Temperature-Driven Proliferation of Tetracapsuloides Bryosalmonae in Bryozoan Hosts Portends Salmonid Declines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies on Fresh-Water Byrozoa. XVII, Michigan Bryozoa
STUDIES ON FRESH-WATER BRYOZOA, XVII. MICHIGAN BRYOZOA MARY D. ROGICK, College of New Roche lie, New Rochelle, N. Y. AND HENRY VAN DER SCHALIE, University of Michigan, Ann Arbor, Mich. INTRODUCTION The purpose of the present study is to record the occurrence of several bryozoan species from localities new to Michigan and other regions; to compile a list of the bryozoa previously recorded from Michigan; and to correct or revise the identifica- tion of some of the species collected long ago. Records published by various writers from 1882 through 1949 have reported the following bryozoa from different Michigan localities, sometimes under synonyms or outmoded names: Class ECTOPROCTA Order GYMNOLAEMATA * Family Paludicellidae 1. Paludicella articulata (Ehrenberg) 1831 ORDER PHYLACTOLAEMATA Family Cristatellidae 2. Cristatella mucedo Cuvier 1798 Family Fredericellidae 3. Fredericella sultana (Blumenbach) 1779 Family Lophopodidae 4. Pectinatella magnifica Leidy 1851 Family PRimatellidae 5. Hyalinella punctata (Hancock) 1850 6. Plumatella casmiana Oka 1907 7. Plumatella or bis per ma Kellicott 1882 8. Plumatella repens (Linnaeus) 1758 9. Plumatella repens var. coralloides (Allman) 1850 10. Plumatella repens var. emarginata (Allman) 1844 11. Stolella indica Annandale 1909 The recorded localities for the above list of bryozoa are named in Table I. The sixteen references from which the Table was compiled are on file with both authors and are not here reproduced. To the above listed species the present study adds the following two new Michigan records: Class ECTOPROCTA Family Plumatellidae Plumatella repens var. jugalis (Allman) 1850 Class ENTOPROCTA Family Urnatellidae Urnatella gracilis Leidy 1851 In addition to the Urnatella gracilis and the Plumatella repens jugalis three other bryozoa (Paludicella articulata, Plumatella casmiana and Plumatella repens var. -
Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts. -
Proteome Analysis Reveals a Role of Rainbow Trout Lymphoid Organs During Yersinia Ruckeri Infection Process
www.nature.com/scientificreports Correction: Author Correction OPEN Proteome analysis reveals a role of rainbow trout lymphoid organs during Yersinia ruckeri infection Received: 14 February 2018 Accepted: 30 August 2018 process Published online: 18 September 2018 Gokhlesh Kumar 1, Karin Hummel2, Katharina Noebauer2, Timothy J. Welch3, Ebrahim Razzazi-Fazeli2 & Mansour El-Matbouli1 Yersinia ruckeri is the causative agent of enteric redmouth disease in salmonids. Head kidney and spleen are major lymphoid organs of the teleost fsh where antigen presentation and immune defense against microbes take place. We investigated proteome alteration in head kidney and spleen of the rainbow trout following Y. ruckeri strains infection. Organs were analyzed after 3, 9 and 28 days post exposure with a shotgun proteomic approach. GO annotation and protein-protein interaction were predicted using bioinformatic tools. Thirty four proteins from head kidney and 85 proteins from spleen were found to be diferentially expressed in rainbow trout during the Y. ruckeri infection process. These included lysosomal, antioxidant, metalloproteinase, cytoskeleton, tetraspanin, cathepsin B and c-type lectin receptor proteins. The fndings of this study regarding the immune response at the protein level ofer new insight into the systemic response to Y. ruckeri infection in rainbow trout. This proteomic data facilitate a better understanding of host-pathogen interactions and response of fsh against Y. ruckeri biotype 1 and 2 strains. Protein-protein interaction analysis predicts carbon metabolism, ribosome and phagosome pathways in spleen of infected fsh, which might be useful in understanding biological processes and further studies in the direction of pathways. Enteric redmouth disease (ERM) causes signifcant economic losses in salmonids worldwide. -
Acquired Resistance to Kudoa Thyrsites in Atlantic Salmon Salmo Salar Following Recovery from a Primary Infection with the Parasite
Aquaculture 451 (2016) 457–462 Contents lists available at ScienceDirect Aquaculture journal homepage: www.elsevier.com/locate/aqua-online Acquired resistance to Kudoa thyrsites in Atlantic salmon Salmo salar following recovery from a primary infection with the parasite Simon R.M. Jones ⁎, Steven Cho, Jimmy Nguyen, Amelia Mahony Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, British Columbia V9T 6N7, Canada article info abstract Article history: The influence of prior infection with Kudoa thyrsites or host size on the susceptibility of Atlantic salmon post- Received 19 August 2015 smolts to infection with the parasite was investigated. Exposure to infective K. thyrsites in raw seawater (RSW) Received in revised form 30 September 2015 was regulated by the use of ultraviolet irradiation (UVSW). Naïve smolts were exposed to RSW for either Accepted 2 October 2015 38 days (440 degree-days, DD) or 82 days (950 DD) after which they were maintained in UVSW. Control fish Available online 9 October 2015 were maintained on UVSW only. Microscopic examination at day 176 (1985 DD) revealed K. thyrsites infection in nearly 90% of exposed fish but not in controls. Prevalence and severity of the infection decreased in later sam- ples. Following a second exposure of all fish at day 415 (4275 DD), prevalence and severity were elevated in the UVSW controls compared to previously exposed fish groups, suggesting the acquisition of protective immunity. In a second experiment, naïve smolts were exposed to RSW at weights of 101 g, 180 g, 210 g or 332 g and the prevalence and severity of K. thyrsites in the smallest fish group were higher than in any other group. -
Home Sweet Home — Trout Parasites
length of your hand. Some live on a single fi sh, whilst others have complex life cycles with multiple hosts, spanning many years and travelling hundreds of miles before they mature and reproduce. Many parasites lead a benign existence, tolerated by healthy fi sh without causing any obvious distress. However, by their very nature, parasites divert energy from their host for their own survival and reproduction. Consequently, some parasite infections can lead to debilitation of individual fi sh and serious disease problems within populations. Here, Chris Williams and Shaun Leonard give us a brief introduction to some of those parasites and problems. The Fish Louse, Argulus Figure 1: The white, fl uffy fungal The fi sh louse, Argulus, is a resident of rivers infection of Saprolegnia, tends to and lakes and one of the most familiar be a secondary infection on open parasites encountered by anglers. Three abrasions and sores species have been recorded from British freshwater fi sh and all may be found on the skin and fi ns of trout. The largest is Argulus coregoni (Figure 2), a parasite with a preference for running water so most likely to be encountered by the wild trout angler. Home Adults, up to 10mm in size, are light brown and well camoufl aged on the fl anks of trout; the black, beady eyespots can give them away (Figure 3). Suckers allow the parasite to move with surprising agility, yet clamp like a limpet when faced with risk of detachment. Sweet Home Infections of Argulus in the wild are often limited to odd ones and twos, tolerated by A guide to some of the creatures most healthy fi sh. -
Geographic Distribution of Tetracapsuloides Bryosalmonae Infected fi Sh in Swiss Rivers: an Update
Aquat. Sci. 69 (2007) 3–10 1015-1621/07/010003-8 DOI 10.1007/s00027-006-0843-4 Aquatic Sciences © Eawag, Dübendorf, 2007 Research Article Geographic distribution of Tetracapsuloides bryosalmonae infected fi sh in Swiss rivers: an update Thomas Wahli1,*, Daniel Bernet1, Pascale April Steiner1,2 and Heike Schmidt-Posthaus1 1 Centre for Fish and Wildlife Health, Laenggassstrasse 122, P.O. Box 8466, CH-3001 Bern, Switzerland 2 Federal Offi ce for the Environment, CH-3003 Bern, Switzerland Received: 1 November 2005; revised manuscript accepted: 3 July 2006 Abstract. Proliferative kidney disease (PKD) has been sampling sites, T. bryosalmonae-infected fi sh were recognized as a potential threat to brown trout (Salmo found. The prevalence of infected fi sh at individual sites trutta) populations in Switzerland. A study performed in ranged from 0% to 100%. Infection intensity, judged on 2000/2001 on 139 sampling sites from 127 rivers in Swit- the basis of histological and immunohistochemical eval- zerland revealed a wide distribution of fi sh infected by uation for the degree of parasite infection, varied greatly Tetracapsuloides bryosalmonae, the causative agent of between and within sites. PKD-positive sites were found PKD. The present study aimed to complement this data- in all areas of Switzerland. The wide distribution of the set by studying a further 115 sample sites from 91 rivers disease in Swiss rivers indicates that PKD may be a caus- and 4 fi sh farms. Mainly brown trout were investigated ative factor for the catch decline of brown trout, which for the presence of T. bryosalmonae by a combination of was suggested over recent decades in Switzerland. -
Report: 19Th Annual Workshop of the National Reference Laboratories for Fish Diseases
Report: 19th Annual Workshop of the National Reference Laboratories for Fish Diseases Copenhagen, Denmark May 27th-28th 2015 FISH positive staining for Rickettsia like Gill necrosis in Koi Carp SVCV CPE on EPC cell culture organism in sea bass brain Organised by the European Union Reference Laboratory for Fish Diseases National Veterinary Institute, Technical University of Denmark 1 Contents INTRODUCTION AND SHORT SUMMARY ..................................................................................................................4 PROGRAM .................................................................................................................................................................8 Welcome ................................................................................................................................................................ 12 SESSION I: .............................................................................................................................................................. 13 UPDATE ON IMPORTANT FISH DISEASES IN EUROPE AND THEIR CONTROL ......................................................... 13 OVERVIEW OF THE DISEASE SITUATION AND SURVEILLANCE IN EUROPE IN 2014 .......................................... 14 UPDATE ON FISH DISEASE SITUATION IN NORWAY .......................................................................................... 17 UPDATE ON FISH DISEASE SITUATION IN THE MEDITERRANEAN BASIN .......................................................... 18 PAST -
Transcriptome Analysis Elucidates the Key Responses of Bryozoan Fredericella Sultana During the Development of Tetracapsuloides Bryosalmonae (Myxozoa)
International Journal of Molecular Sciences Article Transcriptome Analysis Elucidates the Key Responses of Bryozoan Fredericella sultana during the Development of Tetracapsuloides bryosalmonae (Myxozoa) Gokhlesh Kumar 1,* , Reinhard Ertl 2 , Jerri L. Bartholomew 3 and Mansour El-Matbouli 1 1 Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; [email protected] 2 VetCore Facility, University of Veterinary Medicine, 1210 Vienna, Austria; [email protected] 3 Department of Microbiology, Oregon State University, Corvallis, OR 97331-3804, USA; [email protected] * Correspondence: [email protected] Received: 8 July 2020; Accepted: 13 August 2020; Published: 17 August 2020 Abstract: Bryozoans are sessile, filter-feeding, and colony-building invertebrate organisms. Fredericella sultana is a well known primary host of the myxozoan parasite Tetracapsuloides bryosalmonae. There have been no attempts to identify the cellular responses induced in F. sultana during the T. bryosalmonae development. We therefore performed transcriptome analysis with the aim of identifying candidate genes and biological pathways of F. sultana involved in the response to T. bryosalmonae. A total of 1166 differentially up- and downregulated genes were identified in the infected F. sultana. Gene ontology of biological processes of upregulated genes pointed to the involvement of the innate immune response, establishment of protein localization, and ribosome biogenesis, while the downregulated genes were involved in mitotic spindle assembly, viral entry into the host cell, and response to nitric oxide. Eukaryotic Initiation Factor 2 signaling was identified as a top canonical pathway and MYCN as a top upstream regulator in the differentially expressed genes. Our study provides the first transcriptional profiling data on the F. -
Immune Response Modulation Upon Sequential Heterogeneous Co
Fish and Shellfish Immunology 88 (2019) 375–390 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Immune response modulation upon sequential heterogeneous co-infection T with Tetracapsuloides bryosalmonae and VHSV in brown trout (Salmo trutta) ∗ Bartolomeo Gorgoglionea,b, ,1, Nick G.H. Taylorb, Jason W. Hollanda,2, Stephen W. Feistb, ∗∗ Christopher J. Secombesa, a Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK b CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK ARTICLE INFO ABSTRACT Keywords: Simultaneous and sequential infections often occur in wild and farming environments. Despite growing Co-infections awareness, co-infection studies are still very limited, mainly to a few well-established human models. European Host-pathogen interaction salmonids are susceptible to both Proliferative Kidney Disease (PKD), an endemic emergent disease caused by Response to pathogens the myxozoan parasite Tetracapsuloides bryosalmonae, and Viral Haemorrhagic Septicaemia (VHS), an OIE no- Fish immunology tifiable listed disease caused by the Piscine Novirhabdovirus. No information is available as to how their immune Salmonids system reacts when interacting with heterogeneous infections. A chronic (PKD) + acute (VHS) sequential co- Proliferative kidney disease Myxozoa infection model was established to assess if the responses elicited in co-infected fish are modulated, when Piscine Novirhabdovirus compared to fish with single infections. Macro- and microscopic lesions were assessed after the challenge, and Histopathology infection status confirmed by RT-qPCR analysis, enabling the identification of singly-infected and co-infected Th subsets fish. A typical histophlogosis associated with histozoic extrasporogonic T. -
KHV) by Serum Neutralization Test
Downloaded from orbit.dtu.dk on: Nov 08, 2017 Detection of antibodies specific to koi herpesvirus (KHV) by serum neutralization test Cabon, J.; Louboutin, L.; Castric, J.; Bergmann, S. M.; Bovo, G.; Matras, M.; Haenen, O.; Olesen, Niels Jørgen; Morin, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Cabon, J., Louboutin, L., Castric, J., Bergmann, S. M., Bovo, G., Matras, M., ... Morin, T. (2015). Detection of antibodies specific to koi herpesvirus (KHV) by serum neutralization test. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 115-115). [O-107] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts. -
D070p001.Pdf
DISEASES OF AQUATIC ORGANISMS Vol. 70: 1–36, 2006 Published June 12 Dis Aquat Org OPENPEN ACCESSCCESS FEATURE ARTICLE: REVIEW Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections D. W. Bruno1,*, B. Nowak2, D. G. Elliott3 1FRS Marine Laboratory, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, UK 2School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, CRC Aquafin, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia 3Western Fisheries Research Center, US Geological Survey/Biological Resources Discipline, 6505 N.E. 65th Street, Seattle, Washington 98115, USA ABSTRACT: The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tis- sue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species af- fecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy. KEY WORDS: Identification · Light microscopy · Metazoa · Protozoa · Staining · Tissue sections Resale or republication not permitted without written consent of the publisher INTRODUCTION identifying the type of epithelial cells that compose the intestine. -
Parasitism and Phenotypic Change in Colonial Hosts
1403 Parasitism and phenotypic change in colonial hosts HANNA HARTIKAINEN1,2*, INÊS FONTES2 and BETH OKAMURA2 1 Department of Aquatic Ecology, EAWAG, Überlandstrasse 133, Dübendorf 8600, Switzerland 2 Department of Life Sciences, Natural History Museum, London SW7 5BD, UK (Received 15 April 2013; revised 16 May 2013; accepted 20 May 2013) SUMMARY Changes in host phenotype are often attributed to manipulation that enables parasites to complete trophic transmission cycles. We characterized changes in host phenotype in a colonial host–endoparasite system that lacks trophic transmission (the freshwater bryozoan Fredericella sultana and myxozoan parasite Tetracapsuloides bryosalmonae). We show that parasitism exerts opposing phenotypic effects at the colony and module levels. Thus, overt infection (the development of infectious spores in the host body cavity) was linked to a reduction in colony size and growth rate, while colony modules exhibited a form of gigantism. Larger modules may support larger parasite sacs and increase metabolite availability to the parasite. Host metabolic rates were lower in overtly infected relative to uninfected hosts that were not investing in propagule production. This suggests a role for direct resource competition and active parasite manipulation (castration) in driving the expression of the infected phenotype. The malformed offspring (statoblasts) of infected colonies had greatly reduced hatching success. Coupled with the severe reduction in statoblast production this suggests that vertical transmission is rare in overtly infected modules. We show that although the parasite can occasionally infect statoblasts during overt infections, no infections were detected in the surviving mature offspring, suggesting that during overt infections, horizontal transmission incurs a trade-off with vertical transmission.