Cultivation-Based Quantification and Identification of Bacteria at Two
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mining Saltmarsh Sediment Microbes for Enzymes to Degrade Recalcitrant Biomass
Mining saltmarsh sediment microbes for enzymes to degrade recalcitrant biomass Juliana Sanchez Alponti PhD University of York Biology September 2019 Abstract Abstract The recalcitrance of biomass represents a major bottleneck for the efficient production of fermentable sugars from biomass. Cellulase cocktails are often only able to release 75-80% of the potential sugars from biomass and this adds to the overall costs of lignocellulosic processing. The high amounts of fresh water used in biomass processing also adds to the overall costs and environmental footprint of this process. A more sustainable approach could be the use of seawater during the process, saving the valuable fresh water for human consumption and agriculture. For such replacement to be viable, there is a need to identify salt tolerant lignocellulose-degrading enzymes. We have been prospecting for enzymes from the marine environment that attack the more recalcitrant components of lignocellulosic biomass. To achieve these ends, we have carried out selective culture enrichments using highly degraded biomass and inoculum taken from a saltmarsh. Saltmarshes are highly productive ecosystems, where most of the biomass is provided by land plants and is therefore rich in lignocellulose. Lignocellulose forms the major source of biomass to feed the large communities of heterotrophic organisms living in saltmarshes, which are likely to contain a range of microbial species specialised for the degradation of lignocellulosic biomass. We took biomass from the saltmarsh grass Spartina anglica that had been previously degraded by microbes over a 10-week period, losing 70% of its content in the process. This recalcitrant biomass was then used as the sole carbon source in a shake-flask culture inoculated with saltmarsh sediment. -
Human and Animal Dermatophilosis. an Unusual Case Report and Review of the Literature
ORIGINAL ARTICLES Human and animal dermatophilosis. An unusual case report and review of the literature Cinthia Dickson1, María Rosa I. de Elías-Costa2 ABSTRACT Dermatophilosis is an acute, subacute or chronic skin disease affecting a wide range of species of Keywords: animals and man. It is caused by a Gram (+) bacteria of the order of the Actinomycetales named Dermatophilus congolensis. Presenting as an acute, subacute or chronic dermatosis affecting Dermatophilus primarily cattle, but a wide variety of domestic and wild animals, and humans, as well. It is congolensis, distributed worldwide but more prevalent in the humid tropical and subtropic areas. It is essential dermatophilosis. to emphasize the importance of this disease in livestock industry and leather production. The disease is reviewed and an unusual case is reported (Dermatol Argent 2010;16(5):349-353). Date Received: 27/7/2010 | Date Accepted: 27/05/2011 Introduction The disease was first described in 1910 by Van Saceghem1 in the Belgian Congo as "contagious derma- titis" (dermatose contagieuse) in cattle. In 1926 the term nodular disease estreptotricosis or lumpy wool disease to refer to the disorder observed in sheep, a name that was later abandoned to avoid etiological confusion.2 Since then, there have been numerous reports on a wide range of animals, including terres- trial and aquatic mammals and repiles as well. The most affected animals are cows, sheep and horses, but it is also observed in goats and pigs. The disease is rarely found in dogs and cats.3 In humans very few cases have been reported.4-9 The disease has worldwide distribution but is prevalent in tropical and subtropical regions with high levels of humidity. -
Updating the Taxonomic Toolbox: Classification of Alteromonas Spp
1 Updating the taxonomic toolbox: classification of Alteromonas spp. 2 using Multilocus Phylogenetic Analysis and MALDI-TOF Mass 3 Spectrometry a a a 4 Hooi Jun Ng , Hayden K. Webb , Russell J. Crawford , François a b b c 5 Malherbe , Henry Butt , Rachel Knight , Valery V. Mikhailov and a, 6 Elena P. Ivanova * 7 aFaculty of Life and Social Sciences, Swinburne University of Technology, 8 PO Box 218, Hawthorn, Vic 3122, Australia 9 bBioscreen, Bio21 Institute, The University of Melbourne, Vic 3010, Australia 10 cG.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian 11 Academy of Sciences, Vladivostok 690022, Russian Federation 12 13 *Corresponding author: Tel: +61-3-9214-5137. Fax: +61-3-9214-5050. 14 E-mail: [email protected] 15 16 Abstract 17 Bacteria of the genus Alteromonas are Gram-negative, strictly aerobic, motile, 18 heterotrophic marine bacteria, known for their versatile metabolic activities. 19 Identification and classification of novel species belonging to the genus Alteromonas 20 generally involves DNA-DNA hybridization (DDH) as distinct species often fail to be 1 21 resolved at the 97% threshold value of the 16S rRNA gene sequence similarity. In this 22 study, the applicability of Multilocus Phylogenetic Analysis (MLPA) and Matrix- 23 Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF 24 MS) for the differentiation of Alteromonas species has been evaluated. Phylogenetic 25 analysis incorporating five house-keeping genes (dnaK, sucC, rpoB, gyrB, and rpoD) 26 revealed a threshold value of 98.9% that could be considered as the species cut-off 27 value for the delineation of Alteromonas spp. -
Motiliproteus Sediminis Gen. Nov., Sp. Nov., Isolated from Coastal Sediment
Antonie van Leeuwenhoek (2014) 106:615–621 DOI 10.1007/s10482-014-0232-2 ORIGINAL PAPER Motiliproteus sediminis gen. nov., sp. nov., isolated from coastal sediment Zong-Jie Wang • Zhi-Hong Xie • Chao Wang • Zong-Jun Du • Guan-Jun Chen Received: 3 April 2014 / Accepted: 4 July 2014 / Published online: 20 July 2014 Ó Springer International Publishing Switzerland 2014 Abstract A novel Gram-stain-negative, rod-to- demonstrated that the novel isolate was 93.3 % similar spiral-shaped, oxidase- and catalase- positive and to the type strain of Neptunomonas antarctica, 93.2 % facultatively aerobic bacterium, designated HS6T, was to Neptunomonas japonicum and 93.1 % to Marino- isolated from marine sediment of Yellow Sea, China. bacterium rhizophilum, the closest cultivated rela- It can reduce nitrate to nitrite and grow well in marine tives. The polar lipid profile of the novel strain broth 2216 (MB, Hope Biol-Technology Co., Ltd) consisted of phosphatidylethanolamine, phosphatidyl- with an optimal temperature for growth of 30–33 °C glycerol and some other unknown lipids. Major (range 12–45 °C) and in the presence of 2–3 % (w/v) cellular fatty acids were summed feature 3 (C16:1 NaCl (range 0.5–7 %, w/v). The pH range for growth x7c/iso-C15:0 2-OH), C18:1 x7c and C16:0 and the main was pH 6.2–9.0, with an optimum at 6.5–7.0. Phylo- respiratory quinone was Q-8. The DNA G?C content genetic analysis based on 16S rRNA gene sequences of strain HS6T was 61.2 mol %. Based on the phylogenetic, physiological and biochemical charac- teristics, strain HS6T represents a novel genus and The GenBank accession number for the 16S rRNA gene T species and the name Motiliproteus sediminis gen. -
Diversity of Culturable Bacteria Including Pantoea in Wild Mosquito Aedes Albopictus Claire Valiente Moro, Florence-Hélène Tran, F
Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus Claire Valiente Moro, Florence-Hélène Tran, F. N. Raharimalala, P. Ravelonandro, Patrick Mavingui To cite this version: Claire Valiente Moro, Florence-Hélène Tran, F. N. Raharimalala, P. Ravelonandro, Patrick Mavin- gui. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiology, BioMed Central, 2013, 13 (1), pp.70. 10.1186/1471-2180-13-70. hal-02522192 HAL Id: hal-02522192 https://hal-univ-lyon1.archives-ouvertes.fr/hal-02522192 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Valiente Moro et al. BMC Microbiology 2013, 13:70 http://www.biomedcentral.com/1471-2180/13/70 RESEARCH ARTICLE Open Access Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus Claire Valiente Moro1,2*, Florence Hélène Tran1,2, Fara Nantenaina Raharimalala3,5, Pierre Ravelonandro4 and Patrick Mavingui1,2 Abstract Background: The microbiota has been shown to play an important role in the biology of insects. In recent decades, significant efforts have been made to better understand the diversity of symbiotic bacteria associated with mosquitoes and assess their influence on pathogen transmission. -
Corynebacterium Sp.|NML98-0116
1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album -
Characterization of a Microbial Community Capable of Nitrification At
Bioresource Technology 101 (2010) 491–500 Contents lists available at ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech Characterization of a microbial community capable of nitrification at cold temperature Thomas F. Ducey *, Matias B. Vanotti, Anthony D. Shriner, Ariel A. Szogi, Aprel Q. Ellison Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service, USDA, 2611 West Lucas Street, Florence, SC 29501, United States article info abstract Article history: While the oxidation of ammonia is an integral component of advanced aerobic livestock wastewater Received 5 February 2009 treatment, the rate of nitrification by ammonia-oxidizing bacteria is drastically reduced at colder temper- Received in revised form 30 July 2009 atures. In this study we report an acclimated lagoon nitrifying sludge that is capable of high rates of nitri- Accepted 30 July 2009 fication at temperatures from 5 °C (11.2 mg N/g MLVSS/h) to 20 °C (40.4 mg N/g MLVSS/h). The Available online 5 September 2009 composition of the microbial community present in the nitrifying sludge was investigated by partial 16S rRNA gene sequencing. After DNA extraction and the creation of a plasmid library, 153 partial length Keywords: 16S rRNA gene clones were sequenced and analyzed phylogenetically. Over 80% of these clones were Nitrite affiliated with the Proteobacteria, and grouped with the b- (114 clones), - (7 clones), and -classes (2 Ammonia-oxidizing bacteria c a Nitrosomonas clones). The remaining clones were affiliated with the Acidobacteria (1 clone), Actinobacteria (8 clones), Activated sludge Bacteroidetes (16 clones), and Verrucomicrobia (5 clones). The majority of the clones belonged to the genus 16S rRNA gene Nitrosomonas, while other clones affiliated with microorganisms previously identified as having floc forming or psychrotolerance characteristics. -
Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg -
The Coliform Kind: E. Coli and Its “Cousins” the Good, the Bad, and the Deadly
Scholars Crossing Faculty Publications and Presentations Department of Biology and Chemistry 10-3-2018 The Coliform Kind: E. coli and Its “Cousins” The Good, the Bad, and the Deadly Alan L. Gillen Liberty University, [email protected] Matthew Augusta Follow this and additional works at: https://digitalcommons.liberty.edu/bio_chem_fac_pubs Part of the Biology Commons Recommended Citation Gillen, Alan L. and Augusta, Matthew, "The Coliform Kind: E. coli and Its “Cousins” The Good, the Bad, and the Deadly" (2018). Faculty Publications and Presentations. 125. https://digitalcommons.liberty.edu/bio_chem_fac_pubs/125 This Article is brought to you for free and open access by the Department of Biology and Chemistry at Scholars Crossing. It has been accepted for inclusion in Faculty Publications and Presentations by an authorized administrator of Scholars Crossing. For more information, please contact [email protected]. The Coliform Kind: E. coli and Its “Cousins” The Good, the Bad, and the Deadly by Dr. Alan L. Gillen and Matthew Augusta on October 3, 2018 Abstract Even though some intestinal bacteria strains are pathogenic and even deadly, most coliforms strains still show evidence of being one of God’s “very good” creations. In fact, bacteria serve an intrinsic role in the colon of the human body. These bacteria aid in the early development of the immune system and stimulate up to 80% of immune cells in adults. In addition, digestive enzymes, Vitamins K and B12, are produced byEscherichia coli and other coliforms. E. coli is the best-known bacteria that is classified as coliforms. The term “coliform” name was historically attributed due to the “Bacillus coli-like” forms. -
D 3111 Suppl
The following supplement accompanies the article Fine-scale transition to lower bacterial diversity and altered community composition precedes shell disease in laboratory-reared juvenile American lobster Sarah G. Feinman, Andrea Unzueta Martínez, Jennifer L. Bowen, Michael F. Tlusty* *Corresponding author: [email protected] Diseases of Aquatic Organisms 124: 41–54 (2017) Figure S1. Principal coordinates analysis of bacterial communities on lobster shell samples taken on different days. Principal coordinates analysis of the weighted UniFrac metric comparing bacterial community composition of diseased lobster shell on different days of sampling. Diseased lobster shell includes samples collected from the site of disease (square), as well as 0.5 cm (circle), 1 cm (triangle), and 1.5 cm (diamond) away from the site of the disease, while colors depict different days of sampling. Note that by day four, two of the lobsters had molted, hence there are fewer red symbols 1 Figure S2. Rank relative abundance curve for the 200+ most abundant OTUs for each shell condition. The number of OTUs, their abundance, and their order varies for each bar graph based on the relative abundance of each OTU in that shell condition. Please note the difference in scale along the y-axis for each bar graph. Bars appear in color if the OTU is a part of the core microbiome of that shell condition or appear in black if the OTU is not a part of the core microbiome of that shell condition. Dotted lines indicate OTUs that are part of the “abundant microbiome,” i.e. those whose cumulative total is ~50%, as well as OTUs that are a part of the “rare microbiome,” i.e. -
Alishewanella Jeotgali Sp. Nov., Isolated from Traditional Fermented Food, and Emended Description of the Genus Alishewanella
International Journal of Systematic and Evolutionary Microbiology (2009), 59, 2313–2316 DOI 10.1099/ijs.0.007260-0 Alishewanella jeotgali sp. nov., isolated from traditional fermented food, and emended description of the genus Alishewanella Min-Soo Kim,1,2 Seong Woon Roh,1,2 Young-Do Nam,1,2 Ho-Won Chang,1 Kyoung-Ho Kim,1 Mi-Ja Jung,1 Jung-Hye Choi,1 Eun-Jin Park1 and Jin-Woo Bae1,2 Correspondence 1Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee Jin-Woo Bae University, Seoul 130-701, Republic of Korea [email protected] 2University of Science and Technology, Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea A novel Gram-negative and facultative anaerobic strain, designated MS1T, was isolated from gajami sikhae, a traditional fermented food in Korea made from flatfish. Strain MS1T was motile, rod-shaped and oxidase- and catalase-positive, and required 1–2 % (w/v) NaCl for growth. Growth occurred at temperatures ranging from 4 to 40 6C and the pH range for optimal growth was pH 6.5–9.0. Strain MS1T was capable of reducing trimethylamine oxide, nitrate and thiosulfate. Phylogenetic analysis placed strain MS1T within the genus Alishewanella. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MS1T was related closely to Alishewanella aestuarii B11T (98.67 % similarity) and Alishewanella fetalis CCUG 30811T (98.04 % similarity). However, DNA–DNA reassociation experiments between strain MS1T and reference strains showed relatedness values ,70 % (42.6 and 14.8 % with A. -
Citrobacter Braakii
& M cal ed ni ic li a l C G f e Trivedi et al., J Clin Med Genom 2015, 3:1 o n l o a m n r DOI: 10.4172/2472-128X.1000129 i u c s o Journal of Clinical & Medical Genomics J ISSN: 2472-128X ResearchResearch Article Article OpenOpen Access Access Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Sambhu Charan Mondal2 and Snehasis Jana2* 1Trivedi Global Inc., Eastern Avenue Suite A-969, Henderson, NV, USA 2Trivedi Science Research Laboratory Pvt. Ltd., Chinar Fortune City, Hoshangabad Rd., Madhya Pradesh, India Abstract Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) I: control and Gr. II: treated. Gr. II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analysed on day 10 while Gr. IIB was stored and analysed on day 159 (Study I). After retreatment on day 159, the sample (Study II) was divided into three separate tubes. First, second and third tube was analysed on day 5, 10 and 15, respectively. All experimental parameters were studied using automated MicroScan Walk-Away® system. The 16S rDNA sequencing of lyophilized treated sample was carried out to correlate the phylogenetic relationship of C.