The Impact of Co-Infections on Fish: a Review

Total Page:16

File Type:pdf, Size:1020Kb

The Impact of Co-Infections on Fish: a Review Kotob et al. Vet Res (2016) 47:98 DOI 10.1186/s13567-016-0383-4 REVIEW Open Access The impact of co‑infections on fish: a review Mohamed H. Kotob1,2, Simon Menanteau‑Ledouble1, Gokhlesh Kumar1, Mahmoud Abdelzaher2 and Mansour El‑Matbouli1* Abstract Co-infections are very common in nature and occur when hosts are infected by two or more different pathogens either by simultaneous or secondary infections so that two or more infectious agents are active together in the same host. Co-infections have a fundamental effect and can alter the course and the severity of different fish diseases. How‑ ever, co-infection effect has still received limited scrutiny in aquatic animals like fish and available data on this subject is still scarce. The susceptibility of fish to different pathogens could be changed during mixed infections causing the appearance of sudden fish outbreaks. In this review, we focus on the synergistic and antagonistic interactions occur‑ ring during co-infections by homologous or heterologous pathogens. We present a concise summary about the pre‑ sent knowledge regarding co-infections in fish. More research is needed to better understand the immune response of fish during mixed infections as these could have an important impact on the development of new strategies for disease control programs and vaccination in fish. Table of contents 1 Introduction 1 Introduction The subject of co-infections of aquatic animals by differ- 2 Co‑infections with homologous pathogens ent pathogens has received little attention even though such infections are common in nature. Co-infections are 2.1 Bacterial co‑infections defined by infection of the host by two or more geneti- 2.2 Viral co‑infections cally different pathogens where each pathogen has patho- 2.3 Parasitic co‑infections genic effects and causes harm to the host in coincidence 3 Co‑infections with heterologous pathogens with other pathogens [1, 2]. Several other terms are used 3.1 Parasitic and bacterial co‑infections sometime to describe co-infections and include pol- ymicrobial diseases, complicated infections, concurrent 3.2 Parasitic and viral co‑infections infections, mixed infections, multiple infections, dual 3.3 Bacterial and viral co‑infections infections, secondary infections and super infections [2]. 3.4 Fungal and bacterial co‑infections Many researchers have concentrated only on single infec- 4 Conclusions tions, classifying the other agent as opportunistic and mostly ignoring it so in this review article we will focus on distinguishing the infections caused by more than one organism. During episodes of co-infection, interactions between the infectious agents yield to varied outcomes: the load of one or both pathogens may be increased, one or both may be suppressed or one may be increased *Correspondence: Mansour.El‑[email protected] and the other suppressed [1]. The natural environments 1 Clinical Division of Fish Medicine, Department for Farm Animals in which animals live are varied and harbor a variety of and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria heterogeneous micro-organisms including parasitic and Full list of author information is available at the end of the article non-parasitic species and co-infection are a frequent © 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Kotob et al. Vet Res (2016) 47:98 Page 2 of 12 occurrence. There is therefore, a considerable necessity to how frequent co-infections can be and because of the investigate the interactions occurring between these spe- potentially important impact that co-infections can have cies during mixed infections and the deleterious effects of on the development of a disease, it is important to under- multi-infections on fish disease pathogenesis, prognosis, stand how defensive immunity to a specific pathogen can and treatment [3–5]. occur in the host infected with multiple pathogens. Stud- During co-infections, pathogens can compete with ying different co-infection models is central to the devel- each other for resources or target sites inside the same opment of new effective vaccination and disease control host. Alternatively, sometimes one pathogen can alter strategies [6]. In the present article, we review recent the immune response of the host against the subsequent studies on co-infections of fish by homologous and het- infections by other pathogens either by suppressing or erologous pathogens. The impact of these co-infections priming the immune system [6, 7]. This can result in a on the susceptibility of the fish, the course and sever- change of the host susceptibility to infection and affect ity of the infection and the interactions between differ- the host-pathogen dynamics, infection biology, dis- ent pathogens are also reviewed in different co-infection ease severity, duration of infection and host pathology models. Tables 1 and 2 summarize the different interac- [7, 8]. Therefore, the interactions between co-occurring tions occurring between different homologous and heter- pathogens can be either synergistic or antagonistic [1, ologous pathogens in fish during co-infections. 9]. Synergistic effects can occur when the first pathogen induces immunosuppression in the host and hinders the 2 Co‑infections with homologous pathogens immune response against subsequent infections, lead- 2.1 Bacterial co‑infections ing to an increase in the severity of the infections and The subject of bacterial co-infections in fish is one that mortality rates [7, 9]. Antagonistic effects, however, can has yet to receive the scrutiny it deserves and includes result from competition of direct pathogens for nutrients dual, triple or multiple bacterial infections. It has been and places and limit the population size of the infectious reported that artificial infection of channel catfish, Icta- agents and, in some cases, alter the site of infection [10]. lurus punctatus by the enterobacterium Edwardsiella In other cases, the antagonistic effects happen when the ictaluri elicits a bacteraemia with motile aeromonad first pathogen triggers and modulates the host immune species, Aeromonas hydrophila [16]. This was confirmed response and hinders the second pathogen [11]. later by Crumlish et al. [17] who repeated these results In humans, several publications have described the with Vietnamese catfish, Pangasianodon hypophthal- effect of one pathogen on the abundance of other path- mus. These authors, however, showed that the reverse is ogens co-infecting the same host and the intensity of not true and that artificial infection with A. hydrophila infection estimated through measures of viral load, para- does not result in shedding of E. ictaluri [17]. Moreo- sitic egg counts, antibody reaction and immune response, ver, artificial co-infection challenge of Vietnamese cat- bacterial burdens in tissues and/or the host survival fish with both bacteria using an immersion route caused rate and recovery time [4]. Immunosuppressed people higher cumulative mortalities (95%) in the co-infected infected with human immunodeficiency virus (HIV- group and (80%) in E. ictaluri only infected fish when 1) have shown an increased susceptibility to secondary compared to the very low mortalities (10%) in the fish infections such as tuberculosis, which promotes HIV-1 exposed to A. hydrophila alone [17]. Based on these replication and increases the viral load [12]. Similarly, results, the authors suggest that while E. ictaluri acts like the susceptibility of HIV-1 infected persons to secondary a primary pathogen, the role of A. hydrophila is more infection with malaria has been shown to be increased opportunistic [17]. six times [13]. Naturally, concurrent infection of E. ictaluri and Fla- Chronic helminth infections, particularly in humans, vobacterium columnare in striped catfish, Pangasianodon produce a strong T helper 2 (Th2) and regulatory hypophthalmus in Thailand has also been reported [18]. immune response. This influences the immune response Dong et al. [18] experimentally challenged the striped to other unrelated pathogens during mixed infections, for catfish juveniles with single and both bacteria using the example reducing the inflammatory response, as well as immersion (i.m) and injection (i.p) routes and the results the efficacy of disease vaccines [14, 15]. showed high cumulative mortality in co-infected fish in In the aquatic environment, fish are commonly exposed both i.m. and i.p. routes when compared to single infec- to heterogeneous infectious macro or micro-organisms. tion of E. ictaluri or F. columnare and the co-infected fish However, little is known about how the presence of one showed the clinical signs of both diseases. The results pathogen can affect the load of other pathogens and how obtained by Crumlish et al. [17] and Dong et al. [18] the host mortality rate will be changed during co-infec- mimicked the natural outbreaks of the disease in striped tion in comparison with single infection [9]. Because of catfish farms in Vietnam and
Recommended publications
  • Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]
  • Disease of Aquatic Organisms 85:187
    Vol. 85: 187–192, 2009 DISEASES OF AQUATIC ORGANISMS Published July 23 doi: 10.3354/dao02073 Dis Aquat Org Enhanced mortality in Nile tilapia Oreochromis niloticus following coinfections with ichthyophthiriasis and streptococcosis De-Hai Xu*, Craig A. Shoemaker, Phillip H. Klesius US Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Laboratory, 990 Wire Road, Auburn, Alabama 36832, USA ABSTRACT: Ichthyophthirius multifiliis Fouquet (Ich) and Streptococcus iniae are 2 major pathogens of cultured Nile tilapia Oreochromis niloticus (L). Currently there is no information available for the effect of coinfection by Ich and S. iniae on fish. The objective of this study was to determine the effects of parasite load and Ich development size on fish mortality following S. iniae infection. Low mortality (≤20%) was observed in tilapia exposed to Ich or S. iniae alone. Mortalities increased from 38% in tilapia exposed to Ich at 10 000 theronts fish–1 to 88% in fish at 20 000 theronts fish–1 follow- ing S. iniae exposure. The median days to death were significantly fewer (7 d) in fish exposed to Ich at 20 000 theronts fish–1 than fish exposed to 10 000 theronts fish–1 (10 d). A positive correlation (cor- relation coefficient = 0.83) was noted between tilapia mortality and size of Ich trophonts at the time of S. iniae challenge. Fish parasitized with well-developed trophonts (Day 4, 2 × 107 µm3 in volume) suffered higher mortality (47.5%) than fish (10.0%) infested by young trophonts (Hour 4, 1.3 × 104 µm3 in volume) after S. iniae challenge.
    [Show full text]
  • Metabolic and Genetic Basis for Auxotrophies in Gram-Negative Species
    Metabolic and genetic basis for auxotrophies in Gram-negative species Yara Seifa,1 , Kumari Sonal Choudharya,1 , Ying Hefnera, Amitesh Ananda , Laurence Yanga,b , and Bernhard O. Palssona,c,2 aSystems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122; bDepartment of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; and cNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved February 5, 2020 (received for review June 18, 2019) Auxotrophies constrain the interactions of bacteria with their exist in most free-living microorganisms, indicating that they rely environment, but are often difficult to identify. Here, we develop on cross-feeding (25). However, it has been demonstrated that an algorithm (AuxoFind) using genome-scale metabolic recon- amino acid auxotrophies are predicted incorrectly as a result struction to predict auxotrophies and apply it to a series of the insufficient number of known gene paralogs (26). Addi- of available genome sequences of over 1,300 Gram-negative tionally, these methods rely on the identification of pathway strains. We identify 54 auxotrophs, along with the corre- completeness, with a 50% cutoff used to determine auxotrophy sponding metabolic and genetic basis, using a pangenome (25). A mechanistic approach is expected to be more appropriate approach, and highlight auxotrophies conferring a fitness advan- and can be achieved using genome-scale models of metabolism tage in vivo. We show that the metabolic basis of auxotro- (GEMs). For example, requirements can arise by means of a sin- phy is species-dependent and varies with 1) pathway structure, gle deleterious mutation in a conditionally essential gene (CEG), 2) enzyme promiscuity, and 3) network redundancy.
    [Show full text]
  • June 2021 Appendix 11: Approved Animal Drugs for Aqua
    APPENDIX 11: APPROVED ANIMAL DRUGS FOR AQUACULTURE USE This guidance represents the Food and Drug Administration’s (FDA’s) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the FDA staff responsible for implementing this guidance. If you cannot identify the appropriate FDA staff, call the telephone number listed on the title page of this guidance. APPROVED ANIMAL DRUGS FOR AQUACULTURE Species/Class: Freshwater-reared salmonids, walleye, and freshwater-reared warmwater Animal Drugs for aquacultured food fish must meet finfish human food safety standards assessed during the approval process. When a fish producer (farmer) Indication for Use (21 CFR 529.382): or hatchery manager uses an approved drug for food fish as directed on the label, the treated fish • For the control of mortality in freshwater- are safe to eat. reared salmonids due to bacterial gill disease associated with Flavobacterium spp. The FDA-approved animal drugs for use in • For the control of mortality in walleye due aquaculture, with information on their approved to external columnaris disease associated sponsor/supplier, species for which the approval with Flavobacterium columnare. has been granted, required withdrawal periods, • For the control of mortality in freshwater- and other conditions are listed below. Additional reared warmwater finfish due to external details on provisions of use (e.g., administration columnaris disease associated with route, dosage level) can be obtained from Flavobacterium columnare.
    [Show full text]
  • Are All Species of Pseudorhabdosynochus Strictly Host Specific? – a Molecular Study
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-CEA Are all species of Pseudorhabdosynochus strictly host specific? - a molecular study Charlotte Schoelinck, Corinne Cruaud, Jean-Lou Justine To cite this version: Charlotte Schoelinck, Corinne Cruaud, Jean-Lou Justine. Are all species of Pseudorhabdosyn- ochus strictly host specific? - a molecular study. Parasitology International, Elsevier, 2012, 61, 10.1016/j.parint.2012.01.009. <10.1016/j.parint.2012.01.009>. <mnhn-00673113> HAL Id: mnhn-00673113 https://hal-mnhn.archives-ouvertes.fr/mnhn-00673113 Submitted on 22 Feb 2012 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Parasitology International, in press 2012 – DOI: 10.1016/j.parint.2012.01.009 Are all species of Pseudorhabdosynochus strictly host specific? – a molecular study Charlotte Schoelinck (a, b) Corinne Cruaud (c), Jean-Lou Justine (a) (a) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, Département Systématique et Évolution, CP 51, 55 Rue Buffon, 75231 Paris cedex 05, France. (b) Service de Systématique moléculaire (CNRS-MNHN, UMS2700), Muséum National d'Histoire Naturelle, Département Systématique et Évolution, CP 26, 43 Rue Cuvier, 75231 Paris Cedex 05, France.
    [Show full text]
  • FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
    SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0037370 A1 Corbeil Et Al
    US 2015 0037370A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0037370 A1 Corbeil et al. (43) Pub. Date: Feb. 5, 2015 (54) DIATOM-BASEDVACCINES (86). PCT No.: PCT/US2O12/062112 S371 (c)(1), (71) Applicants: The Regents of the University of (2) Date: Apr. 23, 2014 California, Oakland, CA (US); Synaptic Related U.S. Application Data Research, LLC, Baltimore, MD (US) (60) Provisional application No. 61/553,139, filed on Oct. (72) Inventors: Lynette B. Corbeil, San Diego, CA 28, 2011. (US); Mark Hildebrand, La Jolla, CA Publication Classification (US); Roshan Shrestha, San Diego, CA (US); Aubrey Davis, Lakeside, CA (51) Eiko.29s (2006.01) (US) Rachel Schrier, Del Mar, CA CI2N 7/00 (2006.01) (US); George A. Oyler, Lincoln, NE A6139/02 (2006.01) (US); Julian N. Rosenberg, Naugatuck, A61E36/06 (2006.01) CT (US) A6139/02 (2006.01) (52) U.S. Cl. (73) Assignees: SYNAPTIC RESEARCH, LLC, CPC ............... A61K 39/295 (2013.01); A61K 36/06 Baltimore, MD (US): THE REGENTS (2013.01); A61 K39/107 (2013.01); A61 K OF THE UNIVERSITY OF 39/102 (2013.01); C12N 700 (2013.01); A61 K CALIFORNIA, Oakland, CA (US) 2039/523 (2013.01) USPC .................. 424/2011; 424/93.21; 424/261.1; y x- - - 9 (57) ABSTRACT 22) PCT Fled: Oct. 26, 2012 This invention pprovides diatom-based vaccines. Patent Application Publication Feb. 5, 2015 Sheet 1 of 19 US 2015/0037370 A1 83 : RE: Repests 388x ExF8. Patent Application Publication Feb. 5, 2015 Sheet 2 of 19 US 2015/0037370 A1 Fig.
    [Show full text]
  • Proteome Analysis Reveals a Role of Rainbow Trout Lymphoid Organs During Yersinia Ruckeri Infection Process
    www.nature.com/scientificreports Correction: Author Correction OPEN Proteome analysis reveals a role of rainbow trout lymphoid organs during Yersinia ruckeri infection Received: 14 February 2018 Accepted: 30 August 2018 process Published online: 18 September 2018 Gokhlesh Kumar 1, Karin Hummel2, Katharina Noebauer2, Timothy J. Welch3, Ebrahim Razzazi-Fazeli2 & Mansour El-Matbouli1 Yersinia ruckeri is the causative agent of enteric redmouth disease in salmonids. Head kidney and spleen are major lymphoid organs of the teleost fsh where antigen presentation and immune defense against microbes take place. We investigated proteome alteration in head kidney and spleen of the rainbow trout following Y. ruckeri strains infection. Organs were analyzed after 3, 9 and 28 days post exposure with a shotgun proteomic approach. GO annotation and protein-protein interaction were predicted using bioinformatic tools. Thirty four proteins from head kidney and 85 proteins from spleen were found to be diferentially expressed in rainbow trout during the Y. ruckeri infection process. These included lysosomal, antioxidant, metalloproteinase, cytoskeleton, tetraspanin, cathepsin B and c-type lectin receptor proteins. The fndings of this study regarding the immune response at the protein level ofer new insight into the systemic response to Y. ruckeri infection in rainbow trout. This proteomic data facilitate a better understanding of host-pathogen interactions and response of fsh against Y. ruckeri biotype 1 and 2 strains. Protein-protein interaction analysis predicts carbon metabolism, ribosome and phagosome pathways in spleen of infected fsh, which might be useful in understanding biological processes and further studies in the direction of pathways. Enteric redmouth disease (ERM) causes signifcant economic losses in salmonids worldwide.
    [Show full text]
  • Lactococcus Garvieae and Streptococcus Iniae Infections in Rainbow Trout Oncorhynchus Mykiss: Similar, but Different Diseases
    DISEASES OF AQUATIC ORGANISMS Vol. 36: 227-231.1999 Published May 31 Dis Aquat Org NOTE Lactococcus garvieae and Streptococcus iniae infections in rainbow trout Oncorhynchus mykiss: similar, but different diseases A. Eldar', C. ~hittino~,' 'Department of Poultry and Fish Diseases. Kimron Veterinary Institute, POB 12, 50250 Bet-Dagan. Israel 2~ishDisease Laboratory, IZS - State Veterinary Institute. Via Bologna 148, 1-10154 Turin, Italy ABSTRACT. Chnical and macroscopic findings (anorexia, haemorrhage, ophthalmitis and congestion (Kusuda lethargy, loss of orientation and exophthalmia) indicate that et al. 1991, Domenech et al. 1996). Con~monsigns Streptococcus ~niaeand Lactococcus garvieae infections of (lethargy, dark pigmentation, erratic swimming and trout share some common features, but histopathology re- veals notable differences between the 2 diseases. Meningitis exophthalmos with clouding of the cornea) are also and panophthalmitis are the main lesions among S. iniae present in Lactococcus garvieae (Collins et al. 1984; infected trout, whereas L. garvieae infection results in a junior synonym: Enterococcus seriolicida IKusuda et hyperacute systemic disease. Differences in the LD,,s of al. 1991, Domenech et al. 1993, Eldar et al. 19961) and the 2 pathogens and the sudden onset of signs and death & correlate with the histopathological findings, indicating the Streptococcus iniae (Pier Madin 1976) infections of severity of L.garvieae infection of trout. rainbow trout Oncorhynchus mykiss reared above 15°C. Our findings now show that these are 2 defined KEY WORDS Trout . Streptococcus iniae . Lactococcus conditions. L. garvieae infection of trout produces a garvieae Pathology . Experimental disease generalized disease and rapid death, while the disease induced by S, iniae results in a more prolonged course with specific lesions.
    [Show full text]
  • Respiratory Disorders of Fish
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Disorders of the Respiratory System in Pet and Ornamental Fish a, b Helen E. Roberts, DVM *, Stephen A. Smith, DVM, PhD KEYWORDS Pet fish Ornamental fish Branchitis Gill Wet mount cytology Hypoxia Respiratory disorders Pathology Living in an aquatic environment where oxygen is in less supply and harder to extract than in a terrestrial one, fish have developed a respiratory system that is much more efficient than terrestrial vertebrates. The gills of fish are a unique organ system and serve several functions including respiration, osmoregulation, excretion of nitroge- nous wastes, and acid-base regulation.1 The gills are the primary site of oxygen exchange in fish and are in intimate contact with the aquatic environment. In most cases, the separation between the water and the tissues of the fish is only a few cell layers thick. Gills are a common target for assault by infectious and noninfectious disease processes.2 Nonlethal diagnostic biopsy of the gills can identify pathologic changes, provide samples for bacterial culture/identification/sensitivity testing, aid in fungal element identification, provide samples for viral testing, and provide parasitic organisms for identification.3–6 This diagnostic test is so important that it should be included as part of every diagnostic workup performed on a fish.
    [Show full text]
  • FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
    SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Helminths and Crustaceans Copepod Parasites of Silver Carp (Hypophthalmichthys Molitrix (Valenciennes, 1844)): Population of the Lak of Fouarate, Kenitra (Morocco)
    id1894515 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com ISSN : 0974 - 7532 Volume 9 Issue 9 Research & Reviews in BBiiooSScciieenncceess Regular Paper RRBS, 9(9), 2014 [311-315] Helminths and crustaceans copepod parasites of silver carp (Hypophthalmichthys molitrix (Valenciennes, 1844)): Population of the lak of Fouarate, Kenitra (Morocco) Latifa El Harrak1,2, Kaoutar Houri1, Hafida Jaghror1, Mohammed Izougarhane1, Ahmed Omar Touhami Ahami2, Mohamed Fadli1* 1Laboratory of Biodiversity and Natural Resources, Department of Biology, University Ibn Tofail, Faculty Of Science Kenitra, PO Box 1400, (MOROCCO) «Human Biology and Population Health (BHSP) ». Department of Biology Ibn Tofail University Kenitra, 2UFR PO Box 1400, (MOROCCO) 3Laboratory of Zoology and General Biology. Team of Sustainable Development of Ecosystems, Faculty of Sciences. 4 A. Ibn Battouta B.P. 1014 RP Rabat; 10090, (MOROCCO) ABSTRACT KEYWORDS In Asian, Asian carp has been introduced in different water accumulations Silver carp; in the world for the production of animal protein or for environmental ob- Parasites; jectives. However, many parasites have benefited from the operation to Helminths; conquer many countries and continue to threaten the species itself, and be Copepod prevalence a risk to humans. Fouarate lake; In this work, we determined the parasitic species Helminths and Copepod Morocco. (Crustacean) infesting a population of silver carp of the lake Fouarate nearby the city of Kenitra (Morocco). The results show that four helminths (Clonorchis sinensis, Diplostomum spathaceum, Bothriocephalus acheilognathi, Anisakis simplex, Dactylogyrus Sp) and a copepod crustacean (Lerneae Sp) parasitize the muscle, the intestine, the skin, the eyes or the gills of the studied fish.
    [Show full text]