations of interest: The declarations of interest of all scientific experts active in EFSA’s work are available at https://ess.efsa.europa.eu/doi/doiweb/doisearch. Acknowledgements: The Panel wishes to thank the following observers who followed the development of the scientific output for the support received: European Medicines Agency, specially Ricardo Carapeto (member of EMA CVMP), Michael Empl, Zoltan Kunsagi and Ana Vidal; European Environment Agency, Caroline Whalley; European Centre for Disease Prevention and Control, Dominique Monnet; and the European Commission. The Panel also wishes to thank EFSA staff Karoline Nørstrud for her contributions to the drafting of this scientific output, Eleonora Sarno, Pierre-Alexandre Beloeil and Gina Cioacata. Suggested citation: EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), Koutsoumanis K, Allende A, Alvarez-Ord onez~ A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Arguello€ H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liebana E, Stella P and Peixe L, 2021. Scientific Opinion on the role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA Journal 2021;19(6):6651, 188 pp. https://doi.org/ 10.2903/j.efsa.2021.6651 ISSN: 1831-4732 © 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority. This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made. The EFSA Journal is a publication of the European Food Safety Authority, a European agency funded by the European Union. www.efsa.europa.eu/efsajournal 2 EFSA Journal 2021;19(6):6651 AMR in food-producing environment Summary The European Food Safety authority (EFSA) asked the Panel on Biological Hazards (BIOHAZ) to provide a scientific opinion on the role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. In particular, the Panel was asked: 1) to identify the main environmental sources and transmission routes leading to the contamination of foods of animal and non-animal origin with antimicrobial-resistant bacteria (ARB) and/or resistance determinants/genes (ARGs) (ToR1); 2) to identify the ARB and/or ARGs of highest priority for public health contaminating food through the environmental routes identified, as well as the main risk factors influencing their occurrence and persistence in food-producing environments and food (ToR2); 3) to review and, if possible, assess the impact of strategies and options to mitigate the risk of emergence, spread and food-borne transmission of those ARB (ToR3); 4) to identify data gaps influencing the assessment of food chain-related AMR risks posed by the environment and provide recommendations to inform future EU research priorities on this topic (ToR4). For the purpose of this mandate, food-producing environments were defined as environments where food of animal or non-animal origin is produced or processed, at both preharvest (primary production) and post-harvest level (processing: e.g. slaughterhouses, processing plants). Three food sectors were considered: plant-based food production (fruits, vegetables and other crops), terrestrial animal production (poultry, cattle and pigs) and aquaculture (finfish, shellfish). To address the mandate, a qualitative assessment was undertaken based on information from international reports, European Legislation, scientific literature (focusing primarily on European data for sources and occurrence of specific ARB/ARGs) and expert knowledge. Uncertainty was addressed in a qualitative manner following EFSA guidance. Food production sector maps, representing the sources of AMR and pathways for AMR dissemination in the different primary production and processing steps, were developed. ARB and ARGs of highest priority for public health in food-producing environments were defined based on international guidance documents and a consideration of the public health burden. Food-producing sectors are linked with human sources and animal and environmental sources of AMR (ARB and ARGs) in a cyclical manner. These ARB and ARGs (as well as substances with antimicrobial activity) are introduced to animal- and plant-based food production environments, mostly through faecal waste (human and animal). Most of the sources identified also play a role as transmission routes. Fertilisers of faecal origin (e.g. manure), irrigation and surface water were identified as transmission routes of faecal ARB/ARGs of animal and human origin for plant-based food. Potential sources for this sector include soil, dust, farm animals, wildlife, arthropods, workers, equipment and process water. For terrestrial animals, feed, farm workers, air/dust, rodents, equipment and visitors, were identified as sources. Pastures, soil, surface water, drinking water, air, dust, wildlife or other domestic animal species are other potential sources of higher relevance for animals kept outdoor as compared to closed facilities. For aquaculture, water, sediments and feed were identified as sources. Wildlife, workers, ice and equipment were considered potential sources. Based on expert knowledge, fertilisers of faecal origin (e.g. manure), irrigation and surface water are major sources and transmission routes of contamination for plant-based food. For terrestrial animals, the published evidence did not allow the importance of most of the sources identified to be determined, although, limited circumstantial evidence points to feed and, to a lesser extent, humans, as important sources/transmission routes. For aquaculture, water is the main transmission route. Resistance to last resort
Recommended publications
  • Metabolic and Genetic Basis for Auxotrophies in Gram-Negative Species
    Metabolic and genetic basis for auxotrophies in Gram-negative species Yara Seifa,1 , Kumari Sonal Choudharya,1 , Ying Hefnera, Amitesh Ananda , Laurence Yanga,b , and Bernhard O. Palssona,c,2 aSystems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122; bDepartment of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; and cNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved February 5, 2020 (received for review June 18, 2019) Auxotrophies constrain the interactions of bacteria with their exist in most free-living microorganisms, indicating that they rely environment, but are often difficult to identify. Here, we develop on cross-feeding (25). However, it has been demonstrated that an algorithm (AuxoFind) using genome-scale metabolic recon- amino acid auxotrophies are predicted incorrectly as a result struction to predict auxotrophies and apply it to a series of the insufficient number of known gene paralogs (26). Addi- of available genome sequences of over 1,300 Gram-negative tionally, these methods rely on the identification of pathway strains. We identify 54 auxotrophs, along with the corre- completeness, with a 50% cutoff used to determine auxotrophy sponding metabolic and genetic basis, using a pangenome (25). A mechanistic approach is expected to be more appropriate approach, and highlight auxotrophies conferring a fitness advan- and can be achieved using genome-scale models of metabolism tage in vivo. We show that the metabolic basis of auxotro- (GEMs). For example, requirements can arise by means of a sin- phy is species-dependent and varies with 1) pathway structure, gle deleterious mutation in a conditionally essential gene (CEG), 2) enzyme promiscuity, and 3) network redundancy.
    [Show full text]
  • Hickman Catheter-Related Bacteremia with Kluyvera
    Jpn. J. Infect. Dis., 61, 229-230, 2008 Short Communication Hickman Catheter-Related Bacteremia with Kluyvera cryocrescens: a Case Report Demet Toprak, Ahmet Soysal, Ozden Turel, Tuba Dal1, Özlem Özkan1, Guner Soyletir1 and Mustafa Bakir* Department of Pediatrics, Section of Pediatric Infectious Diseases and 1Department of Microbiology, Marmara University School of Medicine, Istanbul, Turkey (Received September 10, 2007. Accepted March 19, 2008) SUMMARY: This report describes a 2-year-old child with neuroectodermal tumor presenting with febrile neu- tropenia. Blood cultures drawn from the peripheral vein and Hickman catheter revealed Kluyvera cryocrescens growth. The Hickman catheter was removed and the patient was successfully treated with cefepime and amikacin. Isolation of Kluyvera spp. from clinical specimens is rare. This saprophyte microorganism may cause serious central venous catheter infections, especially in immunosuppressed patients. Clinicians should be aware of its virulence and resistance to many antibiotics. Central venous catheters (CVCs) are frequently used in confirmed by VITEK AMS (VITEK Systems, Hazelwood, Mo., patients with hematologic and oncologic disorders. Along with USA) and by API (Analytab Inc., Plainview, N.Y., USA). Anti- their increased use, short- and long-term complications of microbial susceptibility was assessed by the disc diffusion CVCs are more often being reported. The incidence of CVC method. K. cryocrescens was sensitive for cefotaxime, cefepime, infections correlates with duration of catheter usage, immuno- carbapenems, gentamycine, amikacin and ciprofloxacin. logic status of the patient, type of catheter utilized and mainte- Intravenous cefepime and amikacin were continued and the nance techniques employed. A definition of CVC infection CVC was removed. His echocardiogram was normal and has been difficult to establish because of problems differen- a repeat peripheral blood culture was sterile 48 h after the tiating contaminant from pathogen microorganisms.
    [Show full text]
  • The Coliform Kind: E. Coli and Its “Cousins” the Good, the Bad, and the Deadly
    Scholars Crossing Faculty Publications and Presentations Department of Biology and Chemistry 10-3-2018 The Coliform Kind: E. coli and Its “Cousins” The Good, the Bad, and the Deadly Alan L. Gillen Liberty University, [email protected] Matthew Augusta Follow this and additional works at: https://digitalcommons.liberty.edu/bio_chem_fac_pubs Part of the Biology Commons Recommended Citation Gillen, Alan L. and Augusta, Matthew, "The Coliform Kind: E. coli and Its “Cousins” The Good, the Bad, and the Deadly" (2018). Faculty Publications and Presentations. 125. https://digitalcommons.liberty.edu/bio_chem_fac_pubs/125 This Article is brought to you for free and open access by the Department of Biology and Chemistry at Scholars Crossing. It has been accepted for inclusion in Faculty Publications and Presentations by an authorized administrator of Scholars Crossing. For more information, please contact [email protected]. The Coliform Kind: E. coli and Its “Cousins” The Good, the Bad, and the Deadly by Dr. Alan L. Gillen and Matthew Augusta on October 3, 2018 Abstract Even though some intestinal bacteria strains are pathogenic and even deadly, most coliforms strains still show evidence of being one of God’s “very good” creations. In fact, bacteria serve an intrinsic role in the colon of the human body. These bacteria aid in the early development of the immune system and stimulate up to 80% of immune cells in adults. In addition, digestive enzymes, Vitamins K and B12, are produced byEscherichia coli and other coliforms. E. coli is the best-known bacteria that is classified as coliforms. The term “coliform” name was historically attributed due to the “Bacillus coli-like” forms.
    [Show full text]
  • Citrobacter Braakii
    & M cal ed ni ic li a l C G f e Trivedi et al., J Clin Med Genom 2015, 3:1 o n l o a m n r DOI: 10.4172/2472-128X.1000129 i u c s o Journal of Clinical & Medical Genomics J ISSN: 2472-128X ResearchResearch Article Article OpenOpen Access Access Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Sambhu Charan Mondal2 and Snehasis Jana2* 1Trivedi Global Inc., Eastern Avenue Suite A-969, Henderson, NV, USA 2Trivedi Science Research Laboratory Pvt. Ltd., Chinar Fortune City, Hoshangabad Rd., Madhya Pradesh, India Abstract Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) I: control and Gr. II: treated. Gr. II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analysed on day 10 while Gr. IIB was stored and analysed on day 159 (Study I). After retreatment on day 159, the sample (Study II) was divided into three separate tubes. First, second and third tube was analysed on day 5, 10 and 15, respectively. All experimental parameters were studied using automated MicroScan Walk-Away® system. The 16S rDNA sequencing of lyophilized treated sample was carried out to correlate the phylogenetic relationship of C.
    [Show full text]
  • Yersinia Ruckeri Sp. Nov., the Redmouth (RM) Bacterium
    0020-7713/78/0028-0037$02-00/0 INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1978, p. 37-44 Vol. 28, No. 1 Copyright 0 1978 International Association of Microbiological Societies Printed in U.S. A. Yersinia ruckeri sp. nov., the Redmouth (RM) Bacterium W. H. EWING,? A. J. ROSS,?t DON J. BRENNER,??? AND G. R. FANNING Division of Biochemistry, Walter Reed Army Institute of Research, Washington, D.C. 20012 Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine(G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteri- aceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed.
    [Show full text]
  • Phenotyping and 16S Rdna Analysis After Biofield
    Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, Snehasis Jana To cite this version: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, et al.. Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen. Journal of Clinical & Medical Genomics, Omics Publishing Group, 2015, 3 (1), pp.1000129. hal-01435926 HAL Id: hal-01435926 https://hal.archives-ouvertes.fr/hal-01435926 Submitted on 16 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License & M cal ed ni ic li a l C G f e Trivedi et al., J Clin Med Genom 2015, 3:1 o n l o a m n r DOI: 10.4172/2472-128X.1000129 i u c s o Journal of Clinical & Medical Genomics J ISSN: 2472-128X ResearchResearch Article Article OpenOpen Access Access Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Sambhu Charan Mondal2 and Snehasis Jana2* 1Trivedi Global Inc., Eastern Avenue Suite A-969, Henderson, NV, USA 2Trivedi Science Research Laboratory Pvt.
    [Show full text]
  • Mouse Anti-Bacteria Yersinia Ruckeri Monoclonal Antibody, Clone 8G6/G7 (DMAB6804) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Mouse anti-Bacteria Yersinia Ruckeri Monoclonal antibody, clone 8G6/G7 (DMAB6804) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Mouse anti-bacteria yersinia ruckeri monoclonal antibody. Yersinia Ruckeri IgG fraction obtained by immunizing mice with five Chilean isolates of Yersinia ruckeri (whole bacterial cells). The IgG fraction was purified using Protein G-Sepharose. Antigen Description Y. ruckeri is a Gram-negative, rod-shaped bacterium that shows a variable motility due to the presence of flagella. These flagella are not always observed. It is the causative agent of enteric redmouth disease (ERM) which is characterized by a chronic or acute enterosepticemia with high morbidity and mortality rates in salmonids and non-salmonids species. Six serovars have been described according to whole-cell serological typing. Isotype IgG2b Source/Host Mouse Clone 8G6/G7 Conjugate Unconjugated Applications ELISA, WB, IF Stability Stable at least one year at -20oC. Avoid repeated freezing and thawing. Format Solution at 1.0 mg/ml in PBS. Size 100 μg Preservative None Storage Store at -20ºC. BACKGROUND Introduction Yersinia is a genus of bacteria in the family Enterobacteriaceae. Yersinia are Gram-negative rod shaped bacteria, a few micrometers long and fractions of a micrometer in diameter, and are facultative anaerobes. Some members of Yersinia are pathogenic in humans; in particular, Y. 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved pestis is the causative agent of the plague.
    [Show full text]
  • Bacteria Richness and Antibiotic-Resistance in Bats from a Protected Area in the Atlantic Forest of Southeastern Brazil
    RESEARCH ARTICLE Bacteria richness and antibiotic-resistance in bats from a protected area in the Atlantic Forest of Southeastern Brazil VinõÂcius C. ClaÂudio1,2,3*, Irys Gonzalez2, Gedimar Barbosa1,2, Vlamir Rocha4, Ricardo Moratelli5, FabrõÂcio Rassy2 1 Centro de Ciências BioloÂgicas e da SauÂde, Universidade Federal de São Carlos, São Carlos, SP, Brazil, 2 FundacËão Parque ZooloÂgico de São Paulo, São Paulo, SP, Brazil, 3 Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, 4 Centro de Ciências AgraÂrias, Universidade Federal de São Carlos, Araras, SP, Brazil, 5 Fiocruz Mata AtlaÃntica, FundacËão Oswaldo Cruz, Rio de Janeiro, RJ, a1111111111 Brazil a1111111111 [email protected] a1111111111 * a1111111111 a1111111111 Abstract Bats play key ecological roles, also hosting many zoonotic pathogens. Neotropical bat microbiota is still poorly known. We speculate that their dietary habits strongly influence OPEN ACCESS their microbiota richness and antibiotic-resistance patterns, which represent growing and Citation: ClaÂudio VC, Gonzalez I, Barbosa G, Rocha serious public health and environmental issue. Here we describe the aerobic microbiota V, Moratelli R, Rassy F (2018) Bacteria richness richness of bats from an Atlantic Forest remnant in Southeastern Brazil, and the antibiotic- and antibiotic-resistance in bats from a protected area in the Atlantic Forest of Southeastern Brazil. resistance patterns of bacteria of clinical importance. Oral and rectal cavities of 113 bats PLoS ONE 13(9): e0203411. https://doi.org/ from Carlos Botelho State Park were swabbed. Samples were plated on 5% sheep blood 10.1371/journal.pone.0203411 and MacConkey agar and identified by the MALDI-TOF technique.
    [Show full text]
  • Unraveling the Biotechnological Potential of the Secretome of Burkholderia Cepacia Complex, with Focus on Its Antimicrobial Activity
    Unraveling the biotechnological potential of the secretome of Burkholderia cepacia complex, with focus on its antimicrobial activity Carina Andreia Ribeiro Galhofa Thesis to obtain the Master of Science Degree in Biotechnology Supervisors: Prof. Doctor Isabel Maria de Sá Correia Leite de Almeida; Doctor Patrick de Oliveira Freire Examination Committee Chairperson: Doctor Arsénio do Carmo Sales Mendes Fialho Supervisor: Prof. Doctor Isabel Maria de Sá Correia Leite de Almeida Members of the Committee: Doctor Inês Batista Guinote December 2017 Acknowledgements The wish to become a future microbiologist and to study the “little bugs” that were able to cause diseases in individuals way bigger than them has been present since I was a child. As such, I would like to acknowledge those that helped me from the beginning to the end of this work, making this possible. To Prof. Dr.Isabel Sá Correia, I would like to express my gratitude not only for advising, but also for accepting me in this project which I enjoyed to do so much. To Dr. Patrick Freire, my advisor within BioMimetx, not only for all the guidance and patience but, most of all, for the motivation and believing in my work and Dr. Carla Coutinho for the support, for bearing my inexperience and for all the tips given that prevented me from exploding the laboratory…and the centrifuge. To the funding of IBB (Institute for Bioengineering and Biosciences) and BioMimetx, that gave me all the resources and conditions that enabled the conduction of my work. To Amir Hassan, for staying up late at the lab waiting for me to finish my work and for the “Goooooodddd woooorkkkkk” motivational screams.
    [Show full text]
  • Interplay of Virulence, Antibiotic Resistance and Epidemiology in Escherichia Coli Clinical Isolates
    Interplay of virulence, antibiotic resistance and epidemiology in Escherichia coli clinical isolates Elisabet Guiral Vilalta Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – SenseObraDerivada 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – SinObraDerivada 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- NoDerivs 4.0. Spain License. Facultat de Medicina Departament de Fonaments Clínics Programa de Doctorat de Medicina i Recerca Translacional “Interplay of virulence, antibiotic resistance and epidemiology in Escherichia coli clinical isolates” Doctoranda: Elisabet Guiral Vilalta Departament de Fonaments Clínics Institut de Salut Global de Barcelona‐ Universitat de Barcelona‐ Hospital Clínic de Barcelona Directors de tesi: Dr. Jordi Vila Estapé i Dra. Sara M. Soto González Departament de Fonaments Clínics Institut de Salut Global de Barcelona‐ Universitat de Barcelona‐ Hospital Clínic de Barcelona Barcelona, Setembre 2018 El Dr. JORDI VILA ESTAPÉ, Catedràtic del Departament de Fonaments Clínics de la Facultat de Medicina de la Universitat de Barcelona, Cap del Servei de Microbiologia de l’Hospital Clínic de Barcelona i Research Professor i Director de la Iniciativa de Resistències Antimicrobianes de l’Institut de Salut Global de Barcelona (ISGlobal) i la Dra. SARA M. SOTO GONZÁLEZ, Professora Associada del Departament de Fonaments Clínics de la Universitat de Barcelona i Associate Research Professor d’ ISGlobal, CERTIFIQUEN: Que el treball de recerca titulat “Interplay of virulence, antibiotic resistance and epidemiology in Escherichia coli clinical isolates”, presentat per ELISABET GUIRAL VILALTA, ha estat realitzat al Laboratori de Microbiologia de l’ISGlobal, dins les dependències de l’Hospital Clínic de Barcelona, sota la seva direcció i compleix tots els requisits necessaris per la seva tramitació i posterior defensa davant del Tribunal corresponent.
    [Show full text]
  • A Further Characterization of Yersinia Ruckeri (Enteric Redmouth Bacterium)
    ‹›•aŒ¤‹† Fish Pathology 14 (2) 71-78, 1979. 9 A further Characterization of Yersinia ruckeri (Enteric Redmouth Bacterium) P. J. O'LEARY, J. S. ROHOVEC and J. L. FRYER Department of Microbiology, Oregon State University, Corvallis, OR 97331 (Received May 22, 1979) Seventeen cultures of Enteric Redmouth Bacterium were examined biochemically at selected temperatures. Incubation temperature altered the motility of the bacterium. At 9•Ž non functional peritrichous flagella were produced, while at 18, 22, and 27•Ž the bacterium was motile. The cells were nonmotile at 37•Ž due to a lack of flagellar production. The percent guanine plus cytosine was determined to be 47.95•}0.45 (P=0.05). This work supports the proposal of Yersinia ruckeri as the genus and species designation of the Entric Redmouth Bacterium. hynchus tshawytscha) and coho (O. kisutch) Introduction salmon, and rainbow trout (Salmo gairdneri). In the early 1950's, Rucker isolated a gram Each isolate was stored on Brain Heart In- negative, oxidase negative, motile bacterium fusion (BHI: Difco) slants under sterile mineral from moribund rainbow trout (Salmo gaird oil. neri). The first publication concerning this Biochemical tests bacterium did not appear until 1966 (Ross et The methods used to study most of the al., 1966) in which the definitive taxonomic biochemical properties of this organism have position of the bacterium could not be defined, been described previously (EDWARDSand EWING although it was placed in the family Entero 1972; LENETTE et al., 1974). For carbohydrate bacteriaceae. Hence the name Enteric Red utilization tests, sugars were incorporated into mouth Bacterium (ERMB) arose.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]