Interplay of Virulence, Antibiotic Resistance and Epidemiology in Escherichia Coli Clinical Isolates

Total Page:16

File Type:pdf, Size:1020Kb

Interplay of Virulence, Antibiotic Resistance and Epidemiology in Escherichia Coli Clinical Isolates Interplay of virulence, antibiotic resistance and epidemiology in Escherichia coli clinical isolates Elisabet Guiral Vilalta Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – SenseObraDerivada 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – SinObraDerivada 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- NoDerivs 4.0. Spain License. Facultat de Medicina Departament de Fonaments Clínics Programa de Doctorat de Medicina i Recerca Translacional “Interplay of virulence, antibiotic resistance and epidemiology in Escherichia coli clinical isolates” Doctoranda: Elisabet Guiral Vilalta Departament de Fonaments Clínics Institut de Salut Global de Barcelona‐ Universitat de Barcelona‐ Hospital Clínic de Barcelona Directors de tesi: Dr. Jordi Vila Estapé i Dra. Sara M. Soto González Departament de Fonaments Clínics Institut de Salut Global de Barcelona‐ Universitat de Barcelona‐ Hospital Clínic de Barcelona Barcelona, Setembre 2018 El Dr. JORDI VILA ESTAPÉ, Catedràtic del Departament de Fonaments Clínics de la Facultat de Medicina de la Universitat de Barcelona, Cap del Servei de Microbiologia de l’Hospital Clínic de Barcelona i Research Professor i Director de la Iniciativa de Resistències Antimicrobianes de l’Institut de Salut Global de Barcelona (ISGlobal) i la Dra. SARA M. SOTO GONZÁLEZ, Professora Associada del Departament de Fonaments Clínics de la Universitat de Barcelona i Associate Research Professor d’ ISGlobal, CERTIFIQUEN: Que el treball de recerca titulat “Interplay of virulence, antibiotic resistance and epidemiology in Escherichia coli clinical isolates”, presentat per ELISABET GUIRAL VILALTA, ha estat realitzat al Laboratori de Microbiologia de l’ISGlobal, dins les dependències de l’Hospital Clínic de Barcelona, sota la seva direcció i compleix tots els requisits necessaris per la seva tramitació i posterior defensa davant del Tribunal corresponent. Barcelona, Setembre 2018, Dr. Jordi Vila Estapé Dra. Sara M. Soto González Codirector de la tesi doctoral Codirectora de la tesi doctoral TABLE OF CONTENTS Table of contents TABLE OF CONTENTS I. LIST OF ABBREVIATIONS .............................................................................................. 1 II. INTRODUCTION ........................................................................................................... 7 1. General characteristics of Escherichia coli .................................................................... 9 Specific features ...................................................................................................................................... 10 Discovery and applications of E. coli ....................................................................................................... 10 Niches and relationships: commensal and pathogenic E. coli ................................................................ 11 Pathogenic E. coli: virulence and antimicrobial resistance ..................................................................... 12 1.4.1 Virulence factors: Virulence factor genes and pathogenicity‐associated islands .......................... 13 1.4.2 Antimicrobial therapy and the threat of resistance ...................................................................... 14 2. E. coli as a human pathogen....................................................................................... 16 Types of E. coli in humans ....................................................................................................................... 16 2.1.1 Diarrhoeagenic E. coli (DEC) .......................................................................................................... 16 2.1.1.1 Enteropathogenic E. coli (EPEC) ........................................................................................... 17 2.1.1.2 Enterohaemorrhagic (or Shiga toxin‐producing) E. coli (EHEC/STEC) .................................. 18 2.1.1.3 Enteroaggregative E. coli (EAEC) .......................................................................................... 19 2.1.1.4 Enterotoxigenic E. coli (ETEC) ............................................................................................... 21 2.1.1.5 Enteroinvasive E. coli (EIEC) ................................................................................................. 23 2.1.1.6 Diffusely‐adherent E. coli (DAEC) ......................................................................................... 24 2.1.1.7 Diagnosis and treatment of EAEC and ETEC ......................................................................... 25 2.1.2 Extraintestinal E. coli ..................................................................................................................... 26 2.1.2.1 Commensal extraintestinal E. coli ........................................................................................ 26 2.1.2.1.1 Vaginal E. coli (VEC) .......................................................................................................... 26 2.1.2.2 Extraintestinal pathogenic E. coli (ExPEC): microbiology and virulence factors .................. 27 2.1.2.2.1 Bacteraemia or sepsis‐causing E. coli (SEPEC) ................................................................. 27 2.1.2.2.2 Uropathogenic E. coli (UPEC) ........................................................................................... 29 2.1.2.2.3 E. coli causing obstetric infections. Intra‐amniotic infection. .......................................... 31 2.1.2.2.4 Neonatal sepsis and meningitis‐causing E. coli (NMEC)................................................... 33 Table of contents 3. Antimicrobial resistance mechanisms in E. coli .......................................................... 36 Strategies of antimicrobial resistance ..................................................................................................... 37 Horizontally transferred genetic elements carrying antimicrobial resistance (AMR) mechanisms ........ 39 3.2.1 Transposable elements .................................................................................................................. 39 3.2.2 Plasmids ......................................................................................................................................... 41 3.2.3 Integrons ........................................................................................................................................ 42 Main antimicrobial agents and AMR mechanisms in E. coli .................................................................... 44 3.3.1 Aminoglycosides and AMR mechanisms ........................................................................................ 44 3.3.2 Macrolides and AMR mechanisms ................................................................................................. 45 3.3.3 Quinolones and AMR mechanisms ................................................................................................ 46 3.3.4 Rifaximin and AMR mechanisms .................................................................................................... 48 3.3.5 Thrimethoprim /sulfamethoxazole and AMR mechanisms ........................................................... 48 3.3.6 β‐lactams and AMR mechanisms ................................................................................................... 49 3.3.6.1 β‐lactamases ........................................................................................................................ 51 3.3.6.1.1 Extended spectrum beta‐lactamases (ESBLs) .................................................................. 52 3.3.6.1.1.1 CTX‐M enzymes (CTX‐M‐15) ..................................................................................... 53 4. Relationship between virulence and resistance in E. coli clinical isolates ................... 55 5. Epidemiology of E. coli ............................................................................................... 57 Epidemiological typing strategies ............................................................................................................ 57 5.1.1 Phylogenetic grouping ................................................................................................................... 58 5.1.2 Multilocus sequence typing (MLST) ............................................................................................... 60 5.1.3 Pulsed‐field gel electrophoresis (PFGE) ......................................................................................... 61 5.1.4 Other typing methods .................................................................................................................... 63 5.1.5 Comparison of E. coli typing methodologies ................................................................................. 64 E. coli high‐risk clones ............................................................................................................................. 65 III. WORK JUSTIFICATION AND HYPOTHESES ................................................................... 69 IV. OBJECTIVES ................................................................................................................ 73 Table of contents V. RESULTS ..................................................................................................................... 77 SECTION 1. Virulence in ExPEC:
Recommended publications
  • Interplay Between Ompa and Rpon Regulates Flagellar Synthesis in Stenotrophomonas Maltophilia
    microorganisms Article Interplay between OmpA and RpoN Regulates Flagellar Synthesis in Stenotrophomonas maltophilia Chun-Hsing Liao 1,2,†, Chia-Lun Chang 3,†, Hsin-Hui Huang 3, Yi-Tsung Lin 2,4, Li-Hua Li 5,6 and Tsuey-Ching Yang 3,* 1 Division of Infectious Disease, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan; [email protected] 2 Department of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; [email protected] 3 Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; [email protected] (C.-L.C.); [email protected] (H.-H.H.) 4 Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan 5 Department of Pathology and Laboratory Medicine, Taipei Veterans General Hosiptal, Taipei 112, Taiwan; [email protected] 6 Ph.D. Program in Medical Biotechnology, Taipei Medical University, Taipei 110, Taiwan * Correspondence: [email protected] † Liao, C.-H. and Chang, C.-L. contributed equally to this work. Abstract: OmpA, which encodes outer membrane protein A (OmpA), is the most abundant transcript in Stenotrophomonas maltophilia based on transcriptome analyses. The functions of OmpA, including adhesion, biofilm formation, drug resistance, and immune response targets, have been reported in some microorganisms, but few functions are known in S. maltophilia. This study aimed to elucidate the relationship between OmpA and swimming motility in S. maltophilia. KJDOmpA, an ompA mutant, Citation: Liao, C.-H.; Chang, C.-L.; displayed compromised swimming and failure of conjugation-mediated plasmid transportation. The Huang, H.-H.; Lin, Y.-T.; Li, L.-H.; hierarchical organization of flagella synthesis genes in S.
    [Show full text]
  • Current Topics in Microbiology and Immunology
    Current Topics in Microbiology and Immunology Volume 431 Series Editors Rafi Ahmed School of Medicine, Rollins Research Center, Emory University, Atlanta, GA, USA Shizuo Akira Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan Klaus Aktories Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Baden-Württemberg, Germany Arturo Casadevall W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA Richard W. Compans Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA Jorge E. Galan Boyer Ctr. for Molecular Medicine, School of Medicine, Yale University, New Haven, CT, USA Adolfo Garcia-Sastre Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA Bernard Malissen Parc Scientifique de Luminy, Centre d‘Immunologie de Marseille-Luminy, Marseille, France Rino Rappuoli GSK Vaccines, Siena, Italy The review series Current Topics in Microbiology and Immunology provides a synthesis of the latest research findings in the areas of molecular immunology, bacteriology and virology. Each timely volume contains a wealth of information on the featured subject. This review series is designed to provide access to up-to-date, often previously unpublished information. 2019 Impact Factor: 3.095., 5-Year Impact Factor: 3.895 2019 Eigenfaktor Score: 0.00081, Article Influence Score: 1.363 2019 Cite Score: 6.0, SNIP: 1.023, h5-Index: 43 More
    [Show full text]
  • Hickman Catheter-Related Bacteremia with Kluyvera
    Jpn. J. Infect. Dis., 61, 229-230, 2008 Short Communication Hickman Catheter-Related Bacteremia with Kluyvera cryocrescens: a Case Report Demet Toprak, Ahmet Soysal, Ozden Turel, Tuba Dal1, Özlem Özkan1, Guner Soyletir1 and Mustafa Bakir* Department of Pediatrics, Section of Pediatric Infectious Diseases and 1Department of Microbiology, Marmara University School of Medicine, Istanbul, Turkey (Received September 10, 2007. Accepted March 19, 2008) SUMMARY: This report describes a 2-year-old child with neuroectodermal tumor presenting with febrile neu- tropenia. Blood cultures drawn from the peripheral vein and Hickman catheter revealed Kluyvera cryocrescens growth. The Hickman catheter was removed and the patient was successfully treated with cefepime and amikacin. Isolation of Kluyvera spp. from clinical specimens is rare. This saprophyte microorganism may cause serious central venous catheter infections, especially in immunosuppressed patients. Clinicians should be aware of its virulence and resistance to many antibiotics. Central venous catheters (CVCs) are frequently used in confirmed by VITEK AMS (VITEK Systems, Hazelwood, Mo., patients with hematologic and oncologic disorders. Along with USA) and by API (Analytab Inc., Plainview, N.Y., USA). Anti- their increased use, short- and long-term complications of microbial susceptibility was assessed by the disc diffusion CVCs are more often being reported. The incidence of CVC method. K. cryocrescens was sensitive for cefotaxime, cefepime, infections correlates with duration of catheter usage, immuno- carbapenems, gentamycine, amikacin and ciprofloxacin. logic status of the patient, type of catheter utilized and mainte- Intravenous cefepime and amikacin were continued and the nance techniques employed. A definition of CVC infection CVC was removed. His echocardiogram was normal and has been difficult to establish because of problems differen- a repeat peripheral blood culture was sterile 48 h after the tiating contaminant from pathogen microorganisms.
    [Show full text]
  • Systemic Infection Induced by Campylobacter Jejuni: Development of a Mouse Model and Elucidation of Molecular Mechanisms Samantha Terhorst Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Systemic infection induced by Campylobacter jejuni: Development of a mouse model and elucidation of molecular mechanisms Samantha Terhorst Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Microbiology Commons Recommended Citation Terhorst, Samantha, "Systemic infection induced by Campylobacter jejuni: Development of a mouse model and elucidation of molecular mechanisms" (2012). Graduate Theses and Dissertations. 12653. https://lib.dr.iastate.edu/etd/12653 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Systemic infection induced by Campylobacter jejuni: Development of a mouse model and elucidation of molecular mechanisms by Samantha Ashley Terhorst A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Toxicology Program of Study Committee: Qijing Zhang, Major Professor Byron Brehm-Stecher Paul Plummer Orhan Sahin Iowa State University Ames, Iowa 2012 Copyright © Samantha Ashley Terhorst, 2012. All rights reserved. ii TABLE OF CONTENTS ABSTRACT .....................................................................................................................
    [Show full text]
  • A Brief History of the Family of Sonja Escherich-Eisenmenger-Weber
    A Brief History of the family of Sonja Escherich-Eisenmenger-Weber © Copyright 1990 Ernst Weber, Tryon, North Carolina Part I Pfaundlers, Oetz and Piburg Part II Theodor Eseherich and Child Care in Vienna Part III Sonya Escherich-Eisenmenger, 1895 until 1936 Privately Printed By M.A. DESIGNS Tryon, NC An Introduction to Sonya & Ernst Weber An address by James M. Flack (son-in-law of Sonya Weber) at the Cosmos Club in Washington, D.C. Tuesday, October 14, 1975 on the occasion of the establishment of the Sonya & Ernst Weber Scholarship Fund. Dr. Bugliarello, Friends, Associates and Family of Sonya and Ernst Weber. It is my honor and privilege to speak on behalf of the dose members of the Weber family. Dr. Bugliarello, we are grateful to you and to Polytechnic for establishing the Sonya and Ernst Weber Scholarship Fund. The criterion for the awards - based on excellence and regardless of need is most appropriate. This is consonant with the lives of the Webers. They have searched for the good - for things of real value. And when things of value were discovered, they were able to recognize, cherish, nurture and reward them to assure their continuity and growth. Sonya and Ernst Weber are well known - both nationally and internationally, each in her and his own field. They have each been showered with honors for their achievements and contributions to a better way of life in our time and for the future to come - Ernst in the field of science as a physicist, engineer, educator and administrator; Sonya also in the field of science as a doctor of physical medicine and physical fitness.
    [Show full text]
  • Issue 2, September 2011
    Quarterly Newsletter of the Belgian Society for Microbiology Issue no. 2, September 2011 Contents Welcome by the president of BSM Page 1 As indicated in the program, the morning session Membership Page 2 consists of 4 plenary lectures, while in the News from FEMS Page 2 afternoon 2 parallel sessions (bacteriology, BSM Symposium 2011 Page 3 virology) are programmed with time reserved for Theodor Escherich Page 5 short oral communications from selected Report on MRM Symposium Page 7 abstracts. PhD Corner Page 9 Call for contributions Page 10 Besides this, there will be also ample time to Composition of the BSM board Page 10 discuss during the posters session. As such this meeting is also meant as an opportunity to meet microbiology colleagues and to exchange ideas. More details of the symposium, and how to Welcome register, you will find on p 3. Concomitantly with the start of the new academic year, we send you Issue 2 of the E-Newsletter of the We also started with a series of short overviews Belgian Society for Microbiology. Since the first E- on historical data in microbiology (see p 4), and Newsletter, the BSM board was further active in continue with the PhD corner, and report on FEMS several respects. sponsored activities. The BSM Board has further worked on finalizing the BSM was also for the first time host of the FEMS th program of the symposium (Brussels, 16th November Council meeting held in Leuven 16-17 2011), the yearly most important activity of BSM. September, which was attended by 37 delegates (22 different nationalities) representing different This year’s topic is “Live, death and survival of Micro- microbiological societies unified under the organisms” emphasizing that thanks to the umbrella of FEMS, which altogether represent continuous progress in microbiological sciences, more than 30000 European microbiologists (see strategies used by micro-organisms to live and http://www.fems-microbiology.org).
    [Show full text]
  • 5Th Theodor Escherich & 2Nd AMICI Joint Symposium
    5th Theodor Escherich & 2nd AMICI Joint Symposium 8th - 9th November 2018 Neuer Med Campus, Neue Stiftingtalstraße 2 Medical University of Graz, Austria ABSTRACT BOOK If you do’t like iroes, you’re o the rog plaet (Stewart Brand, adapted) In behalf of the organizing committee of the 5th Theodor Escherich & 2nd AMICI Joint Symposium 2018 we cordially welcome you at the Medical University of Graz. We are very pleased with the high number of renowned national and international scientists oerig the topis iroioe ad aer, iroioe ad utritio, iroioe ad eiroet, egleted eers of the hua iroioe, iroiota odulatio ad the plat iroioe that hae aepted our iitatio to speak. We will have more than 200 guests from Austria and Europe, interested interdisciplinary microbiome research. The new Campus at the Medical University in Graz provides an excellent venue for this event, and we are convinced that the wonderful atmosphere in this building will support personal exchange and discussion amongst young researchers and PIs. We are particularly thankful for the fruitful interaction with the Austrian Microbiome Initiative AMICI, serving as an excellent networking platform for microbiome research – resulting in this joint adventure this year! We are extremely grateful for the generous support from our sponsors and industry partners. We are looking forward to a very fruitful meeting, The local organizing committee Gabriele Berg Gregor Christoph Robert Krause, Christine Moissl- TU Graz Gorkiewicz, MUG Högenauer, MUG MUG Eichinger, MUG www.medunigraz.at/microbiome Sehr geehrte Damen und Herren, liebe Kolleginnen und Kollegen! Bakterien, Viren, Archaen, Parasiten und Pilze – unseren Körper teilen wir mit Billionen Bakterien, die Mundhöhle, Haut und Darm besiedeln.
    [Show full text]
  • Bacteria Richness and Antibiotic-Resistance in Bats from a Protected Area in the Atlantic Forest of Southeastern Brazil
    RESEARCH ARTICLE Bacteria richness and antibiotic-resistance in bats from a protected area in the Atlantic Forest of Southeastern Brazil VinõÂcius C. ClaÂudio1,2,3*, Irys Gonzalez2, Gedimar Barbosa1,2, Vlamir Rocha4, Ricardo Moratelli5, FabrõÂcio Rassy2 1 Centro de Ciências BioloÂgicas e da SauÂde, Universidade Federal de São Carlos, São Carlos, SP, Brazil, 2 FundacËão Parque ZooloÂgico de São Paulo, São Paulo, SP, Brazil, 3 Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, 4 Centro de Ciências AgraÂrias, Universidade Federal de São Carlos, Araras, SP, Brazil, 5 Fiocruz Mata AtlaÃntica, FundacËão Oswaldo Cruz, Rio de Janeiro, RJ, a1111111111 Brazil a1111111111 [email protected] a1111111111 * a1111111111 a1111111111 Abstract Bats play key ecological roles, also hosting many zoonotic pathogens. Neotropical bat microbiota is still poorly known. We speculate that their dietary habits strongly influence OPEN ACCESS their microbiota richness and antibiotic-resistance patterns, which represent growing and Citation: ClaÂudio VC, Gonzalez I, Barbosa G, Rocha serious public health and environmental issue. Here we describe the aerobic microbiota V, Moratelli R, Rassy F (2018) Bacteria richness richness of bats from an Atlantic Forest remnant in Southeastern Brazil, and the antibiotic- and antibiotic-resistance in bats from a protected area in the Atlantic Forest of Southeastern Brazil. resistance patterns of bacteria of clinical importance. Oral and rectal cavities of 113 bats PLoS ONE 13(9): e0203411. https://doi.org/ from Carlos Botelho State Park were swabbed. Samples were plated on 5% sheep blood 10.1371/journal.pone.0203411 and MacConkey agar and identified by the MALDI-TOF technique.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • Scientific Opinion
    SCIENTIFIC OPINION ADOPTED: 29 April 2021 doi: 10.2903/j.efsa.2021.6651 Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain EFSA Panel on Biological Hazards (BIOHAZ), Konstantinos Koutsoumanis, Ana Allende, Avelino Alvarez-Ord onez,~ Declan Bolton, Sara Bover-Cid, Marianne Chemaly, Robert Davies, Alessandra De Cesare, Lieve Herman, Friederike Hilbert, Roland Lindqvist, Maarten Nauta, Giuseppe Ru, Marion Simmons, Panagiotis Skandamis, Elisabetta Suffredini, Hector Arguello,€ Thomas Berendonk, Lina Maria Cavaco, William Gaze, Heike Schmitt, Ed Topp, Beatriz Guerra, Ernesto Liebana, Pietro Stella and Luisa Peixe Abstract The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs blaCTX-M, blaVIM, blaNDM, blaOXA-48- like, blaOXA-23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water.
    [Show full text]
  • Pan-Genome Analysis of Ancient and Modern Salmonella Enterica Demonstrates Genomic Stability of the Invasive Para C Lineage for Millennia
    Pan-genome Analysis of Ancient and Modern Salmonella enterica Demonstrates Genomic Stability of the Invasive Para C Lineage for Millennia Zhou, Zhemin; Lundstrøm, Inge Kristine Conrad; Tran-Dien, Alicia; Duchêne, Sebastián; Alikhan, Nabil-Fareed; Sergeant, Martin J.; Langridge, Gemma; Fotakis, Anna Katerina; Nair, Satheesh; Stenøien, Hans K.; Hamre, Stian S.; Casjens, Sherwood; Christophersen, Axel; Quince, Christopher; Thomson, Nicholas R.; Weill, Francois-Xavier; Ho, Simon Y. W.; Gilbert, Tom; Achtman, Mark Published in: Current Biology DOI: 10.1016/j.cub.2018.05.058 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Zhou, Z., Lundstrøm, I. K. C., Tran-Dien, A., Duchêne, S., Alikhan, N-F., Sergeant, M. J., Langridge, G., Fotakis, A. K., Nair, S., Stenøien, H. K., Hamre, S. S., Casjens, S., Christophersen, A., Quince, C., Thomson, N. R., Weill, F-X., Ho, S. Y. W., Gilbert, T., & Achtman, M. (2018). Pan-genome Analysis of Ancient and Modern Salmonella enterica Demonstrates Genomic Stability of the Invasive Para C Lineage for Millennia. Current Biology, 28(15), 2420-2429. https://doi.org/10.1016/j.cub.2018.05.058 Download date: 25. sep.. 2021 Report Pan-genome Analysis of Ancient and Modern Salmonella enterica Demonstrates Genomic Stability of the Invasive Para C Lineage for Millennia Highlights Authors d Salmonella enterica aDNA sequences were found within 800- Zhemin Zhou, Inge Lundstrøm, year-old teeth and bone Alicia Tran-Dien, ..., Simon Y.W. Ho, M. Thomas P. Gilbert, Mark Achtman d The invasive Para C lineage was defined from 50,000 modern S.
    [Show full text]
  • The Whole Set of the Constitutive Promoters Recognized by Four Minor Sigma Subunits of Escherichia Coli RNA Polymerase
    RESEARCH ARTICLE The whole set of the constitutive promoters recognized by four minor sigma subunits of Escherichia coli RNA polymerase Tomohiro Shimada1,2¤, Kan Tanaka2, Akira Ishihama1* 1 Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan, 2 Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan a1111111111 ¤ Current address: School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The promoter selectivity of Escherichia coli RNA polymerase (RNAP) is determined by the sigma subunit. The model prokaryote Escherichia coli K-12 contains seven species of the OPEN ACCESS sigma subunit, each recognizing a specific set of promoters. For identification of the ªconsti- Citation: Shimada T, Tanaka K, Ishihama A (2017) tutive promotersº that are recognized by each RNAP holoenzyme alone in the absence of The whole set of the constitutive promoters other supporting factors, we have performed the genomic SELEX screening in vitro for their recognized by four minor sigma subunits of binding sites along the E. coli K-12 W3110 genome using each of the reconstituted RNAP Escherichia coli RNA polymerase. PLoS ONE 12(6): holoenzymes and a collection of genome DNA segments of E. coli K-12. The whole set of e0179181. https://doi.org/10.1371/journal. pone.0179181 constitutive promoters for each RNAP holoenzyme was then estimated based on the loca- tion of RNAP-binding sites. The first successful screening of the constitutive promoters was Editor: Dipankar Chatterji, Indian Institute of 70 Science, INDIA achieved for RpoD (σ ), the principal sigma for transcription of growth-related genes.
    [Show full text]